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1. INTRODUCTION

The setting for this paper is-dimensional Euclidean spa@'. Let K™ denote the set of
convex bodies (compact, convex subsets with non-empty interiors)Cartkenote the subset
of K" that consists of convex bodies with the origin in their interiors. Denote by Ndf)
the i-dimensional volume of the orthogonal projectionffonto ani-dimensional subspace
¢ C R™. The important geometric invariants related to the projection of convex Bodse the
guermassintegrals defined by

vol; (K
(L.1) W)=k [ YD g0 0<i<n
G(n,i) ki

where the Grassmann manifalé(n, i) is endowed with the normalized Haar measure, /and
is the volume of the unit balB,, in R”. The quermassintegrals are generalizations of the surface
area and the volume. Indeed);(K) is the surface area dt, andW;(K) is the volume of
K.

The dual quermassintegrals of a star bdgyV;(L), were introduced by Lutwak [5], which

are defined by lettingV, (L) = V(L), W,(L) = k, and for0 < i < n,

k; ‘
where vo|(L N ¢) denotes the-dimensional volume of intersection éfwith ani-dimensional
subspacé C R".
Also associated with a convex body are its harmonic quermassintegrals. These quer-
massintegrals were introduced by Hadwigeér ([3], sect.6.4.8), and can be defined by letting
Wo(K) = V(K), Wo(K) = ky, and for0 < i < n,

(1.3) Wi (K) =k, ( /G(n’i) [w} i dui@) )

Following Hadwiger, in([8], we introduced the dual harmonic quermassintegrals of a star
body L, W,,_;(L), which can be defined by letting/,(L) = V (L), W,(L) = k,, and for
O0<i<n,

(1.4) W i(L) = by ( / y {%ﬂg)} B dm(é))

And the Brunn-Minkowski inequality and the Blaschke-Sahta¢quality for the dual harmonic
guermassintegrals were established In [8].

Let S(K') denote the surface area of a convex badyThe classical isoperimetric inequality
[6] states that: if € K", then

(sia) = (vims)

with equality if and only if K is a ball. That is to say among convex bodies of given volume,
precisely the ball has the minimal surface area.

The aim of this paper is to study the dual harmonic quermassintegrals further. We prove that
among convex bodies of given volume, precisely the ball attains the maximal vallﬁg{b’f).

Theorem 1.1.LetK € K andV (K) =V (B,). If 1 <i<n—1,then
Wi(K) < Wi(By).

(1.2) W, (L) = kn /G( ') Voh(LN&) 1, (6),
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with equality if and only itk = B,,.

At the same time, by applying the well-known theorem of John, we establish the reverse of
the isoperimetric inequality for the dual harmonic quermassintegrals.

Theorem 1.2. LgtK be a symmetric convex bodylR¥ and1 < i < n — 1. Then there exists
an affine imagéy of K, such that

n—i

Wi(K) > n™= "7 Wi(B,).

Let K be a convex body of constant width aid be the polar body of. The other aim of
this paper is to prove that among convex bodies of constant width, precisely the ball attains the
minimal value ofiV,,_;(K™).
Theorem 1.3.Let K € K and¢ € G(n,1). If
(1.5) voh (K[§) = voly(B,[¢),
then

Wn—l<K*) 2 Wn—l(BZ)a

with equality if and only itK' = B,,.

For quick reference we recall some basic results from the Brunn-Minkowski theory. Good
references are Gardner [2] and Schneider [7].

Let S*~! denote the unit sphere R". If K is a convex body ifR", then its support function
hy is defined by

hi(u) = maz{(u,z) v € K}, u€ S"

where(u, x) denotes the usual inner productioéndz in R™.

If K is a convex body that contains the origin in its interior, the polar bedyof K, with
respect to the origin, is define by

Kr={zeR"zx-y<1lye K}

For a compact subsét of R™, which is star-shaped with respect to the origin, we shall use

p(L, ) to denote its radial function; i.e., fare S"!,
p(L,u) =max{\>0: A ue L}.

If p(L,-) is continuous and positive, will be called a star body.
If K € K7, then ([2], p.44)
1

Let K be a convex body ifR™. If vol,(L|{) has the same value for eaglke G(n, 1), we say
K is of constant width.

If L is a star body irR™ such that for someéwith 1 < i < n — 1, vol;(L N &) has the same
value for eaclf € G(n, i), we sayL is of constant-section.

2. PROOFS OF THEOREMS
Now we give the proofs of theorems.
Proof of Theorer 1]1From (1.2), [(1.}#) and Blder inequality, we have
(2.1) WiL) <Wi(L), 1<i<n—1,
with equality if and only ifL is of constantn — i)-section.
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Let K € K andl < ¢ < n — 1. Then the classical inequality between the volumé&adnd
its dual quermassintegral is

(22) Wi(K) < kK" (K )i,

with equality if and only if K is a ball centered at the origin.
ConsiderK € K such that/ (K) = V(B,). Then from|[2.1l) and (2] 2) we deduce:

v

Wi(K) < Wi(K) < K/"V(E)" /" = k["V (B,)""" = Wi(B,),
with equality if and only ifK = B,,. &

To prove Theorem 1]2, we shall use the well-known theorem of John, which characterizes
ellipsoids of minimal volume containing convex bodies.

Lemma 2.1. (John[4])Let K be a symmetric convex body R*. The ellipsoid of minimal
volume containingx is the unit ball B,,, if and only if K is contained inB,, and there is a
sequenc€u, }7* on the boundary and a sequencér; }1* of positive numbers satisfying
(2.3) Z ciu; @ u; = I,

=1
whereu; ® u; is the rank-one orthogonal projection onto the spamodnd I, is the identity on
R™,

The condition[(2.3) shows that the behave like an orthonormal basis to the extent that, for
eachr € R",

(2.4) l2l* =) eius, 2)*.
=1
The equality of the traces if (2.4) shows that
=1

Obviously, for every convex body iR", there is an affine transformati@nsuch that the mini-
mal (in volume) ellipsoid containing K is the unit ball inR™.

Lemma 2.2. If K is a symmetric convex body Ri*, then there exists an affine imaﬁ’eof K,
such that for every-dimensional subspageof R (1 <i <n — 1),

(2.6) vol;(K N ¢) > # vol,(B, N ).

Proof. Let K be an affine image ok so that the minimal ellipsoid containirfg is the unit ball
in R". From Lemma 2/1, there are a sequence unit vedtors” on the boundary of and a
sequence positive numbefs }7" such that

m

=1
By symmetry,K contains the symmetric convex hillof vectorsuy, - - - , u.,,. Therefore, for
all z ([10)
1
(2.8) pr() = pg(x)

= . m m ‘
inf{> |a;|;x = > a;u;}
i=1 i=1
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From (2.7), one obtains

for everyx € R". So

1
(2.9) ps(u) > F—.
> el o, i)
Applying Cauchy inequality, by (2].4) and (2.5), we have
(2.10) L ! _ 1

m — m 1/2 m 1/2 1/2 1/2 1/2.

=1 =1 i=1

By (2.9), @) and (2.70), we obtain

(2.11) pi(u) = a2
Noticing the obvious facb (u) = 1, from (2.11), for{ € G(n, i), we have
. 1 ,
(2.12) [ sz 5 [ (w0 da)
Sn—lng n Sn—1ng

On the other hand, fok” € R", from the polar coordinate formula for volume we have
| bt dtw) = iwvol (& ).
Sn—lmg

Thus [2.1D) yields
vol;(K N ¢) > # vol;(B, N €).
The proof of lemm@ 2]2 is completegl.
The proof of Theorein 1.2According to (1.4) and Lemnja 2.2, we have

1 -1
Wi(R) = k ( /G . dunxs))
_ngi Vn—z(B’rL N 5) -
>n ky, (/G’(n,n—i) [T} dﬂn—i(§)>

—7

=n""7 Wy(B,).

V(K NE)

n—i

-1

|
Proof of Theorer I]3For anyu € S™!, (1.8) is equivalent to
MK, u)+ h(K, —u) = 2.
According to [1.6), the chord length &f* in directionu satisfies
(2.13) U™ ) (", 1) 2 s fh(K’ — =2
where we have used the inequality between arthmetic and harmonic means.
Notice thatif¢ € G(n, 1), thenvol (K*N¢) is just the chord length d&™* along¢. Associated

with (1.4) and|[(Z2.13), we have
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W1 (K*)

b ( L. Y] R dm(ﬁ)) h
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> ky = Wiy
Equality holds if and only ifh(K,u) = ( —u) = 1, which implies K is the unit ball
B,. 1
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