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2 M. N. N. NAMBOODIRI AND S. REMADEVI

1. I NTRODUCTION

The classical theorem of Szegö [3] on Toeplitz matrices states that ifλ1,N , λ2,N , . . . , λN,N

are the eigenvalues of theN ×N section of the matrix(ai−j) whereak = 1
2π

∫ π

−π
e−ikxf(x)dx

is thekth Fourier coefficient of the multiplierf in L∞(−π, π) andF : R → R any continuous
function onR, then

(1.1) lim
N→∞

∑N
k=1 F (λk,N)

N
=

1

2π

∫ π

−π

F (f(x))dx.

Now recall the following notion of equidistribution of sequences of real numbers in an interval,
due to Hermann Weyl.

Equidistribution of Sequences[9]. Let (λ1, λ2, . . . λn) and(β1, β2, . . . , βn) be two sequences
of sets of real numbers in(a, b). They are said to be equally distributed if

lim
n→∞

∑n
i=1 F (λi)

n
= lim

n→∞

∑n
i=1 F (βi)

n

for all continuous real functionsF on (a, b).
So the classical Szegö Theorem implies that the sequences of sets of eigenvalues

(λ1, λ2, . . . , λn) and the function values{f(−π+ 2vπ
n+1

)}, v = 1, 2, . . . , n asn→∞ are equally
distributed in(a, b) wherea = essinff(x) andb = esssupf(x).

Observe that in the classical Szegö’s theorem, the Toeplitz operators and their truncations
are considered with respect to Fourier basis{ einx

√
2π

, n = 0,±1,±2, . . .} in L2(−π, π). Its appli-
cations to various fields like statistics, classical moment problem and analytic function theory
have been discussed in detail in [9].

The Szegö limit provides localization of spectrum which is useful in many applications to a
variety of fields such as mathematical physics, partial differential operators and signal process-
ing. For instance such applications can be found in the work of Damanik D. and Simon B. [8],
Laptev A. and Safarov Yu [12] and Houcem Gazzah, Philip A. Regalia, and Jean-Pierre Delmas
[10]. In [10] Szegö limit has been used to estimate the lowest nonzero eigen value of certain
covariance matrix that arises in SIMO channel identification problem based on Fourier system.
There the basis used is the Fourier system. In place of that one can hope to use Haar system
which will minimize the computational difficulties. Szegö’s theorem is also used in medical
sciences such as limited angle tomography. It is noted that the Szegö limit provides the ratio
between known and unknown data which will be useful for imaging problems in tomography
[16].

Morrison has proved Szegö type theorems for certain multiplication operators with respect to
Walsh system as well as Legendre polynomials [14]. In [15] it has been proved that with respect
to lexicographic ordering of the Haar wavelet basis inL2(0, 1), the Szegö type limit does not
exist for certain multiplication operators onL2(0, 1). It has also been observed that for certain
multiplication operators onL2(0, 1) andL2(R+) the Szegö limit exist when the Haar system is
ordered suitably.

This paper is committed to identify more general class of orderings of the Haar system and
classes of multiplication operators for which the Szegö type limit exist.

First we highlight the importance of Haar system compared to Fourier system, Legendre
polynomial and Walsh system, though it is not smooth
(i) The Haar wavelet is well localized and simple, which is useful in many applications.
(ii) The computation and implementation are easier because in time-frequency analysis using
Haar wavelet the computation reduces to averaging process. [4, 11].
(iii) In many situations, the matrix of multiplication operatorTf with respect to Haar system is
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SZEGÖ LIMITS AND HAAR WAVELET BASIS 3

more sparse than the matrices with respect to Walsh, Fourier system etc. [20].
(iv) It has been used in the analysis of fitness functions in genetic algorithms [22].

For instance in the analysis of fitness functions in genetic algorithm,2l non-zero terms are
required for the expansion of a given function as linear combination of Walsh functions, where
as atmostl + 1 non-zero terms are required with the Haar expansion, wherel is the size of the
binary string in the solution space. It has also been observed that the Haar functions have more
advantage than Walsh functions [22].
(v) John Canny [7] provided a mathematical argument for using a derivative of Gaussian kernel
as an optimal edge detector. He observed that convolving an edge with a derivative of Gaussian
kernel produces maxima or minima at step edges.

A similar argument may be possible in the case of Haar system too. Observe that the deriva-
tive of Walsh function is the Haar function. Hence, if Haar function is convolved with an edge,
its maxima and minima will correspond to step edges. Here ‘smoothing’ is done by Walsh func-
tion. Though Walsh function is not smooth like Gaussian, mild ‘smoothing’ takes place when
convolved with Walsh.

Throughout this paper the following notations have been used. For a separable Hilbert space
H, let [e1, e2, . . .] be an orthonormal basis inH, HN = span[e1, e2, . . . , eN ] andPN be the
orthogonal projection ofH ontoHN . For each linear operatorT onH, TN will denotePNTPN

restricted toHN . Let [T ] = (aij) denote the infinite matrix(aij) of T with respect to the above
basis and[T ]N will denote theN × N matrix (aij)i,j=1···N . For a scalar functionf , Tf will
denote the multiplication operator on an appropriateL2-space.

This paper is divided into two sections. In the first section we prove that Szegö type limit
exists for a general class of multiplication operatorsTf with multiplier f ∈ L2(R+) subject to
some conditions onf . In the second section more general classes of orderings of Haar system in
L2-spaces are identified for certain classes of multiplication operators which satisfy the Szegö
type limit property. Some illustrative examples are also considered.

2. SZEGÖ TYPE L IMITS

In this section we deal with an ordering of the Haar system inL2(R+) that was considered in
[20] and prove that the Szegö type limit exists for multiplication operatorTf with more general
class of multipliersf . We recall this ordering for convenience.

2.1. An ordering of the Haar wavelet basis forL2(R+). Let φ be the characteristic function
of [0, 1] andhrp be the Haar function defined by

hr,p = 2
r
2

p

2r
≤ x <

p+ 1/2

2r

= −2
r
2

p+ 1/2

2r
≤ x <

p+ 1

2r

= 0 otherwise.

wherer & p are non negative integers. Now consider the Haar system inL2(R+) namely
{ϕr(x), hrp(x), r, p = 0, 1, 2, . . . }, whereϕr(x) = ϕ(x− r).
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4 M. N. N. NAMBOODIRI AND S. REMADEVI

We assign the following ordering

ϕ0, h00, h01

ϕ1, h10, h11, h12, h13, h02, h03

· · ·
ϕr−1, hr−10, . . . , hr−12r−1, . . . , h02r−1 , . . . , h02r−1

ϕr, hr0, . . . , hr2r+1−1, . . . , h02r , . . . , h02r+1−1

· · ·
ϕr+s, hr+s0, . . . , hr+s2r+s+1−1, . . . , hr2r+s , . . . , hr+s2r+s+1−1, . . . , h02r+s , . . . , h02r+s+1−1

· · ·

and the Haar system with the above ordering shall be denoted by(ψk : k = 1, 2, 3, . . .).

Remark 2.2. One can easily determine the position ofhrp andϕr, for a givenr andp from the
above triangular form of arrangement as given below.

ψk = φr if k = r(2r + 1) + 1

= hrp, p < 2r+1 if k = r(2r + 1) + p+ 2

= hrp, p ≥ 2r+s, s ∈ N, if k = (r + 2s)(2r+s + 1) + p− s+ 2

Now we analyze the behavior of certain multiplication operators with respect to the above
ordering of the Haar system. First of all we recall the following theorem [20, theorem 2] which
is needed to prove the main result of this section.

Theorem 2.3.LetTfn be the multiplication operator onL2(R+) with

fn =
n∑

k=1

αkψk, n = (m+ 1)(2m+1 + 1),

andαk, s are real for eachk. With respect to the above ordered Haar system the following
asymptotic formula holds for any continuous functionF onR,

lim
N→∞

∑N
k=1 F (λ

(n)
k,N)

N
= lim

M→∞

1

M

∫ M

0

F [fn(x)]dx,

whereλ(n)
1,N , λ

(n)
2,N , . . . , λ

(n)
N,N are the eigenvalues of(Tfn)N .

Now we prove the following theorem.

Theorem 2.4. Let Tfn be the multiplication operator onL2(R+) wherefn =
∑n

k=1 αkψk,
αk’s are real for eachk. With respect to the ordered Haar system 2.1, and for any continuous
functionF onR we have

lim
N→∞

∑N
k=1 F (λ

(n)
k,N)

N
= lim

M→∞

1

M

∫ M

0

F [fn(x)]dx,

whereλ(n)
1,N , λ

(n)
2,N , . . . , λ

(n)
N,N are the eigenvalues of(Tfn)N .

Proof. From the above theorem we have the result for the operatorsTfn with multiplier fn =∑n
k=1 αkψk, n = (m + 1)(2m+1 + 1), m any positive integer whereψ1, ψ2, . . . , ψn ordered as

2.1. From this we deduce the result for operatorsTfn wherefn =
∑n

k=1 αkψk in the following
way.
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SZEGÖ LIMITS AND HAAR WAVELET BASIS 5

Now if fn =
∑n

k=1 αkψk, n 6= (m + 1)(2m+1 + 1) for anym, without loss of generality we
may assume thatn is of the form(m + 1)(2m+1 + 1) for some positive integerm by taking
αk = 0 for k = n + 1, n + 2, . . . , (m + 1)(2m+1 + 1). By doing this only an increase in the
multiplicity of the eigenvalue zero takes place. This completes the proof.

Next we consider the asymptotic distribution of eigenvalues of multiplication operators on
L2(R+) with multiplier f =

∑∞
k=1 αkψk,

∑
|αk|2 <∞ in L2(R+).

Let fn =
∑n

k=1 αkψk. Let (λ1,N , λ2,N , λ3,N , . . . , λN,N) and(λ
(n)
1,N , λ

(n)
2,N , λ

(n)
3,N , . . . , λ

(n)
N,N) be

the eigenvalues of[Tf ]N and,[Tfn ]N respectively.
We bypass the straightforward proof of the following proposition.

Proposition 2.5. With fn, andf as above,‖Tfn − Tf‖ → 0 and‖(Tfn)N − (Tf )N)‖ → 0 for
all N , where‖ · ‖ is the usual operator norm, providedfn → f uniformly onR.

Since‖(Tfn)N − (Tf )N‖ → 0, asN → ∞, the following proposition is an immediate
consequence of Weyl’s Theorem [18].

Proposition 2.6. Let λ(n)
1,N ≥ λ

(n)
2,N ≥ · · · ≥ λ

(n)
N,N and λ1,N ≥ λ2,N ≥ · · · ≥ λN,N be the

eigenvalues, arranged in decreasing order of the matrices[Tfn ]N and [Tf ]N respectively, then,
λ

(n)
k,N → λk,N asn→∞ uniformly for all values ofk = 1, 2, . . . , N .

Remark 2.7. Since(Tfn)N and(Tf )N are self adjoint, using the upper semicontinuity and lower
semicontinuity [13] of the eigenvalues, we have the following result.

Let

A = ΛN(fn) = {λ(n)
1,N , λ

(n)
2,N , . . . , λ

(n)
N,N}

B = ΛN(f) = {λ1,N , λ2,N , . . . , λN,N)

Then the Hausdorff distance betweenA andB goes to zero asn→∞. That is

h(ΛN(fn),ΛN(f)) → 0.

The main result of this section is given in the following theorem and it gives the asymptotic
distribution of eigenvalues of the multiplication operatorTf .

Theorem 2.8. If fn → f uniformly on compact subsetsE ofR and|Fn| = |fn−f | is uniformly
bounded, thenTf satisfies the Szegö type limit property, where| · | denote the sup norm of scalar
valued functions.

Proof. The proof follows immediately if we establish the following results.
(i) Tfn → Tf pointwise.
(ii) (Tfn)N → (Tf )N asn→∞ uniformly for allN
(iii) The limit (double limit) of the double sequence(aNn) where

aN,n =
F (λ

(n)
1,N) + F (λ

(n)
2,N) + · · ·F (λ

(n)
N,N)

N
, N, n = 1, 2, . . .

exist asN, n→∞.
Proof of (i)

Since|Fn| = |fn−f | is uniformly bounded, we have|Fn(x)| ≤ β and sincefn(x) converges
uniformly tof on a compact setE,

|Fn(x)| → 0 ∀x ∈ E.
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6 M. N. N. NAMBOODIRI AND S. REMADEVI

Now we show thatTfn → Tf point wise.
ConsiderTfn − Tf = Tfn−f = TFn. Then,

‖TFN
‖ = sup

‖ξ‖=1

(‖TFn(ξ)‖), ξ ∈ L2(R+)

Hence for any0 < N0 <∞ we have,

(2.1) ‖TFn(ξ)‖2 =

∫ N0

0

|Fn(x)|2|ξ(x)|2dx+

∫ ∞

N0

|Fn(x)|2|ξ(x)|2dx.

Let ε > 0 be given. Sinceξ(x) ∈ L2(R+),N0 can be chosen such that,∫ ∞

N0

|ξ(x)|2dx ≤ ε

2β2 .∫ ∞

N0

|Fn(x)ξ(x)|2dx ≤
∫ ∞

N0

β2|ξ(x)|2dx,

≤ β2

∫ ∞

N0

|ξ(x)|2dx < ε

2
∀n.(2.2)

LetE = [0, N0] be the compact set.
SinceFn → 0 uniformly onE, we have for everyε > 0 there existsN1 such that

|Fn(x)| < ε

2
∀n ≥ N1, and∀ x ∈ E

Therefore
∫ N0

0

|Fn(x)|2|ξ(x)|2dx < ε

2
∀n ≥ N1.(2.3)

By substituting equations (2.2) and (2.3) in (2.1), we haveTFN
→ 0.

Proof of (ii)

‖(Tfn)N − (Tf )N‖ = ‖PNTfnPN − PNTfPN‖
= ‖PN(Tfn − Tf )PN‖
≤ ‖PN‖ ‖(Tfn − Tf )PN‖
≤ ‖(Tfn − Tf )PN‖

SinceTfn → Tf point wise onR andPN is compact, we have‖(Tfn − Tf )PN‖ → 0 uniformly
onR[2].
Proof of (iii)

Let

Y n
N =

F (λ
(n)
1,N) + F (λ

(n)
2,N) + · · ·+ F (λ

(n)
N,N)

N
, N = 1, 2, . . .

denote the row sequences and

ZN
n =

F (λ
(n)
1,N) + F (λ

(n)
2,N) + · · ·+ F (λ

(n)
N,N)

N
, n = 1, 2, . . .

denote the column sequences ofan,N . By theorem 2.4lim
N→∞

ZN
n = Zn and by continuity ofF

lim
n→∞

Y n
N = YN =

∑N
1 F (λk,N)

N
.

Now proposition 2.6 implies that
lim

n→∞
λ

(n)
k,N = λk,N .

AJMAA, Vol. 9, No. 2, Art. 3, pp. 1-11, 2012 AJMAA

http://ajmaa.org


SZEGÖ LIMITS AND HAAR WAVELET BASIS 7

Let ε > 0 be given. Consider,

|aN,n − YN | = |
∑N

k=1 F (λ
(n)
k,N)

N
−

∑N
k=1 F (λk,N)

N
|

=
1

N
|

N∑
k=1

F (λ
(n)
k,N)−

N∑
k=1

F (λk,N)|

≤ 1

N

N∑
k=1

|F (λ
(n)
k,N)− F (λk,N)|(2.4)

From the proposition 2.6, there exists̃N such that

|F (λ
(n)
k,N)− F (λk,N)| < ε n ≥ Ñ and∀k.

Therefore equation (2.4) reduces to

|aN,n − YN | < ε ∀n ≥ Ñ ,N = 1, 2, . . .

Hence using the Integrated limit Theorem [18] the double limit exists. We observe that
1
M

∫
F (f(x))dx =

∫
FdµM ,µM is the measure on[a, b] defined byµM(A) = ( 1

M
m◦f−1|[0,M ])(A)

for any Borel setA ⊂ [a, b], wherem denote the Lebesgue measure. Therefore ifµ is the mea-
sure on[a, b] defined by lim

M→∞
µM then,

lim
M→∞

1

M

∫ M

0

F (f(x))dx =

∫
[a,b]

Fdµ.

Therefore ifρn =
Pn

i=1 δλi

n
whereδi denote the Dirac delta measure concentrated ati, then this

says thatρN → µ weakly, asn→∞.

3. M ORE GENERAL ORDERINGS OF HAAR SYSTEM

In this section we identify different classes of orderings of Haar system inL2(R+) and in
L2(R) so that for certain multiplication operators the Szegö type limit exist. Also we have
given examples for orderings other than the orderings mentioned earlier. Throughout this paper
Har = {ϕr(x), hrp(x), r, p ∈ Z+ ∪ {0}} will denote the Haar system inL2(R+).

We consider the multiplication operatorTf on L2(R+) with respect toHar equipped with
some special class of orderings. Now we define the following classes of orderings forHar

which will depend very much on the multipliersf chosen.
The following specification of ordering may be useful for certain chosen multipliers.

3.1. Ordering when f = h00. LetTf be the multiplication operator onL2(R+) wheref = h00.
It can be easily seen thatHar itself is a complete orthonormal system of eigenvectors inL2(R+)
of Tf . LetMj be the eigenspace associated withλj, j = 1, 2, 3. LetHj = Har ∩Mj. For a
sequence(jn) of positive integers, letA1, A2, . . . ,B1, B2, . . . be partitions ofHj andHar ∩M c

j

respectively such that|An| = njn and|Bn| = jn. Now order the elements inHar according to
the arrangement specified by the sequenceB1, A1, B2, A2, . . . .

It is to be mentioned that there is no restriction on how the elements inAn orBn are ordered.

AJMAA, Vol. 9, No. 2, Art. 3, pp. 1-11, 2012 AJMAA

http://ajmaa.org


8 M. N. N. NAMBOODIRI AND S. REMADEVI

3.2. Ordering when f =
∑n

k=1 αkψk, n < ∞. Let Tf be the multiplication operator with
f =

∑n
k=1 αkψk whereψk(x) = hrp(x) or ϕr(x) and assume that the support off = [0, 2t] for

a non-negative integert. LetM0 = {hrp(x), ϕr(x)/whose support6⊂ [0, 2t]}. For a sequence
of positive integers(jn), let A1, A2, . . . andB1, B2, . . . be partitions ofM0 andHar ∩ M c

0

respectively such that|An| = njn and|Bn| = jn. ThenH = (B1, A1, B2, A2, . . . ) is an ordered
basis forL2(R+).

Theorem 3.3. Let Tf be the multiplication operator onL2(R+) wheref = h00. Then with
respect toHar with ordering 3.1, the Szegö type limit exists.

Proof. To prove the theorem it is enough to show thatNj

N
→ 1 asN → ∞, whereNj is the

multiplicity of eigenvalueλj of (Tf )N . LetN be a positive integer. Then for somen depending
onN ,

N =
n−1∑
k=1

((k + 1)jk) +K, K ≤ jn +K1 whereK1 < njn.

ThenNj =
∑n−1

k=1 kjk +K1 whereK1 is defined as above.

lim
n→∞

Ni

N
= lim

n→∞

∑n−1
k=1 kjk +K1∑n−1

k=1(k + 1)jk +K
= 1

Example 3.4. The ordering 3.1 gives three classes of ordering for multiplication operator on
L2(R+) wheref = h00. The only eigen values areλj = 1,−1, 0.

For example whenλj = 0 we may define for each positive integert.
LetAn = (hn−t2n−t , . . . , hn−t2n−t+1−1, hn−t−12n−t , . . . h0,2n−t , . . . , h0,2n−t+1−1, ϕn+1), n ≥ t.
Bn = (hn0, . . . , hn2n−t+1−1, hn−12n−t , . . . , hn−t+1,2n−t+1−1), n ≥ t and for eacht, let
A = (ϕ0, ϕ1, . . . , ϕt−1, ht−1,0, ht−2,0, . . . , h00, ϕt). Now an ordering of the Haar system is in-
duced by the following arrangement namely(A,Bt, At, Bt+1, At+1, . . . ) is a basis forL2(R+),
for which Szegö type limit exist. EachAn andBn are finite sets of cardinality|An| = (n− t+
1)2n−t + 1, |Bn| = (t + 1)2n−t for n = t, t + 1, . . . and|A| = 2t + 1. It is immaterial how
the members ofAn, Bn, andA are ordered. It is clear thatAn ⊂ M0 andBn ⊂ Har ∩M c

0 for
n = t, t+ 1, . . .

We can arrange this ordered basis in the following way.

ϕ0, ϕ1, . . . , ϕt−1, ϕt, ht−10, . . . , h10, h00 (A)
ht0, ht1, ht−11, . . . , h11 (Bt)

h01, ϕt+1 (At)
ht+10, ht+11, ht+12, ht+13, ht2, ht3, . . . h22 (Bt+1)

h12, h13, h02, h03, ϕt+2 (At+1)
. . . . . .

hn0, . . . , hn2n−t+1−1, . . . , hn−t+1 2n−t+1−1 (Bn)
hn−t2n−t , . . . , hn−t2n−t+1−1, . . . h02n−t−1, ϕn+1 (An)

. . . . . .

Remark 3.5. In the above example fort = 0, 1, . . . , we get a collection of orderings for which
Szegö type limit exist. In particular whent = 0 the ordering reduces to the ordering given in
2.1, wherejn = 2n, |Bn| = 2n, |An| = (n+ 1)2n + 1.

Theorem 3.6. LetTf be the multiplication operator onL2(R+) wheref =
∑n

k=1 αkψk. Then
with respect toHar with ordering 3.2, the Szegö type limit exist.

AJMAA, Vol. 9, No. 2, Art. 3, pp. 1-11, 2012 AJMAA

http://ajmaa.org


SZEGÖ LIMITS AND HAAR WAVELET BASIS 9

Proof.

(Tf )N(ψk(x)) = 0 ⇔(i) ψk(x) = ϕr(x)∀k ≥ 2t where(Tf )N = PNTfPN

(ii) ψk(x) = hrp(x) ⇔ [
p

2r
,
p+ 1

2r
] 6⊂ [0, 2t]

ThereforeM0 is the eigenspace corresponding to the eigenvalue zero and the rest of the proof
is similar to the proof of the above theorem 3.3.

Example 3.7. The above theorem indicates that there are variety of orderings for which Szegö
type limit exist. For example letHar, f andM0 be defined as in the ordering 3.2 andjn = 2n+t,
wheret is a fixed non-negative integer. Define

An = {hn2n+t , . . . , hn2n+t+1−1, hn−12n+t , . . . , h02n+t+1−1}
Bn = {ϕn, hn0, . . . , hn2n+t−1}, ϕn ∈ An−1 if n ≥ 2t

such that

|An| = (n+ 1)2n+t if n < 2t − 1

= (n+ 1)2n+t + 1 if n ≥ 2t − 1

and

|Bn| = 2n+t + 1 if n < 2t

= 2n+t if n ≥ 2t

respectively. Then the ordering{B0, A0, B1, A1, . . . } is a basis forL2(R+) for which Szegö
type limit exist. The above ordered Haar system can be arranged in the following way,

ϕ0, h00, h01, h02, . . . , h02t+1−1(B0, A0)

ϕ1, h10, . . . , h12t+2−1, h02t+1 , . . . , h02, h02t+2−1(B1, A1)

· · ·
ϕr−1, hr−10, . . . , hr−12r+t−1, hr−12r+t−1−1, . . . , hr−22r+t−1, . . . , h02r+t−1 , . . . , h02r+t−1(Br−1, Ar−1)

ϕr, hr0, . . . , hr2r+t+1−1, hr−12r+t , . . . , hr−12r+t+1−1, . . . , h02r+t , . . . , h02t+t+1−1(Br, Ar)

· · ·

This ordered Haar basis can be represented as a sequence[ψk : k = 1, 2, . . . ] where,

ψk = ϕr if k = r(2r+t + 1) + 1

= hrp, p < 2r+t+1 if k = r(2r+t + 1) + p+ 2

= hrp, p ≥ 2r+s+t+1 if k = (r + 2s)(2r+t+s + 1) + p− s+ 2, s = 1, 2, . . .

Remark 3.8. In the above ordering ift = 0, then the ordering reduces to the ordering given in
2.1 for whichjn = 2n.

Now we consider the case of multiplication operators inL2(R). The following remark gives
a class of orderings inL2(R) for which Szegö type limit exist.

Remark 3.9. Let [ψk : k = 1, 2, . . .], [ηk : k = 1, 2, . . .] be any ordered Haar system inL2(R+)
and inL2(R−) respectively for which Szegö type limit exist for certain multiplication operators.
Then with respect to the ordering[ψ1, ψ2, . . . , ψn1

, η1, η2, . . . , ηn2
] in L2(R), Szegö type limit

exist for the multiplication operators onL2(R) with the same multiplier.

We conclude the paper with the following example.
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Example 3.10.We give below an ordering of the Haar system for the spaceL2(R) in which
case Szegö type limit exist for certain multiplication operators.

The ordered Haar basis forL2(R) is given by the filling arrangementϕ0, h00, h01, h0−1, ϕ1,
. . . , hr0, . . . , h0−(2r−1), . . .. This can be written in the triangular form as

ϕ0, h00, h01, h0−1

ϕ1, h10, h11, h12h13, h03, ϕ−1, h1−1, . . . , h0−2, h0−1

ϕ2, h20, . . . , h27, h14, . . . , h17, h04, . . . , h07, ϕ−1, h1−1, . . . , h0−1

· · ·
ϕr, hr0, . . . , hr2r+1−1, hr−12r , hr−12r , . . . , h0,2r+1−1, ϕ−r, hr−1, . . . , hr−(2r+1−1), . . . , h0−(2r+1−1)

· · ·
Let us denote this basis by{ωk : k ∈ N}. Then from the above triangular form theψk’s are as
follows.

wk =



cφr if k = r(2r+1 + 1) + 1

hrp, p < 2r+1 − 1 if k = r(2r+1 + 1) + p+ 1

hrp, p ≥ 2r+s+1 − 1, s ∈ N, if k = (2r + 3s)(2r+s + 1) + r + s+ p+ 1

φ−r if k = (3r + 2)2r + r + 1

hr,−p, p < 2r+1 − 1 if k = (3r + 2)2r + p+ 1

hr,−p, p ≥ 2r+s+1 − 1, if k = (3r + 4s+ 2)2r+s + r + s+ p+ 1

whereφr(x) andhrp are defined as before.
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