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1. I NTRODUCTION

Let X be a linear space. A functionp : X → R is called paranorm if the following are
satisfied :

(i) p(0) ≥ 0
(ii) p(x) ≥ 0 for all x ∈ X
(iii) p(x) = p(−x) for all x ∈ X
(iv) p(x + y) ≤ p(x) + p(y) for all x ∈ X ( triangle inequality )
(v) if (λn) is a sequence of scalars withλn → λ (n →∞) and(xn) is a sequence of vectors

with p(xn−x) → 0 (n →∞), thenp(λnxn−λx) → 0 (n →∞) ( continuity of multiplication
by scalars ).

A paranormp for which p(x) = 0 implies x = 0 is called total. It is well known that the
metric of any linear metric space is given by some total paranorm (cf.[11]).

Let Λ = (λn) a nondecreasing sequence of positive reals tending to infinity andλ1 = 1 and
λn+1 ≤ λn + 1.

The generalized de la Vallėe-Poussin means is defined by :

tn(x) =
1

λn

∑
k∈In

xk,

whereIn = [n− λn + 1, n]. A sequencex = (xk) is said to be(V, λ)−summable to a numberl
( see [2] ) iftn(x) → l, asn →∞.

We write

[V, λ]0 = {x = (xk) : lim
n

1

λn

∑
k∈In

| xk |= 0}

[V, λ] = {x = (xk) : lim
n

1

λn

∑
k∈In

| xk − le |= 0, for somel ∈ C}

and

[V, λ]∞ = {x = (xk) : sup
n

1

λn

∑
k∈In

| xk |< ∞}.

For the set of sequences that are strongly summable to zero, strongly summable and strongly
bounded by the de la Vallėe-Poussin method. Ifλn = n for n = 1, 2, 3, · · · , then these sets
reduce toω0, ω andω∞ introduced and studied by Maddox [4].

Following Lidenstrauss and Tzafriri [3], we recall that an Orlicz functionM is continuous,
convex, nondecreasing function defined forx ≥ 0 such thatM(0) = 0 andM(x) ≥ 0 for x > 0
(see [1]).

If convexity of M is replaced byM(x + y) ≤ M(x) + M(y), then it is called a modulus
function, defined and studied by Nakano [7], Ruckle [9], Maddox [5] and others.

An Orlicz functionM is said to satisfy the∆2−condition for all values ofu, if there exist a
constantK > 0 such that

M(2u) ≤ KM(u) (u ≥ 0).

It is easy to see that alwaysK > 2. The∆2−condition is equivalent to the satisfaction of the
inequality

M(lu) ≤ KlM(u),
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for all values ofu and forl > 1.
Lidenstrauss and Tzafriri used the idea of Orlicz function to construct the Orlicz sequence

space :

lM := {x = (xk) :
∞∑

k=1

M(
| xk |

ρ
) < ∞, for someρ > 0},

which is a Banach space with the norm :

‖ x ‖M= inf{ρ > 0 :
∞∑

k=1

M(
| xk |

ρ
) ≤ 1}.

If M(x) = xp, 1 ≤ p < ∞, the spacelM coincide with the classical sequence spacelp.
Parashar and Choudhary [8] have introduced and examined some properties of four sequence

spaces defined by using an Orlicz functionM, which generalized the well-known Orlicz se-
quence spacelM and strongly summable sequence spaces[C, 1, p], [C, 1, p]0 and[C, 1, p]∞.

Let M be an Orlicz function,p = (pk) be any sequence of strictly positive real numbers and
u = (uk) be any sequence such thatuk 6= 0(k = 1, 2, · · · ) . We define the following sequence
spaces :

[V, M, p, u, ∆] = {x = (xk) : lim
n

1

λn

∞∑
k∈In

[M(
| uk∆xk − le |

ρ
)] = 0, for somel

andρ > 0}

[V, M, p, u, ∆]0 = {x = (xk) : lim
n

1

λn

∞∑
k∈In

[M(
| uk∆xk |

ρ
)] = 0, for someρ > 0}

[V, M, p, u, ∆]∞ = {x = (xk) : sup
n

1

λn

∞∑
k∈In

[M(
| uk∆xk |

ρ
)] < ∞, for someρ > 0}.

If u = e and ∆xk = xk for all k, then these gives the spaces[V, M, p], [V, M, p]0 and
[V, M, p]∞ respectively defined and studied by Savas and Savas [10].

2. M AIN RESULTS

We prove the following theorems :

Theorem 2.1. For any Orlicz functionM and any sequencep = (pk) of strictly positive real
numbers,[V, M, p, u, ∆], [V, M, p, u, ∆]0 and [V, M, p, u, ∆]∞ are linear spaces over the set of
complex numbers.

Proof. We shall prove only for[V, M, p, u, ∆]0. The others can be treated similarly. Letx, y ∈
[V, M, p, u, ∆]0 andα, β ∈ C. In order to prove the result, we need to find someρ3 > 0 such
that :

lim
n

1

λn

∑
k∈In

[M(
| αuk∆xk + βuk∆yk |

ρ3

)]pk = 0.

Sincex, y ∈ [V, M, p, u, ∆]0, there exists some positiveρ1 andρ2 such that :

lim
n

1

λn

∑
k∈In

[M(
| uk∆xk |

ρ1

)]pk = 0 and lim
n

1

λn

∑
k∈In

[M(
| uk∆yk |

ρ2

)]pk = 0.
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Defineρ3 = max(2 | α | ρ1, 2 | β | ρ2). SinceM is nondecreasing and convex,

1

λn

∑
k∈In

[M(
| αuk∆xk + βuk∆yk |

ρ3

)]pk

≤ 1

λn

∑
k∈In

[M(
| αuk∆xk |

ρ3

+
| βuk∆yk |

ρ3

)]pk

≤ 1

λn

∑
k∈In

1

2pk
[M(

| uk∆xk |
ρ1

) + M(
| uk∆yk |

ρ2

)]pk

≤ 1

λn

∑
k∈In

[M(
| uk∆xk |

ρ1

) + M(
| uk∆yk |

ρ2

)]pk

≤ K.
1

λn

∑
k∈In

[M(
| uk∆xk |

ρ1

)]pk + K.
1

λn

∑
k∈In

[M(
| uk∆yk |

ρ2

)]pk → 0,

asn → ∞, whereK = max(1, 2H−1), H = sup pk, so thatαx + βy ∈ [V, M, p, u, ∆]0. This
completes the proof.

Theorem 2.2.For any Orlicz functionM and a bounded sequencep = (pk) of strictly positive
real numbers,[V, M, p, u, ∆]0 is a total paranormed space with :

g(x) = inf{ρpn/H : (
1

λn

∑
k∈In

[M(
| xk |

ρ
)]pk)1/H ≤ 1, n = 1, 2, 3, · · · },

whereH = max(1, sup pk).

Proof. Clearly g(x) = g(−x). By using Theorem 2.1, forα = β = 1, we getg(x + y) ≤
g(x)+g(y). SinceM(0) = 0, we getinf{ρpn/H} = 0 for x = 0. Conversely, supposeg(x) = 0,
then :

inf{ρpn/H : (
1

λn

∑
k∈In

[M(
| xk |

ρ
)]pk)1/H ≤ 1} = 0.

This implies that for a givenε > 0, there exists someρε (0 < ρε < ε) such that :

(
1

λn

∑
k∈In

[M(
| xk |
ρε

)]pk)1/H ≤ 1.

Thus,

(
1

λn

∑
k∈In

[M(
| xk |

ε
)]pk)1/H ≤ (

1

λn

∑
k∈In

[M(
| xk |
ρε

)]pk)1/H ≤ 1,

for eachn.
Suppose thatxnm 6= 0 for somem ∈ In, then(xnm

ε
) →∞. It follows that :

(
1

λn

∑
k∈In

[M(
| xnm |

ε
)]pk)1/H →∞

which is a contradiction. Thereforxnm = 0 for all m. Finally we prove that scalar multiplication
is continuous. Letµ be any complex number, then by definition,
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g(µx) = inf{ρpn/H : (
1

λn

∑
k∈In

[M(
| µxk |

ρ
)]pk)1/H ≤ 1, n = 1, 2, 3, · · · }.

Then

g(µx) = inf{(| µ | s)pn/H : (
1

λn

∑
k∈In

[M(
| xk |

s
)]pk)1/H ≤ 1, n = 1, 2, 3, · · · },

wheres = ρ/ | µ | . Since| µ |pn≤ max(1, | µ |sup pn), we have

g(µx) ≤ (max(1, | µ |sup pn))1/H . inf{(s)pn/H : (
1

λn

∑
k∈In

[M(
| xk |

s
)]pk)1/H ≤ 1, n = 1, 2, 3, · · · }

which converges to zero asx converges to zero in[V, M, p, u, ∆]0.
Now supposeµm → 0 andx is fixed in [V, M, p, u, ∆]0. For arbitraryε > 0, let N be a

positive integer such that

1

λn

∑
k∈In

[M(
| xk |

ρ
)]pk < (ε/2)H for someρ > 0 and alln > N.

This implies that

1

λn

∑
k∈In

[M(
| xk |

ρ
)]pk < ε/2 for someρ > 0 and alln > N.

Let 0 <| µ |< 1, using convexity ofM, for n > N, we get

1

λn

∑
k∈In

[M(
| µxk |

ρ
)]pk <

1

λn

∑
k∈In

[| µ | M(
| xk |

ρ
)]pk < (ε/2)H .

SinceM is continuous everywhere in[0,∞), then forn ≤ N,

f(t) =
1

λn

∑
k∈In

[M(
| txk |

ρ
)]pk

is continuous at zero. So there exists1 > δ > 0 such that| f(t) |< (ε/2)H for 0 < t < δ.
Let K be such that| µm |< δ for m > K andn ≤ N, then

(
1

λn

∑
k∈In

[M(
| µmxk |

ρ
)]pk)1/H < ε/2.

Thus

(
1

λn

∑
k∈In

[M(
| µmxk |

ρ
)]pk)1/H < ε,

for m > K and alln, so thatg(µx) → 0 (µ → 0).

Theorem 2.3.For any Orlicz functionM which satisfies the∆2−condition, we have[V, λ, u, ∆] ⊆
[V, M, u, ∆], where

[V, λ, u, ∆] = {x = (xk) : lim
n

1

λn

∑
k∈In

| uk∆xk − le |= 0, for somel ∈ C}.
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Proof. Let x ∈ [V, λ, u, ∆]. Then

Tn =
1

λn

∑
k∈In

| uk∆xk − le |→ 0 asn →∞, for somel.

Let ε > 0 and chooseδ with 0 < δ < 1 such thatM(t) < ε for 0 ≤ t ≤ δ. Write
yk =| uk∆xk − le | and consider

1

λn

∑
k∈In

M(| yk |) =
∑

1

+
∑

2

,

where the first summation overyk ≤ δ and the second overyk > δ. SinceM is continuous,∑
1

< λnε

and foryk > δ, we use the fact thatyk < yk/δ < 1 + yk/δ. SinceM is nondecreasing and
convex, it follows that

M(yk) < M(1 + δ−1yk) <
1

2
M(2) +

1

2
M(2δ−1yk).

SinceM satisfies the∆2−condition, there is a constantK > 2 such thatM(2δ−1yk) ≤
1
2
Kδ−1ykM(2), therefor

M(yk) <
1

2
Kδ−1ykM(2) +

1

2
Kδ−1ykM(2)

= Kδ−1ykM(2).

Hence ∑
2

M(yk) ≤ Kδ−1M(2)λnTn

which together with
∑

1 ≤ ελn yields [V, λ, u, ∆] ⊆ [V, M, u, ∆]. This completes the proof.
The method of the proof of Theorem 2.3 shows that for any Orlicz functionM which satisfies

the∆2−condition, we have[V, λ, u, ∆]0 ⊆ [V, M, u, ∆]0 and [V, λ, u, ∆]∞ ⊆ [V, M, u, ∆]∞,
where

[V, λ, u, ∆]0 = {x = (xk) : lim
n

1

λn

∑
k∈In

| uk∆xk |= 0},

[V, λ, u, ∆]∞ = {x = (xk) : sup
n

1

λn

∑
k∈In

| uk∆xk |< ∞}.

Theorem 2.4.Let0 ≤ pk ≤ qk and(qk/pk) be bounded. Then[V, M, q, u, ∆] ⊂ [V, M, p, u, ∆]

Proof. The proof of Theorem 2.4 used the ideas similar to those used in proving Theorem 7 of
Parashar and Choudhary [8].

Mursaleen [6] introduced the concept of statistical convergence as follows :
A sequencex = (xk) is said to beλ−statistically convergent orsλ−statistically convergent

to L if for every ε > 0,

lim
n

1

λn

| {k ∈ In :| xk − L |≥ ε} |= 0,
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where the vertical bars indicates the number of elements in the enclosed set. In this case we
write sλ − lim x = L or xk → L (sλ) andsλ = {x : ∃L ∈ R:sλ − lim x = L}.

In a similar way, we say that a sequencex = (xk) is said to be(λ, u, ∆)−statistically con-
vergent orsλ(u, ∆)−statistically convergent toL if for every ε > 0,

lim
n

1

λn

| {k ∈ In :| uk∆xk − Le |≥ ε} |= 0,

where the vertical bars indicates the number of elements in the enclosed set. In this case we
write sλ(u, ∆)−lim x = L oruk∆xk → Le (sλ) andsλ(u, ∆) = {x : ∃L ∈ R:sλ−lim x = L}.

Theorem 2.5.For any Orlicz functionM, [V, M, u, ∆] ⊂ sλ(u, ∆).

Proof. Let x ∈ [V, M, u, ∆] andε > 0. Then

1

λn

∑
k∈In

M(
| uk∆xk − le |

ρ
) ≥ 1

λn

∑
k∈In,|uk∆xk−le|≥ε

M(
| uk∆xk − le |

ρ
)

≥ 1

λn

M(ε/ρ). | {k ∈ In :| uk∆xk − le |≥ ε} |

from which it follows thatx ∈ sλ(u, ∆).
To show thatsλ(u, ∆) strictly contain[V, M, u, ∆], we proceed as in [6]. We definex = (xk)

by (xk) = k if n − [
√

λn] + 1 ≤ k ≤ n and(xk) = 0 otherwise. Thenx /∈ l∞(u, ∆) and for
everyε (0 < ε ≤ 1),

1

λn

| {k ∈ In :| uk∆xk − 0 |≥ ε} |= [
√

λn]

λn

→ 0 asn →∞

i.e. x → 0 (sλ(u, ∆)), where[ ] denotes the greatest integer function. On the other hand,

1

λn

∑
k∈In

M(
| uk∆xk − 0 |

ρ
) →∞ asn →∞

i.e. xk 9 0 [V, M, u, ∆]. This completes the proof.
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