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1. INTRODUCTION

In mathematical analysis, distributions (generalized functions) are objects which generalize
functions. They extend the concept of derivative to all integrable functions and beyond, and are
used to formulate generalized solutions of partial differential equations. They play a crucial role
in physics and engineering where many non-continuous problems naturally lead to differential
equations whose solutions are distributions, such as the Dirac delta distribution. In late forties,
L. Schwartz gave his formulation of distribution theory. This formulation leads to extensive
applications in mathematical analysis, mathematical physics, and engineering. Recently, the
theory of distributions devised by L. Schwartz is used in microlocal analysis, signal processing,
image processing and wavelets.

The Schwartz spac®, as defined by L. Schwartz (see [10]), consists of &H(R") func-
tionsy such that|z20°¢|| < oo forall o, € N". The topological dual space 6f, is a space
of generalized functions, called tempered distributions. In 1963, A. Beurling presented his gen-
eralization of tempered distributions. The aim of this generalization was to find an appropriate
context for his work on pseudo-analytic extensions (see [2]).

In 1967 (seel[3]), G. Bjorck studied and expanded the theory of Beurling on ultradistribu-
tions to extend the work of Hormander on existence, nonexistence, and regularity of solutions
of differential equations with constant coefficient and also he studied the convolution . The
Beurling-Bjorck spaces,,, as defined by G. Bjorck, consists &lf°(R™) functionse such
that ||¥**)0%p|| < oo and ||e"®d73|| < oo for all a, 5 € N, wherew is a sub-
additive weight function satisfying the classical Beurling conditions. The topological dual
&/, of G, is a space of generalized functions, caltedtempered ultradistributions. When
w(z) = log(1 + |z|), the Beurling- Bjorck spac&,, becomes the Schwartz spage(see [1]
and [4]).

In [7], the authors introduced the spac€g,, ., of all C>(R") functions ¢ such that
|k @dPpl| < oo and||e"2®%5|| < oo forall k € Nands € N*, wherew, and
w, are two weights satisfying the classical Beurling conditions. The topological&ya), of
Su,.w, 1S a space of generalized functions, called, w.)-tempered ultradistributions. More-
over, they proved a structure theorem for functioriBle &/ using the classical Riesz
representation theorem.

w1, w9

In this paper, we will use the structure theorem obtained in [7] to prove that the convolution of
an ultradistributiory” € &;, ,, and atest functiop € &,,, ., defined byl'sp = (T, p(z—-)),
coincides with the classmal deflnltlon of the convolution of two integrable distributions. As a
result, we prove thatu, , wy)-tempered ultradistributions can be represented as boundary values
of solutions of the heat equation.

The symbolsC*>, Cg°, L?, etc., denote the usual spaces of functions defineR'grwith
complex values. We denotg the Euclidean norm o, while ||-||, indicates the-norm in
the spacd.?, wherel < p < oo. In general, we work on the Euclidean spd¢éunless we
indicate other than that as appropriate. Partial derivatives will be denotéd,bwherec is
a multi-index(aq, ..., a,) in Nij. We will use the standard abbreviatiojpg = a1 + ... + ay,
x® = x{*...x%. The Fourier transform of a functighwill be denoted byF (f) or fand it will
be defined ag,, e~*"* f (x) dz. With C, we denote the Banach space of continuous functions
vanishing at infinity with supremum norm
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2. PRELIMINARY DEFINITIONS AND RESULTS

In this section, we start with the definition of the space of admissible funciidpss they
were introduced by Bjorck.

Definition 2.1. ([3]) With M, we indicate the space of functions : R* — R of the form
w(x) = Q(|z]), where

(1) ©:[0,00) — [0, 00) is increasing, continuous and concave,

(2) £2(0) =0,

) Jz (ﬂg)dt < 0,

(4) Q(t) > a+bln(1 +t) for somea € R and somé > 0.

Standard classes of functionsin M. are given by

w(z) = |z|* for0 < d < 1, andw(z) = pln(1 + |x|) for p > 0.

Remark 2.1. Let us observe for future use that if we take an inte§jer 3, then

Cy = / e V@) dr < 0o, forallw € M,,

whereb is the constant in Condition 4 of Definition 2.1.
In the following theorem, we state the characterization of the s@ace,, .

Theorem 2.1. ([7]) Givenw,, w, € M., the space,,, ,,, can be described as a set as well as
topologically by

S | ¢:R" = C: ¢is continuous and for all
w2 E=0,1,2,...,pk (p) < 00,q1 () <oo [’
wherepy (¢) = ||e"1o|| . ar () = ||e¥23]| ..
The spaces,,, .,, equipped with the family of semi-norms
N = {pr,qr : k € No},

is a Fréchet space.
In [[7], the authors employ the above theorem to prove the following structure theorem for
functionalsT” € &/

w1, w2 "

Theorem 2.2.([7])) If T' € &,,,, .,,,,» then there exist two regular complex Borel measureand
1o Of finite total variation andk € Ny such that
(2.1) T = ety 4 F (e py)

in the sense of’

w1,w2 "

Lemma 2.3. Lety € Gy, u,- Thenp(z + y) € S, 4, for eachy € R".

Proof. Fix y € R™ and lety € S, 4,. First, let us prove thate" (" (z 4 y)|| < co. To do
SO, We use concavity property of, as follows:

@ o y)| = M@ ety b () (5 4 )|
kw1 (z) o —kwi (z+y) ||e2kw1(:L"er)SO(aj +17) ‘

IN

[e.o]

Ol (5™ 2w (aty)) < (2h(H —wn (F5))

IA

wi (y)

Ce?(==57) < Ce ) <« oo,

This proves thaf|e" (" o(z 4 y)|| < co. Similarly, ||e*2®3(z + y)|| . < oco. This com-
pletes the proof of Lemnja 2.3. O

IA
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Given two functionald” and S that are integrable functions, the classical definition of con-
volution of T"and S is given by

(T 5, ¢) = (T, (Sy, dy + ).

In Definition 1.7.1 of [3], G. Bjorck defines the convolutidnx ¢ for a functional defined
on the space of test functions with compact sup@pjtc &, andy € ®,, as a function by
(T, p(x — -)). Using this definition, Definition 1.6.11, and results from Section 1.7 lof [3], he
proves thatifl’ € &) andy € &, then the functional” * ¢ € &!,.

Theorem 2.4.1f T € &;,, ,,, andp € &, ,, then the functiondl’ x p € &,
(T, p(x =)

Proof. Since&,,, ., iS a natural generalization of the Beurling-Bjérck sp&tg, the proof of
Theorenj 2.4 mimics the proof of Theorem 1.8.12 0f [3] and so we will omit it. O

We end this section with the definition of operator semigroup on a Banach space that we will
use in applications in the next section.

and given by

w2

Definition 2.2. [8] Let % be a Banach space. An operator semigroufBads a family (7; : ¢t €
RT) of bounded linear operators @ such that

|) To =1,
i): 7,1, =T, forallt,s € RT.
3. APPLICATIONS

In this section, we study some applications of the structure theorefw,0fv,)-tempered
ultradistributions stated in Theorém .2 by proving some results on a semi-group acting on the
Fréchet spac®,,, ., and extend it to its duad;, . . We start this section by proving that the
convolution in Theorerp 2|4 coincides with classical definition of convolution of two integrable
functionals.

Theorem3.1.1f T € &, ,,, andy € &, u,, then the functional” x  defined by

(T * @, 0) = (Ty, (s, 0(x +y))
coincides with the functional given by integration against the funation) = (7}, o(z — y)).

Proof. Using [2.1) in Theorerp 2,2, we can write for each

0(e) = T =) = [ Oplaty)di(y) + [ FHOHIE o) dpa(6)
So,
(Txp.0) = (T (g bz +y))

B / / (= y)oW)dm(y)) + / RO FH(9)(©)0(6)dpal€)

= [ O ole o)+ [ FOFE0)Edualo)

(€ (y), (@ — ), d(2))) + (F (2 2) (y), (p(x = y), $(x)))
= (" (y) + F("2p2) (y), (p(z — y), 0(2)))
(Ty, {p(z —y), o(x)))

forall ¢ € &, .,. This completes the proof of Theor¢m]3.1.
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Now we employ the above theorem to describe the action of the semi-group defined by the
convolution kernet™"7T'(*¥), wheret > 0 on &,

w1, w2 "

Theorem 3.2.LetT € G, .+, and{ P, };>o be a semi-group defined by the convolution kernel
t="T'(*;%), wheret > 0. Then, the action of; on &, ,, is given by the integration against
the function

(3.1) pla) = (8,1 T(=7)),

whereS, € &, andy indicates on which variable the functionélacts.

wi,w2

Proof. Using Lemmd 213 and Theorgm B.1, it is enough to showitig} € &.,, ., for each
t > 0. Note that

‘ekwl(x)T(é)) < €ktw1(%)T(§)’
< 6([kt]+1)w1(%)T(%)‘
— |gmen &)t ‘
e T (2)
< le™ T
and
esz f(%)( )’ — ekw2(§)tf(t§)’ =C, ‘eku&(f)f(té?)‘ .

Now if t > 1, thenws (&) < wq(t£) and therefore
‘ek‘w(ﬁ)'f(té‘)‘ <

FOT (1))
< [Je1]
For0 <t < 1, we have
e OT (1) < [eNeOF 1)

<

ekngT‘ ‘

whereN is an integer such that > 1. This completes the proof of Theorém|3.2. O

Theorem 3.3. Let B be a bounded subset G, ,. Theny,(z) = ¢ "T(%2), p(x)) =
Jon T () p(y)dy — @ in &, wyast — 07 uniformly onB.

Proof. We note thaty; € &,,.., C &, ,, foreacht > 0. If 0 <t < 1andz = =¥, then for
anyé > 0, we can write

W gy(x) — ply)| = /ekwl(y)T(Z)IMertz)—w(y)ldz
< Il+]2+-[37

where
L = / T () oy + t2) — (y)| dz,
ly| <o

L - / FUOT(2) |o(y + t2)| dz,
ly|>6

L= [ m0r()p)ds
ly|>d
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We begin estimating;. For each) < t < 1 andz € R", there exist€ > 0 such that

P W) oy 4+ t2) — (y)| < Ot z].

We note that Condition 4 in Definitign 2.1 implies that there eXist N andC' > 0 such that
|z| < CeNwi(2), Substituting this intd;, we obtain the estimate

(3.2) I < / Ct|z|T(z)dz
ly|<é
< C’/ teN AT (2)dz
ly|<é
< ol

Next, we estimatd,. Using the subaddivity ofy; and0 < ¢ < 1, we obtain

(3.3) L < /| PTG ply +12)] d:

IN

/ PO IHETIT (L) | p(y + t2)| dz
ly|>6

IN

/ ekwl(tz)T(z) }ekwl(“t'z)go(y + tz)| dz
ly|>6

IN

HerlSOHOO/ ekwl(z)T(z)dz
|z|>6

< C/ T (2)dz.
|z]>6
Finally, let us estimaté;. We have

(3.4) I = / TR )

< |le" ol / AT (2)dz,
|z|>6
Therefore if we chooseé to be sufficiently Iarge and sufficiently small then the estimates in

3.2, 3.3 andF4) imply thd fek 1) (p,(x) — @(y))|| . converges t® ast — 0F. Now to

prove thaf|ef*2(6) F | converges t® ast — 01, we consider

O |F (pul2) — o)) (€)] = e

A [ oD (© - Fe)o)

— kw28

o TEemane - Femie)

= () |F(T) (1)1
< [l IF @) -1 < O F D)) -1).

Now by uniform continuity ofF(T')(t¢), we observe that (T') (t&) — F(T)(0) = ||t "T(;)||, =
1, which |mpI|es thatC |}“( )(t§)—1] — 0 ast — 01 uniformly on compact subsets &f".
Thus |k 2 F oy (a y))|| . converges td) uniformly on B. This completes the proof of
Theoren 3.8. O
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Example 3.1. Consider the heat kernel

2|2
E(w,t) = (4rt)~3e i, fort > 0,
’ 0, fort < 0.

It is known that||E(-,t)||, = 1 for ¢t > 0. Also, consider the Gauss-Weierstrass semigroups
{GW, }+>0 defined by the integration with respect to the heat kernel

GW () (x) = (E(z — y, 1), 0(y)) = (> T(=L), o(y)).

Vit

This semigroup generated by the LaplacianRshand the function(z,t) = GW ;(p)(z) is a
solution of the equatiom; — Au = 0 with u(x,0) = ¢(x) for an appropriatep. That is, the
convolution

u(z,t) = Exp
is the solution to the heat equation and

u(w,0) = p(x) = lim GV () (2)

and the convergence is uniform on bounded subsékg dflow it is clear thatt(x, t) € &y, w,
for all wy, w, € M, sinceE(z,t) is exponentially decreasing and using Theofen 3.2. More-
over, Theorerpi 3|2 implies that the action(@f’,; on L € &,,, ,, for all w;, w, € M, can be

defined by the integral against the functipfz) given in (3.1) and by using Theor¢m|3.1, we
conclude that this is equivalent to

GWA(T) = {Ly, (7T ("2, o(a)

which implies thatlim GW 4(T') = T in the sense of; and this is equivalent to

[0+ w1, W2

<t‘”/2T(x\;¥y), 6(x))) — pin &, ast— 0F.
As a result, thew,, wy)-tempered ultradistributions can be considered as boundary values of
the equationi; — Au = 0.
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