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ABSTRACT. In this paper, we define the sequence spadési/, p, u, A}, [V, M, p,u, A]p and

[V, M, p,u, Al, Where for any sequence = (z,,), the difference sequenckz is given by

Azr = (Axy)$2y = (xn — p—1)52 ;. We also study some properties and theorems of these
spaces. These are generalizations of those defined and studied by Savas and Savas [10] and some
others before.
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1. INTRODUCTION

Let X be a linear space. A function: X — R is called paranorm if the following are
satisfied :

(i) p(0) >0

(i) p(x) > 0forallz € X

(iii) p(z) = p(—x) forallz € X

(iv) p(z +y) < p(z) + p(y) for all z € X ( triangle inequality )

(v) if (\,) is a sequence of scalars with — A (n — oo) and(z,,) is a sequence of vectors
with p(z, —z) — 0 (n — o), thenp(\,z,, — Az) — 0 (n — oo) ( continuity of multiplication
by scalars).

A paranormp for which p(z) = 0 impliesz = 0 is called total. It is well known that the
metric of any linear metric space is given by some total paranorm (cf.[11]).

Let A = ()\,) a nondecreasing sequence of positive reals tending to infinithard 1 and
)\n+1 S )\n + 1

The generalized de la Vak-Poussin means is defined by :

wherel,, = [n — A\, + 1,n]. A sequence = (z;) is said to bgV, \)—summable to a numbér
(seel?])ift,(z) — [, asn — co.
We write

Vo = fr= (o) Tima S o =0}

" kel,

o1
VA = {z=(z): h;LnA—nk; | 2, — le |= 0, for somel € C}

and

1
[V, Moo = {x = () : sgpxgb | 1, |< o0}

For the set of sequences that are strongly summable to zero, strongly summable and strongly
bounded by the de la Vae-Poussin method. X, = nforn = 1,2,3,---, then these sets
reduce tav,, w andw,, introduced and studied by Maddox [4].

Following Lidenstrauss and Tzafrifil[3], we recall that an Orlicz functidnis continuous,
convex, nondecreasing function definedfar 0 such that\/(0) = 0 andM (z) > 0forz > 0
(seel1)).

If convexity of M is replaced byM (z + y) < M(x) + M(y), then it is called a modulus
function, defined and studied by Nakano [7], Ruckle [9], Maddox [5] and others.

An Orlicz function M is said to satisfy thé\,—condition for all values of;, if there exist a
constantk’ > 0 such that

MQ2u) < KM(u) (u > 0).
It is easy to see that always > 2. The A,—condition is equivalent to the satisfaction of the
inequality

M(lu) < KIM (u),
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for all values ofu and forl > 1.
Lidenstrauss and Tzafriri used the idea of Orlicz function to construct the Orlicz sequence
space :

l]V[ = {QT = ([L’k) :

D |

which is a Banach space with the norm :

| || p=inf{p >0: ZM('QST’“') <1}.
P

If M(x)=2aP,1<p < oo, the spacé,, coincide with the classical sequence spgce

Parashar and Choudhary [8] have introduced and examined some properties of four sequence
spaces defined by using an Orlicz functidbh which generalized the well-known Orlicz se-
quence spach, and strongly summable sequence spaces, p|, [C, 1, p|o and[C, 1, p|o

Let M be an Orlicz functionp = (px) be any sequence of strictly positive real numbers and
u = (uy) be any sequence such that=# 0(k = 1,2,---) . We define the following sequence
spaces :

[e.9]

1 Axy — 1
V.Mpu, Al = {o= () lim = Z[M(M)} — 0, for somel
"o et P
andp > 0}
A
V,M,p,u,Aly = {z=(zx) hm/\— Z | up Ay | )] = 0, for somep > 0}
keITL

V. M,p,u,Aloe = {z=_(z1): sup)\ Z )] < o0, forsomep > 0}.

keln P

If w = e and Az, = z; for all k, then these gives the spac@s M, p|, [V, M, p|, and
[V, M, p|, respectively defined and studied by Savas and Savas [10].

2. MAIN RESULTS
We prove the following theorems :

Theorem 2.1. For any Orlicz function)M and any sequence = (p;) of strictly positive real
numbers{V, M, p, u, A, [V, M, p,u, Al and[V, M, p, u, A], are linear spaces over the set of
complex numbers.

Proof. We shall prove only fofV, M, p, u, A]y. The others can be treated similarly. ety €
[V, M, p,u, Ay anda, 5 € C. In order to prove the result, we need to find sgme> 0 such
that :

1 Z[M(‘ aur Az + Sup Ay |)]pk —0.

P3
kel
Sincex,y € [V, M, p,u, Ay, there exists some positiyg andp, such that :
1 | upAzy |

hrrln)\—Z[M(

)]P* = 0 and hm)\1 Z[ (| ueBys |

kel 1 kel, P2

=0,
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Definep; = max(2 | o | py,2 | 5| py). SinceM is nondecreasing and convex,

n el P3
1 | aupAzy || BurAy |\,
< > M - )
" kel Ps Ps
1 1 | upAzy | | up Ayy |
< - MR T M((——Z"1 Pk
I R C)
1 | upAzy, | | upAyy, |
<+ S OIM(——) + M)
n kel IOl p2
1 1
< Koo SR8 e LSS0
" ke, P1 " keln P2

asn — oo, where K = max(1,2%71), H = sup py, so thatax + By € [V, M, p,u, Alo. This
completes the proof.
1

Theorem 2.2. For any Orlicz functionV/ and a bounded sequenge-= (p;,) of strictly positive
real numbers[V, M, p,u, A, is a total paranormed space with :

ola) = int (- (- Sy < =103y,

" kel, P

whereH = max(1, sup py).

Proof. Clearly g(x) = g(—x). By using Theorem 2|1, for = 3 = 1, we getg(z +y) <
g(x)+g(y). SinceM (0) = 0, we getinf{p?»/#} = 0 for x = 0. Conversely, supposgz) = 0,
then :

(s (5 Sy < 1y <0

n p
ke[’n,
This implies that for a givea > 0, there exists somg. (0 < p, < ¢) such that :

5, Sy <,

Thus,

sy < (Lo gz by <

€ A
" kel, n kel, pE

for eachn.
Suppose that,,, # 0 for somem € I,, then(*2=) — oc. It follows that :
1 | T, | 1/H
(= D IM(—=)]")"" — o0
which is a contradiction. Therefay, = 0 for all m. Finally we prove that scalar multiplication
is continuous. Lef: be any complex number, then by definition,
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1
g(pz) = int{p /7 (= err—‘ Mo Loy <4 19,3,
An p
kel,
Then

: 1 | 2 |
= inf po/H M PVH <1 n=1,2,3,
glp) = f{( | /1 (- S IMEEI Y <1 m=1,2,8,-),
wheres = p/ | v | . Since| p [P»< max(1, | p |**PP~), we have

1

g(uI) S (max(l, ‘ 2 |Suppn))1/H_ lnf{(‘s)pn/H : ()\_ Z[M(M)]pk)l/H S 17 n= ]-7 27 37 e
" ke, 5

which converges to zero asconverges to zero iV, M, p, u, Al.

Now suppose.,, — 0 andz is fixed in [V, M, p,u, Aly. For arbitrarye > 0, let N be a
positive integer such that

keln
This implies that

» < (¢/2)" for somep > 0 and alln > N.

1
— Z[M(M)]pk < ¢/2 for somep > 0 and alln. > N.
p

" kel,
Let0 <| u |< 1, using convexity of\/, for n > N, we get

_Z |/”ka| )]P

)]pk <(e/2)"

SinceM is contlnuous everywhere [ﬁ, oo), then forn < N,

1 tx

£ = = S a0y

" kel P

is continuous at zero. So there exists § > 0 such that f(¢) |< (¢/2)" for0 <t < 4.
Let K be such that y,,, |< ¢ form > K andn < N, then

1 x
(5 Sty < gpo
" kel
Thus
(i [M(M)]pk)l/lf < e,
An kel P
for m > K and alln, so thatg(uxz) — 0 (u — 0).

Theorem 2.3.For any Orlicz function}/ which satisfies thé&,—condition, we hav@é/, \, u, A] C

[V, M, u, A], where

V. A\ u, Al = {x = () : hm—Z]ukAxk—le\ 0, for somel € C}.

" kel,
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Proof. Letx € [V, A, u, A]. Then

T, = X k; | upAzy, — le |— 0 asn — oo, for somel.
Let e > 0 and choos& with 0 < § < 1 such thatM(t) < e for0 < ¢t < §. Write
yr =| ugAzxy — le | and consider

Z My )= +)
" kel, 1 2
where the first summation over < ¢ and the second ovey, > §. Since)M is continuous,

Z<x\ne
1

and fory, > ¢§, we use the fact thay, < y./0 < 1+ y/d. Since M is nondecreasing and
convex, it follows that

1 1
M(yr) < M(1+6y) < 5M(2) + §M(25’1yk).

Since M satisfies theA,—condition, there is a constaif > 2 such thatM(Z(S‘lyk) <
K6y M(2), therefor

1 1
M(y,) < §K(5—1ykM(2)+§K(5_lykM(2)

= K& 'yM(2).
Hence

Z M(y) < K6~ 'M(2)\T,,

which together with), < e\, ylelds[V A u, Al C [V, M, u, Al. This completes the proof.

The method of the proof of Theor- 3 shows that for any Orlicz funétfomhich satisfies
the A,—condition, we haveV, A\, u, Ay C [V, M,u, Al and [V, A\, u, Al C [V, M, u, A,
where

[V, u, Alg = {z = (x3) : hm— > | upAay |= 0},

" kel

VoA u, Al = {z = (z4) : SUp Z | upAxy |< 0o}
O ker,
|

Theorem 2.4.Let0 < p; < g and(qx/px) be bounded. Thely, M, q,u, A] C [V, M, p,u, A|

Proof. The proof of Theorerpn 214 used the ideas similar to those used in proving Theorem 7 of
Parashar and Choudhary [8].

Mursaleen([6] introduced the concept of statistical convergence as follows :

A sequencer = () is said to be\—statistically convergent of, —statistically convergent
to L if for everye > 0,

1
lim)\—|{k‘€]n:|xk—L|26}|:0
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where the vertical bars indicates the number of elements in the enclosed set. In this case we
write sy —limaz = L oraz, — L (sy) andsy, = {z: 3L € Ris) — limx = L}.

In a similar way, we say that a sequence- (z) is said to be\, u, A)—statistically con-
vergent ors) (u, A)—statistically convergent té if for everye > 0,

1
lim/\— | {k € L, :| Az — Le |> €} |= 0,

where the vertical bars indicates the number of elements in the enclosed set. In this case we
write sy (u, A)—limz = L orugAxy — Le (s)) andsy(u, A) = {x : 3L € Risy—limx = L}.
|

Theorem 2.5. For any Orlicz functionM, [V, M, u, A] C s)(u, A).
Proof. Letz € [V, M, u, A] ande > 0. Then

1 up Az, — le 1 up Az, — le

" kel, P k€l |up Az —le|>e P
1
> )\—M(e/p) | {k € I, :| upAxy — le |> €} |

from which it follows thatr € s, (u, A).

To show that) (u, A) strictly contain[V, M, u, A], we proceed as in[6]. We define= (zy)
by (z1) = kif n — [V/A,] +1 < k < nand(x;) = 0 otherwise. Then ¢ I, (u, A) and for
everye (0 < e <1),

V2]
>\n

i.e.z — 0 (sx(u,A)), where| ] denotes the greatest integer function. On the other hand,

1
)\—’{kEIn:|ukA$k—0|Z€}|: — 0asn — oo

1 Az, —0
" keI, p
i.e.zp - 0 [V, M,u, Al. This completes the proof.
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