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1. I NTRODUCTION

The setting for this paper isn-dimensional Euclidean spaceRn. Let Kn denote the set of
convex bodies (compact, convex subsets with non-empty interiors) andKn

o denote the subset
of Kn that consists of convex bodies with the origin in their interiors. Denote by voli(K|ξ)
the i-dimensional volume of the orthogonal projection ofK onto ani-dimensional subspace
ξ ⊂ Rn. The important geometric invariants related to the projection of convex bodyK are the
quermassintegrals defined by

(1.1) Wn−i(K) = kn

∫
G(n,i)

voli(K|ξ)
ki

dµi(ξ), 0 ≤ i ≤ n,

where the Grassmann manifoldG(n, i) is endowed with the normalized Haar measure, andkn

is the volume of the unit ballBn in Rn. The quermassintegrals are generalizations of the surface
area and the volume. Indeed,nW1(K) is the surface area ofK, andW0(K) is the volume of
K.

The dual quermassintegrals of a star bodyL, W̃i(L), were introduced by Lutwak [5], which
are defined by letting̃W0(L) = V (L), W̃n(L) = kn and for0 < i < n,

(1.2) W̃n−i(L) = kn

∫
G(n,i)

voli(L ∩ ξ)

ki

dµi(ξ),

where voli(L∩ ξ) denotes thei-dimensional volume of intersection ofL with ani-dimensional
subspaceξ ⊂ Rn.

Also associated with a convex bodyK are its harmonic quermassintegrals. These quer-
massintegrals were introduced by Hadwiger ([3], sect.6.4.8), and can be defined by letting
Ŵ0(K) = V (K), Ŵn(K) = kn, and for0 < i < n,

(1.3) Ŵn−i(K) = kn

(∫
G(n,i)

[
voli(K|ξ)

ki

]−1

dµi(ξ)

)−1

.

Following Hadwiger, in [8], we introduced the dual harmonic quermassintegrals of a star
body L, W̆n−i(L), which can be defined by lettinğW0(L) = V (L), W̆n(L) = kn, and for
0 < i < n,

(1.4) W̆n−i(L) = kn

(∫
G(n,i)

[
voli(L ∩ ξ)

ki

]−1

dµi(ξ)

)−1

.

And the Brunn-Minkowski inequality and the Blaschke-Santaló inequality for the dual harmonic
quermassintegrals were established in [8].

Let S(K) denote the surface area of a convex bodyK. The classical isoperimetric inequality
[6] states that: ifK ∈ Kn, then(

S(K)

S(Bn)

)n

≥
(

V (K)

V (Bn)

)n−1

,

with equality if and only ifK is a ball. That is to say among convex bodies of given volume,
precisely the ball has the minimal surface area.

The aim of this paper is to study the dual harmonic quermassintegrals further. We prove that
among convex bodies of given volume, precisely the ball attains the maximal value ofW̆i(K).

Theorem 1.1.LetK ∈ Kn
o andV (K) = V (Bn). If 1 ≤ i ≤ n− 1, then

W̆i(K) ≤ W̆i(Bn).
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with equality if and only ifK = Bn.

At the same time, by applying the well-known theorem of John, we establish the reverse of
the isoperimetric inequality for the dual harmonic quermassintegrals.

Theorem 1.2. Let K be a symmetric convex body inRn and1 ≤ i ≤ n − 1. Then there exists
an affine imagẽK of K, such that

W̆i(K̃) ≥ n−
n−i
2 W̆i(Bn).

Let K be a convex body of constant width andK∗ be the polar body ofK. The other aim of
this paper is to prove that among convex bodies of constant width, precisely the ball attains the
minimal value ofW̆n−1(K

∗).

Theorem 1.3.LetK ∈ Kn
o andξ ∈ G(n, 1). If

(1.5) vol1(K|ξ) = vol1(Bn|ξ),
then

W̆n−1(K
∗) ≥ W̆n−1(B

∗
n),

with equality if and only ifK = Bn.

For quick reference we recall some basic results from the Brunn-Minkowski theory. Good
references are Gardner [2] and Schneider [7].

Let Sn−1 denote the unit sphere inRn. If K is a convex body inRn, then its support function
hK is defined by

hK(u) = max{〈u, x〉 : x ∈ K}, u ∈ Sn−1,

where〈u, x〉 denotes the usual inner product ofu andx in Rn.
If K is a convex body that contains the origin in its interior, the polar bodyK∗ of K, with

respect to the origin, is define by

K∗ = {x ∈ Rn|x · y ≤ 1, y ∈ K}.
For a compact subsetL of Rn, which is star-shaped with respect to the origin, we shall use

ρ(L, ·) to denote its radial function; i.e., foru ∈ Sn−1,

ρ(L, u) = max{λ > 0 : λu ∈ L}.
If ρ(L, ·) is continuous and positive,L will be called a star body.

If K ∈ Kn
o , then ([2], p.44)

(1.6) ρ(K, ·) =
1

h(K∗, ·)
.

Let K be a convex body inRn. If vol1(L|ξ) has the same value for eachξ ∈ G(n, 1), we say
K is of constant width.

If L is a star body inRn such that for somei with 1 ≤ i ≤ n − 1, voli(L ∩ ξ) has the same
value for eachξ ∈ G(n, i), we sayL is of constanti-section.

2. PROOFS OF THEOREMS

Now we give the proofs of theorems.

Proof of Theorem 1.1.From (1.2), (1.4) and Ḧolder inequality, we have

(2.1) W̆i(L) ≤ W̃i(L), 1 ≤ i ≤ n− 1,

with equality if and only ifL is of constant(n− i)-section.
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Let K ∈ Kn
o and1 ≤ i ≤ n− 1. Then the classical inequality between the volume ofK and

its dual quermassintegral is

(2.2) W̃i(K) ≤ ki/n
n V (K)n−i/n,

with equality if and only ifK is a ball centered at the origin.
ConsiderK ∈ Kn

0 such thatV (K) = V (Bn). Then from (2.1) and (2.2) we deduce:

W̆i(K) ≤ W̃i(K) ≤ ki/n
n V (K)n−i/n = ki/n

n V (Bn)n−i/n = W̆i(Bn),

with equality if and only ifK = Bn.

To prove Theorem 1.2, we shall use the well-known theorem of John, which characterizes
ellipsoids of minimal volume containing convex bodies.

Lemma 2.1. (John [4])Let K be a symmetric convex body inRn. The ellipsoid of minimal
volume containingK is the unit ballBn, if and only ifK is contained inBn and there is a
sequence{ui}m

1 on the boundaryK and a sequence{ci}m
1 of positive numbers satisfying

(2.3)
m∑

i=1

ciui ⊗ ui = In,

whereui⊗ui is the rank-one orthogonal projection onto the span ofui andIn is the identity on
Rn.

The condition (2.3) shows that theui behave like an orthonormal basis to the extent that, for
eachx ∈ Rn,

(2.4) ‖x‖2 =
m∑

i=1

ci〈ui, x〉2.

The equality of the traces in (2.4) shows that

(2.5)
m∑

i=1

ci = n.

Obviously, for every convex body inRn, there is an affine transformationφ such that the mini-
mal (in volume) ellipsoid containingφK is the unit ball inRn.

Lemma 2.2. If K is a symmetric convex body inRn, then there exists an affine imagẽK of K,
such that for everyi-dimensional subspaceξ of Rn (1 ≤ i ≤ n− 1),

(2.6) voli(K̃ ∩ ξ) ≥ 1

ni/2
voli(Bn ∩ ξ).

Proof. Let K̃ be an affine image ofK so that the minimal ellipsoid containing̃K is the unit ball
in Rn. From Lemma 2.1, there are a sequence unit vectors{ui}m

1 on the boundary of̃K and a
sequence positive numbers{ci}m

1 such that

(2.7)
m∑

i=1

ciui ⊗ ui = In.

By symmetry,K̃ contains the symmetric convex hullS of vectorsu1, · · · , um. Therefore, for
all x ([1])

(2.8) ρ
eK(x) ≥ ρS(x) =

1

inf{
m∑

i=1

|ai|; x =
m∑

i=1

aiui}
.
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From (2.7), one obtains

x =
m∑

i=1

ci〈x, ui〉ui,

for everyx ∈ Rn. So

(2.9) ρS(u) ≥ 1
m∑

i=1

ci|〈u, ui〉|
.

Applying Cauchy inequality, by (2.4) and (2.5), we have

(2.10)
1

m∑
i=1

ci|〈u, ui〉|
≥ 1( m∑

i=1

ci

)1/2( m∑
i=1

ci〈u, ui〉2
)1/2

=
1

n1/2‖u‖1/2
=

1

n1/2
.

By (2.8), (2.9) and (2.10), we obtain

(2.11) ρ
eK(u) ≥ 1

n1/2
.

Noticing the obvious factρBn
(u) = 1, from (2.11), forξ ∈ G(n, i), we have

(2.12)
∫

Sn−1∩ξ

ρi
eK
(u) d(u) ≥ 1

ni/2

∫
Sn−1∩ξ

ρi
Bn

(u) d(u).

On the other hand, forK ∈ Rn, from the polar coordinate formula for volume we have∫
Sn−1∩ξ

ρi
K(u) d(u) = ivoli(K ∩ ξ).

Thus (2.12) yields

voli(K̃ ∩ ξ) ≥ 1

ni/2
voli(Bn ∩ ξ).

The proof of lemma 2.2 is completed.

The proof of Theorem 1.2.According to (1.4) and Lemma 2.2, we have

W̆i(K̃) = kn

∫
G(n,n−i)

[
Vn−i(K̃ ∩ ξ)

kn−i

]−1

dµn−i(ξ)

−1

≥ n−
n−i
2 kn

(∫
G(n,n−i)

[
Vn−i(Bn ∩ ξ)

kn−i

]−1

dµn−i(ξ)

)−1

= n−
n−i
2 W̆i(Bn).

Proof of Theorem 1.3.For anyu ∈ Sn−1, (1.5) is equivalent to

h(K, u) + h(K,−u) = 2.

According to (1.6), the chord length ofK∗ in directionu satisfies

(2.13) ρ(K∗, u) + ρ(K∗,−u) ≥ 4

h(K, u) + h(K,−u)
= 2,

where we have used the inequality between arthmetic and harmonic means.
Notice that ifξ ∈ G(n, 1), then vol1(K∗∩ξ) is just the chord length ofK∗ alongξ. Associated

with (1.4) and (2.13), we have
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W̆n−1(K
∗) = kn

(∫
G(n,1)

[
vol1(K∗ ∩ ξ)

2

]−1

dµ1(ξ)

)−1

= kn

(
1

nkn

∫
Sn−1

[
ρ(K∗, u) + ρ(K∗,−u)

2

]−1

du

)−1

≥ kn = W̆n−1(B
∗
n).

Equality holds if and only ifh(K, u) = h(K,−u) = 1, which impliesK is the unit ball
Bn.
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