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ABSTRACT. This paper deals with Szegd type limits for multiplication operators (i) with
respect to Haar orthonormal basis. Similar studies have been carried out by Morrison for mul-
tiplication operatord’; using Walsh System and Legendre polynomials [14]. Unlike the Walsh
and Fourier basis functions, the Haar basis functions are local in nature. It is observed that
Szego type limit exist for a class of multiplication operatés f € L°>°(R) with respect to

Haar (wavelet) system with appropriate ordering. More general classes of orderings of Haar
system are identified for which the Szegd type limit exist for certain classes of multiplication
operators. Some illustrative examples are also provided.
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2 M. N. N. NAMBOODIRI AND S. REMADEVI

1. INTRODUCTION

The classical theorem of Szedd [3] on Toeplitz matrices states thawif \s v, ..., Av N
are the eigenvalues of thé x N section of the matriXa;_;) wherea, = 5= [7_ e f(z)dx
is the k™ Fourier coefficient of the multiplief in L>(—=,7) andF : R — R any continuous
function onR, then

N T
(1.1) &%W _ %/ F(f(x))da.

Now recall the following notion of equidistribution of sequences of real numbers in an interval,
due to Hermann Wey!.

—Tr

Equidistribution of Sequenced9]. Let (A, Ao, ... \,) and(5y, 5, - . ., 3,,) be two sequences
of sets of real numbers ifu, b). They are said to be equally distributed if

LS PO Y F(B)

n— oo n n— 00 n
for all continuous real functiong' on (a, b).

So the classical Szeg6 Theorem implies that the sequences of sets of eigenvalues
(A1, Az, ..., Ay) and the function valuegf (—m + 22%)}, v = 1,2,...,n asn — oo are equally
distributed in(a, b) wherea = essinff(z) andb = esssupf(x).

Observe that in the classical Szegd'’s theorem, the Toeplitz operators and their truncations
are considered with respect to Fourier ba{%, n=0,+1,42,...}in L*(—x, ). Its appli-
cations to various fields like statistics, classical moment problem and analytic function theory
have been discussed in detaillin [9].

The Szeg0 limit provides localization of spectrum which is useful in many applications to a
variety of fields such as mathematical physics, partial differential operators and signal process-
ing. For instance such applications can be found in the work of Damanik D. and Siman B. [8],
Laptev A. and Safarov YU [12] and Houcem Gazzah, Philip A. Regalia, and Jean-Pierre Delmas
[10]. In [1Q] Szego limit has been used to estimate the lowest nonzero eigen value of certain
covariance matrix that arises in SIMO channel identification problem based on Fourier system.
There the basis used is the Fourier system. In place of that one can hope to use Haar system
which will minimize the computational difficulties. Szegd’'s theorem is also used in medical
sciences such as limited angle tomography. It is noted that the Szegd limit provides the ratio
between known and unknown data which will be useful for imaging problems in tomography
[16].

Morrison has proved Szego6 type theorems for certain multiplication operators with respect to
Walsh system as well as Legendre polynomials [14]. I [15] it has been proved that with respect
to lexicographic ordering of the Haar wavelet basid 0, 1), the Szeg6 type limit does not
exist for certain multiplication operators dr¥(0, 1). It has also been observed that for certain
multiplication operators oi?(0, 1) and L*( R, ) the Szegd limit exist when the Haar system is
ordered suitably.

This paper is committed to identify more general class of orderings of the Haar system and
classes of multiplication operators for which the Szego type limit exist.

First we highlight the importance of Haar system compared to Fourier system, Legendre
polynomial and Walsh system, though it is not smooth
(i) The Haar wavelet is well localized and simple, which is useful in many applications.

(i) The computation and implementation are easier because in time-frequency analysis using
Haar wavelet the computation reduces to averaging process.| [4, 11].
(iif) In many situations, the matrix of multiplication operatbf with respect to Haar system is
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more sparse than the matrices with respect to Walsh, Fourier system étc. [20].
(iv) It has been used in the analysis of fithess functions in genetic algorithins [22].

For instance in the analysis of fitness functions in genetic algorithmon-zero terms are
required for the expansion of a given function as linear combination of Walsh functions, where
as atmost + 1 non-zero terms are required with the Haar expansion, whierthe size of the
binary string in the solution space. It has also been observed that the Haar functions have more
advantage than Walsh functions [22].

(v) John Canny/|7] provided a mathematical argument for using a derivative of Gaussian kernel
as an optimal edge detector. He observed that convolving an edge with a derivative of Gaussian
kernel produces maxima or minima at step edges.

A similar argument may be possible in the case of Haar system too. Observe that the deriva-
tive of Walsh function is the Haar function. Hence, if Haar function is convolved with an edge,
its maxima and minima will correspond to step edges. Here ‘smoothing’ is done by Walsh func-
tion. Though Walsh function is not smooth like Gaussian, mild ‘smoothing’ takes place when
convolved with Walsh.

Throughout this paper the following notations have been used. For a separable Hilbert space
H, let [e1, ey, ...] be an orthonormal basis iff, Hy = spaney,es,...,ex] and Py be the
orthogonal projection off onto Hy. For each linear operatdron H, T will denote PyT Py
restricted toH y. Let [T'] = (a;;) denote the infinite matrika;;) of 7" with respect to the above
basis and7"|y will denote theN x N matrix (a;;); j—1..n. FOr a scalar functiory, 7' will
denote the multiplication operator on an appropriatespace.

This paper is divided into two sections. In the first section we prove that Szegd type limit
exists for a general class of multiplication operatbysvith multiplier f € L?(R,) subject to
some conditions offi. In the second section more general classes of orderings of Haar system in
L?-spaces are identified for certain classes of multiplication operators which satisfy the Szego
type limit property. Some illustrative examples are also considered.

2. SZEGO TYPE LIMITS

In this section we deal with an ordering of the Haar syste@?iff?, ) that was considered in
[20] and prove that the Szego type limit exists for multiplication operajarith more general
class of multipliersf. We recall this ordering for convenience.

2.1. An ordering of the Haar wavelet basis for L?( R, ). Let ¢ be the characteristic function
of [0, 1] andh,,, be the Haar function defined by

r P p+1/2
hep =22 —<or<——
P 27“—3; or
v 1/2 1
= —22 p+2r/ §x<%

= (0 otherwise

wherer & p are non negative integers. Now consider the Haar systeft (iR, ) namely
{¢.(z), hyp(z), r,p=0,1,2,...}, wherep, (z) = p(z —r).
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We assign the following ordering

©0, Moo, hot
©1, P10, a1, hag, has, oz, hos

©r—1, hrfl(b R hrfl2’"717 SR h02"_17 s 7h027"71
Oy hros oo Bpgrri1y oo hogr, oo hogr
Pris hr+50, N hr+327'+5+1—17 ey hr2r+s7 ceey hr,w+827‘+8+1_17 N h02r+s, Ceey h027'+s+1_1

and the Haar system with the above ordering shall be denotéd,byk = 1,2,3,...).

Remark 2.2. One can easily determine the positionf andy,, for a givenr andp from the
above triangular form of arrangement as given below.

V=09, fk=r2 +1)+1
=Ny, p< 2t i k=r(2"+1)+p+2
=Ny, p>2"" s€EN, fk=(r+28)2""+1)+p—s+2
Now we analyze the behavior of certain multiplication operators with respect to the above

ordering of the Haar system. First of all we recall the following theorem [20, theorem 2] which
is needed to prove the main result of this section.

Theorem 2.3.Let T}, be the multiplication operator oh?( R, ) with

fo= @iy, n = (m+ D" 4 1),

k=1
and a4, s are real for eachk. With respect to the above ordered Haar system the following
asymptotic formula holds for any continuous functiolon R,

N (n) M
_ F(\ 1
Nhinmw = A}@OOM/O F[fn(z))dx,
where)é’f}v, /\é’ffv, e )\EG‘)N are the eigenvalues ¢t ) v.
Now we prove the following theorem.

Theorem 2.4. Let T}, be the multiplication operator oi?(R.) where f, = Y \_, ayty,
ay's are real for eachk. With respect to the ordered Haar system 2.1, and for any continuous
functionF' on R we have

N (n) M
_ F(A 1
whereA{", A, ..., Ay are the eigenvalues 617, ) v.

Proof. From the above theorem we have the result for the operaigra/ith multiplier f,, =
Sory e, n = (m+ 1)(2™! 4 1), m any positive integer where, , ¢, ..., 1, ordered as
2.1. From this we deduce the result for operatBrswheref,, = >"/'_, a1, in the following
way.

AIJMAA Vol. 9, No. 2, Art. 3, pp. 1-11, 2012 AJMAA


http://ajmaa.org

SZEGO LIMITS AND HAAR WAVELET BASIS 5

Now if f, = > 7 , by, n # (m + 1)(2™*! + 1) for anym, without loss of generality we
may assume that is of the form(m + 1)(2™*! + 1) for some positive integer by taking
ar=0fork =n+1,n+2,...,(m+1)(2™" + 1). By doing this only an increase in the
multiplicity of the eigenvalue zero takes place. This completes the pgoof.

Next we consider the asymptotic distribution of eigenvalues of multiplication operators on
L*(R,) with multiplier f = >"77 autdy, D |ag* < oo in L2(R1).

Let f,, = 22:1 Oé]ﬂ/]k. Let ()\17]\[, )\271\7, )\371\[, RN )‘NJV) and ()‘g?])\h )\g?])v, )\g&)\;, e )‘g\?,)N) be
the eigenvalues dffy| y and,[T%, |y respectively.

We bypass the straightforward proof of the following proposition.

Proposition 2.5. With f,,, and f as above||Ty, — 1| — 0 and||(T},)n — (Tf)n)|| — 0 for
all N, where|| - || is the usual operator norm, providefl — f uniformly onR.

Since ||(Ty, )y — (T¥)n]] — 0, asN — oo, the following proposition is an immediate
consequence of Weyl's Theorem [18].

Proposition 2.6. Let /\YL}V > )\(2”}\, > > Aﬁ?N and A\ xy > Aoy > -+ > Ay be the
eigenvalues, arranged in decreasing order of the matri¢gg y and[7]y respectively, then,
/\,(f}V — Ay asn — oo uniformly for all values ok = 1,2,...  N.

Remark 2.7. Since(T}, ) y and(T) v are self adjoint, using the upper semicontinuity and lower
semicontinuity[13] of the eigenvalues, we have the following result.

Let
A= An(fa) = IR MR- M)
B = AN(f) = {)\1,N7 >\2,N, Sy /\N,N)
Then the Hausdorff distance betweérand B goes to zero as — oo. That is

h(An(fn), An(f)) — 0.

The main result of this section is given in the following theorem and it gives the asymptotic
distribution of eigenvalues of the multiplication operatgr

Theorem 2.8.If f,, — f uniformly on compact subsetsof R and |F,,| = | f,, — f| is uniformly
bounded, theff’; satisfies the Szegd type limit property, whefelenote the sup norm of scalar
valued functions.

Proof. The proof follows immediately if we establish the following results.
(i) Ty, — Ty pointwise.

(i)) (Ty1,)v — (T)n asn — oo uniformly for all N

(iii) The limit (double limit) of the double sequencey,,) where

FO) +FOS) + - FOWY)

AN, = N , Nhn=1,2,...

exist asV,n — oc.
Proof of (i)

Since|F,,| = | f. — f] is uniformly bounded, we hayé’,(x)| < (3 and sincef,, (z) converges
uniformly to f on a compact sef,

|F(x)] = 0 VzeFE.
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Now we show thaf’;, — T point wise.
ConSiderTfn — Tf = Tfn—f = TFn Then,

[Tryll = Hs;”lgl(HTFn(&)H% ¢ € L*(Ry)
Hence for any) < Ny < oo we have,

(2.1) 1T, ()] = / R ()Pl () P+ / T Fu (@) Pl () P

No
Lete > 0 be given. Sinceg(x) € L*(R,), N, can be chosen such that,

/NO (o) < 5.

| IR@s@ldr < [ gleef.

No
s [ 2 €
(2.2) <p |€(z)|*dx < = Vn.
No 2
Let £ = [0, Ny] be the compact set.
SinceF,, — 0 uniformly on E, we have for every > 0 there existsV; such that

FL(2)] < % Vn> N, andVz e E

No
(2.3) Therefore/ |F ()21 (2) )2 dr < % Vn > Nj.
0
By substituting equation§ (2.2) arnd (2.3)[in (2.1), we h&we — 0.
Proof of (ii)

Ty )n — (Te)nll = |1PNTy, Py — PnTy Pyl
= [|Pn(Ty, — Ty) Pn||
< ||Pnll [Ty, — T5) Pyl
< (T, = Ty) Pn|

SinceT}, — T point wise onR and Py is compact, we havi(Ty, — Tf)Py| — 0 uniformly
on R[2].

Proof of (iii)
Let
o FORR) + FOSR) +- -+ FORN)
N = N ) = 17 27
denote the row sequences and
v PP+ FOL) +---+ FORN)
ZN = : : N on=1,2,...
N
N .
denote the column sequencesigfy. By theore]\}l_r&Zn = Z, and by continuity ofF’
N
F(\
lim Y =Yy = M

n—oo N
Now propositiory 2.6 implies that
lim A\ = A

n—oo
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Lete > 0 be given. Consider,

n Yn| =
ann = Yn| = | ~ I |
1 N N
= 512 FOUN = > Fww)]
k=1 k=1
1 N
(2.4) < 5 2 IFOER) = Fww)

From the propositioG, there existssuch that

IFOY) — FQww)| <€ n> N andVk.
Therefore equation (2.4) reduces to

lan, — Yn| <€ Vn> N,N=1,2,...

Hence using the Integrated limit Theorem |[18] the double limit exists. We observe that
+ [F(f(z))dz = [ Fduy,, py, is the measure oja, b] defined by, (A) = (3;mof~jo.a1)(A)

for any Borel setA C [a, b], wherem denote the Lebesgue measure. Thereforeisfthe mea-

sure onja, b| defined byA}EnmuM then,

M—o0

N B
lim M/o F(f(z))dz—éb] Fdp.

Therefore ifp,, = ZH:T“” whered; denote the Dirac delta measure concentratedtaen this

says thapy — p weakly, asn — oco. 1

3. MORE GENERAL ORDERINGS OF HAAR SYSTEM

In this section we identify different classes of orderings of Haar systefi# (&, ) and in
L?(R) so that for certain multiplication operators the Szeg6 type limit exist. Also we have
given examples for orderings other than the orderings mentioned earlier. Throughout this paper
H, = {p,(x), hyp(x),7,p € Z, U{0}} will denote the Haar system ib? (R, ).

We consider the multiplication operat®}; on L?(R.) with respect toH,, equipped with
some special class of orderings. Now we define the following classes of orderings, for
which will depend very much on the multipliefschosen.

The following specification of ordering may be useful for certain chosen multipliers.

3.1. Orderingwhen f = ho. LetT} be the multiplication operator ab¥ (R, ) wheref = hyy.
It can be easily seen thak,, itself is a complete orthonormal system of eigenvectods?iifz., )
of Ty. Let M; be the eigenspace associated withj = 1,2,3. Let H; = H,. N M;. For a
sequencey,) of positive integers, lel;, A, ..., By, B,, ... be partitions of{; andH,, N M
respectively such thati,,| = nj, and|B,| = j,. Now order the elements i, according to
the arrangement specified by the sequeiced;, Bs, A, . . ..

It is to be mentioned that there is no restriction on how the elements or B,, are ordered.
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3.2. Ordering when f = >7 | aytp,, n < oo. Let T be the multiplication operator with
[ =>"1_ ay, wherey, (x) = h,,(x) or p,(x) and assume that the supportfof= [0, 2] for
a non-negative integer Let M, = {h,,(x), ¢,(x)/whose supportZ [0, 2']}. For a sequence
of positive integeryj,), let Ay, A,,... and By, By, ... be partitions ofM, and H,, N M
respectively such thatl,,| = nj, and|B,| = j,. ThenH = (B;, Ay, By, As, ... ) is an ordered
basis forL?(R.).

Theorem 3.3. Let T be the multiplication operator oi.?( R, ) where f = hg. Then with
respect toH,,. with ordering 3.1, the Szego type limit exists.

Proof. To prove the theorem it is enough to show tl%it—> 1 asN — oo, whereN; is the
multiplicity of eigenvalue); of (7). Let N be a positive integer. Then for somealepending
onN,

n—1
N=> ((k+1)j) + K, K< j,+K wherek; < nj,.
k=1
ThenN; = Z’,}; k7. + K1 whereK is defined as above.
n—1 .
; K
lim Ni lim —=4=1 k‘]k—i_. L _
nme N o= Sk 4 L + K

Example 3.4. The ordering 3.1 gives three classes of ordering for multiplication operator on
L*(Ry) wheref = hgo. The only eigen values arg = 1, —1, 0.

For example when; = 0 we may define for each positive integer

Let An = (hnith—“ ey hn,tgn—t-‘rl,l, h‘nftle"_t; e h‘D,Q”’_t; e 7h0,2"—t+1717 (pn_H), n 2 t
By = (hnos - - -y hngn—t+1_1, hyy—q9n—t, .. ., hyy_y 41 90—141_1), n > t @and for eacht, let
A= (00, P15 Qi1 =10, ht—2,0, - - -, hoo, ;). Now an ordering of the Haar system is in-

duced by the following arrangement namél, B;, A;, B;y1, A11, - .. ) is a basis foll?(R,),
for which Szegd type limit exist. Each,, and B,, are finite sets of cardinality4,,| = (n — t +
12"t 4+ 1, |B,| = (t+ 12" forn = ¢, t+ 1,... and|A4| = 2t + 1. It is immaterial how
the members ofl,,, B,,, and A are ordered. It is clear that, C M, andB,, C H,, N Mg for
n=tt+1,...

We can arrange this ordered basis in the following way.

9007901""790t—1790t7ht—107'"7h10ah00 (A)
hio, hry he—11, - ., i (By)
hot, P41 (At)

hit10s P11, Pegaz, hugs, lua, s, -+ hoa (Bty1)

hi2, haz, hoz, hos, Prio (At+1)

hnO; ey hn2n7t+1,1, ey hn7t+1 on—t+1_1 (B
hn,tgn—t, N hn_t2n7t+1_1, ce hozn—t,l, Pr+1 (An

Remark 3.5. In the above example far= 0, 1, ..., we get a collection of orderings for which
Szego type limit exist. In particular wheén= 0 the ordering reduces to the ordering given in
2.1, wherej, = 2", |B,| = 2", |An] = (n 4+ 1)2" + 1.

Theorem 3.6. Let T} be the multiplication operator of?(R..) wheref = Y7, oy, Then
with respect taH,, with ordering 3.2, the Szegd type limit exist.
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Proof.
(Tr)n(g(x)) = 0 (@) ¥y (x) = @, (z)VE > 2" where(Ty)y = PyTy Py
L PEL 10,21

(12) Vi(@) = hyp(2) & [57 or
Thereforel, is the eigenspace corresponding to the eigenvalue zero and the rest of the proof
is similar to the proof of the above theorém|3s3.

Example 3.7. The above theorem indicates that there are variety of orderings for which Szego
type limit exist. For example leltl,,,., f and M, be defined as in the ordering 3.2 ajjd= 2",
wheret is a fixed non-negative integer. Define

Ap = {hpon+t, ..oy hpgnreir 1,y _qon+t, ... hognrer1_1}
By = {0 oy oy hpanti 1}, 0, € Ap_y if n > 2
such that
|Ap| = (n+1)2" ifn <2 -1
=m+1)2""+1 ifn>2-1
and
|B,|=2"""+1 ifn<?2
=2t jfp > 2t

respectively. Then the orderingBy, Ay, B, A1, ... } is a basis forL.?(R, ) for which Szego
type limit exist. The above ordered Haar system can be arranged in the following way,
©0s hoo, hot, hoz, - - -, hoger1-1(Bo, Ao)
©1, Mo, - -5 haoee g, hoger, - hog, h02t+2—1(B1, Ay)

Pr_1, hr—lOa sy hr—127+t—17 hr—12r+t71—1a sy hT—227+t—17 S h02r+t71a sy h02r+t—1(B7’—17 A'I‘—l)

QO,,,, hT‘O7 ey hr2r+t+1,17 hT,12r+t, ey hr,12r+t+1,17 ceey h02r+t, e 7h02t+t+1,1(B7«, AT)

This ordered Haar basis can be represented as a sequgnde= 1,2, ...]| where,
V=, ifk=r24+1)+1
= hyp,p < 27T B =7 (27T 1) +p+ 2
= Ny p > 27T i = (r 4+ 28)(27T 1) 4 p—s5+2,5=1,2,...
Remark 3.8. In the above ordering if = 0, then the ordering reduces to the ordering given in
2.1 for whichy, = 2".

Now we consider the case of multiplication operator&iR). The following remark gives
a class of orderings if?(R) for which Szego type limit exist.

Remark 3.9. Let [, : k=1,2,...],[n, : k =1,2,...] be any ordered Haar system/iA( R, )

and inL?(R_) respectively for which Szeg0 type limit exist for certain multiplication operators.
Then with respect to the ordering,, v,, ..., ¥, . 01,0, - - -, 1,,) IN L*(R), Szegd type limit
exist for the multiplication operators di¥(R) with the same multiplier.

We conclude the paper with the following example.
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Example 3.10.We give below an ordering of the Haar system for the spager) in which
case Szego type limit exist for certain multiplication operators.

The ordered Haar basis f@?(R) is given by the filling arrangememt,, oo, ho1, ho_1, ©1,
s hyoy ..o ho—2r—1y, - ... This can be written in the triangular form as

‘2 hoo, hot, ho—1
©1, hio, Mty highas, hos, oy, ha—q, ... oo, ho—y
©o, hoo, ..o hor, gy ooy bz, hoa, oo hor, g, haoa, o hoo

(Vo hro, ceey hrgr+1,1, h?‘—127', hr—127'7 ey h0727'+1,1, @y hT—l; NN h,T,(27>+1,1), Ce 7h07(27"+171)

Let us denote this basis Q. : £ € N}. Then from the above triangular form thig’s are as

follows.
(co, if k=r2*+1)+1
By, p < 271 —1 ifk=r2™+1)+p+1
N hpp =2t 1 se N, ifhk=02r+35)2"+1)+r+s+p+1
R P if k= (3r+2)2" +7+1
By —pyp <27t —1 ifhk=0Br+22"+p+1
(P —pyp > 2705 — 1, ifh=0Br+4s+2)2"" +r+s+p+1

where¢, (x) andh,, are defined as before.
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