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1. I NTRODUCTION

In mathematical analysis, distributions (generalized functions) are objects which generalize
functions. They extend the concept of derivative to all integrable functions and beyond, and are
used to formulate generalized solutions of partial differential equations. They play a crucial role
in physics and engineering where many non-continuous problems naturally lead to differential
equations whose solutions are distributions, such as the Dirac delta distribution. In late forties,
L. Schwartz gave his formulation of distribution theory. This formulation leads to extensive
applications in mathematical analysis, mathematical physics, and engineering. Recently, the
theory of distributions devised by L. Schwartz is used in microlocal analysis, signal processing,
image processing and wavelets.

The Schwartz spaceS, as defined by L. Schwartz (see [10]), consists of allC∞(Rn) func-
tionsϕ such that

∥∥xα∂βϕ
∥∥
∞ <∞ for all α, β ∈ Nn. The topological dual space ofS, is a space

of generalized functions, called tempered distributions. In 1963, A. Beurling presented his gen-
eralization of tempered distributions. The aim of this generalization was to find an appropriate
context for his work on pseudo-analytic extensions (see [2]).

In 1967 (see [3]), G. Björck studied and expanded the theory of Beurling on ultradistribu-
tions to extend the work of Hörmander on existence, nonexistence, and regularity of solutions
of differential equations with constant coefficient and also he studied the convolution . The
Beurling-Björck spaceSw, as defined by G. Björck, consists allC∞(Rn) functionsϕ such
that

∥∥ekw(x)∂βϕ
∥∥
∞ < ∞ and

∥∥ekw(x)∂βϕ̂
∥∥
∞ < ∞ for all α, β ∈ Nn, wherew is a sub-

additive weight function satisfying the classical Beurling conditions. The topological dual
S′

w of Sw is a space of generalized functions, calledw−tempered ultradistributions. When
w(x) = log(1 + |x|), the Beurling- Björck spaceSw becomes the Schwartz spaceS (see [1]
and [4]).

In [7], the authors introduced the spaceSw1,w2 of all C∞(Rn) functions ϕ such that∥∥ekw1(x)∂βϕ
∥∥
∞ < ∞ and

∥∥ekw2(x)∂βϕ̂
∥∥
∞ < ∞ for all k ∈ N andβ ∈ Nn , wherew1 and

w2 are two weights satisfying the classical Beurling conditions. The topological dualS′
w1,w2

of
Sw1,w2 is a space of generalized functions, called(w1, w2)-tempered ultradistributions. More-
over, they proved a structure theorem for functionalsT ∈ S′

w1,w2
using the classical Riesz

representation theorem.

In this paper, we will use the structure theorem obtained in [7] to prove that the convolution of
an ultradistributionT ∈ S′

w1,w2
and a test functionϕ ∈ Sw1,w2, defined byT ∗ϕ = 〈T, ϕ(x−·)〉,

coincides with the classical definition of the convolution of two integrable distributions. As a
result, we prove that(w1, w2)-tempered ultradistributions can be represented as boundary values
of solutions of the heat equation.

The symbolsC∞, C∞0 , Lp, etc., denote the usual spaces of functions defined onRn, with
complex values. We denote|·| the Euclidean norm onRn, while ‖·‖p indicates thep-norm in
the spaceLp, where1 ≤ p ≤ ∞. In general, we work on the Euclidean spaceRn unless we
indicate other than that as appropriate. Partial derivatives will be denoted by∂α, whereα is
a multi-index(α1, ..., αn) in Nn

0 . We will use the standard abbreviations|α| = α1 + ... + αn,
xα = xα1

1 ...x
αn
n . The Fourier transform of a functionf will be denoted byF (f) or f̂ and it will

be defined as
∫

Rn e
−2πixξf (x) dx. With C0 we denote the Banach space of continuous functions

vanishing at infinity with supremum norm.

AJMAA, Vol. 14, No. 2, Art. 3, pp. 1-8, 2017 AJMAA

http://ajmaa.org


APPLICATIONS OF THESTRUCTURETHHEOREM OFTEMPEREDULTRADISTRIBUTIONS 3

2. PRELIMINARY DEFINITIONS AND RESULTS

In this section, we start with the definition of the space of admissible functionsMc as they
were introduced by Björck.

Definition 2.1. ([3]) With Mc we indicate the space of functionsw : Rn → R of the form
w (x) = Ω (|x|), where

(1) Ω : [0,∞) → [0,∞) is increasing, continuous and concave,
(2) Ω (0) = 0,
(3)

∫
R

Ω(t)
(1+t2)

dt <∞,
(4) Ω (t) ≥ a+ b ln (1 + t) for somea ∈ R and someb > 0.

Standard classes of functionsw in Mc are given by

w(x) = |x|d for 0 < d < 1, andw(x) = p ln(1 + |x|) for p > 0.

Remark 2.1. Let us observe for future use that if we take an integerN > n
b
, then

CN =

∫
Rn

e−Nw(x)dx <∞, for all w ∈Mc,

whereb is the constant in Condition 4 of Definition 2.1.

In the following theorem, we state the characterization of the spaceSw1,w2 .

Theorem 2.1. ([7]) Givenw1, w2 ∈Mc, the spaceSw1,w2 can be described as a set as well as
topologically by

Sw1,w2 =

{
ϕ : Rn → C : ϕ is continuous and for all
k = 0, 1, 2, ..., pk (ϕ) <∞, qk (ϕ) <∞

}
,

wherepk (ϕ) =
∥∥ekw1ϕ

∥∥
∞, qk (ϕ) =

∥∥ekw2ϕ̂
∥∥
∞ .

The spaceSw1,w2, equipped with the family of semi-norms

N = {pk, qk : k ∈ N0},
is a Fréchet space.

In [7], the authors employ the above theorem to prove the following structure theorem for
functionalsT ∈ S′

w1,w2
.

Theorem 2.2. ([7]) If T ∈ S′
w1,w2

, then there exist two regular complex Borel measuresµ1 and
µ2 of finite total variation andk ∈ N0 such that

(2.1) T = ekw1µ1 + F(ekw1µ2)

in the sense ofS′
w1,w2

.

Lemma 2.3. Letϕ ∈ Sw1,w2. Thenϕ(x+ y) ∈ Sw1,w2 for eachy ∈ Rn.

Proof. Fix y ∈ Rn and letϕ ∈ Sw1,w2 . First, let us prove that
∥∥ekw1(x)ϕ(x+ y)

∥∥
∞ <∞. To do

so, we use concavity property ofw1 as follows:

ekw1(x) |ϕ(x+ y)| = ekw1(x)e−2kw1(x+y)e2kw1(x+y) |ϕ(x+ y)|
≤ ekw1(x)e−kw1(x+y)

∥∥e2kw1(x+y)ϕ(x+ y)
∥∥
∞

≤ Ce2k(
w1(x)

2
−2w1(x+y)) ≤ e2k(

w1(x)
2

−w1(x+y
2

))

≤ Ce2k(−w1(y)
2

) ≤ Ce−kw1(y) <∞.

This proves that
∥∥ekw1(x)ϕ(x+ y)

∥∥
∞ < ∞. Similarly,

∥∥ekw2(x)ϕ̂(x+ y)
∥∥
∞ < ∞. This com-

pletes the proof of Lemma 2.3. �
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Given two functionalsT andS that are integrable functions, the classical definition of con-
volution ofT andS is given by

〈T ∗ S, φ〉 = 〈Tx, 〈Sy, φ(y + x)〉.
In Definition 1.7.1 of [3], G. Björck defines the convolutionT ∗ ϕ for a functional defined

on the space of test functions with compact supportDw ⊂ Sw andϕ ∈ Dw as a function by
〈T, ϕ(x − ·)〉. Using this definition, Definition 1.6.11, and results from Section 1.7 of [3], he
proves that ifT ∈ S′

w andϕ ∈ Sw, then the functionalT ∗ ϕ ∈ S′
w.

Theorem 2.4. If T ∈ S′
w1,w2

andϕ ∈ Sw1,w2 , then the functionalT ∗ϕ ∈ S′
w1,w2

and given by
〈T, ϕ(x− ·)〉.
Proof. SinceSw1,w2 is a natural generalization of the Beurling-Björck spaceSw, the proof of
Theorem 2.4 mimics the proof of Theorem 1.8.12 of [3] and so we will omit it. �

We end this section with the definition of operator semigroup on a Banach space that we will
use in applications in the next section.

Definition 2.2. [8] Let B be a Banach space. An operator semigroup onB is a family(Tt : t ∈
R+) of bounded linear operators onB such that

i): T0 = I,
ii): TsTt = Ts+t for all t, s ∈ R+.

3. APPLICATIONS

In this section, we study some applications of the structure theorem of(w1, w2)-tempered
ultradistributions stated in Theorem 2.2 by proving some results on a semi-group acting on the
Fréchet spaceSw1,w2 and extend it to its dualS′

w1,w2
. We start this section by proving that the

convolution in Theorem 2.4 coincides with classical definition of convolution of two integrable
functionals.

Theorem 3.1. If T ∈ S′
w1,w2

andϕ ∈ Sw1,w2 , then the functionalT ∗ ϕ defined by

〈T ∗ ϕ, φ〉 = 〈Ty, (ϕz, φ(x+ y)〉
coincides with the functional given by integration against the functionψ(x) = 〈Ty, ϕ(x− y)〉.
Proof. Using (2.1) in Theorem 2.2, we can write for eachx

ψ(x) = 〈Ty, ϕ(x− y)〉 =

∫
Rn

ekw1(y)ϕ(x+ y)dµ1(y) +

∫
Rn

ekw2(ξ)e−2πiy.ξF−1(ϕ)(ξ)dµ2(ξ).

So,

〈T ∗ ϕ, φ〉 = 〈Ty, (ϕz, φ(x+ y)〉

=

∫
Rn

ekw1(y)(

∫
Rn

ϕ(x− y)φ(y)dµ1(y)) +

∫
Rn

ekw2(ξ)F−1(ϕ)(ξ)φ̂(ξ)dµ2(ξ)

=

∫
Rn

ekw1(y)(

∫
Rn

ϕ(x− y)φ(y)dµ1(y)) +

∫
Rn

ekw2(ξ)F(
g
ϕ ∗ φ)(ξ)dµ2(ξ)

= 〈ekw1µ1(y), 〈ϕ(x− y), φ(x)〉〉+ 〈F(ekw2µ2)(y), 〈ϕ(x− y), φ(x)〉〉
= 〈ekw1µ1(y) + F(ekw2µ2)(y), 〈ϕ(x− y), φ(x)〉〉
= 〈Ty, 〈ϕ(x− y), φ(x)〉〉

for all φ ∈ Sw1,w2 . This completes the proof of Theorem 3.1.
�
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Now we employ the above theorem to describe the action of the semi-group defined by the
convolution kernelt−nT (x−y

t
), wheret > 0 onS′

w1,w2
.

Theorem 3.2. LetT ∈ Sw1,w2 and{Pt}t≥0 be a semi-group defined by the convolution kernel
t−nT (x−y

t
), wheret > 0. Then, the action ofPt on S′

w1,w2
is given by the integration against

the function

(3.1) ρ(x) = 〈Sy, t
−nT (

x− y

t
)〉,

whereSy ∈ S′
w1,w2

andy indicates on which variable the functionalS acts.

Proof. Using Lemma 2.3 and Theorem 3.1, it is enough to show thatT ( ·
t
) ∈ Sw1,w2 for each

t > 0. Note that ∣∣∣ekw1(x)T (
x

t
)
∣∣∣ ≤

∣∣∣ektw1(x
t
)T (

x

t
)
∣∣∣

≤
∣∣∣e([kt]+1)w1(x

t
)T (

x

t
)
∣∣∣

=
∣∣∣emw1(x

t
)T (

x

t
)
∣∣∣

≤ ||emw1T ||∞
and ∣∣∣ekw2(ξ)T̂ (

x

t
)(ξ)

∣∣∣ =
∣∣∣ekw2(ξ)tT̂ (tξ)

∣∣∣ = Ct

∣∣∣ekw2(ξ)T̂ (tξ)
∣∣∣ .

Now if t ≥ 1, thenw2(ξ) ≤ w2(tξ) and therefore∣∣∣ekw2(ξ)T̂ (tξ)
∣∣∣ ≤

∣∣∣ekw2(tξ)T̂ (tξ)
∣∣∣

≤
∣∣∣∣∣∣ekw2T̂

∣∣∣∣∣∣
∞
.

For0 < t < 1, we have ∣∣∣ekw2(ξ)T̂ (tξ)
∣∣∣ ≤

∣∣∣ekNw2(tξ)T̂ (tξ)
∣∣∣

≤
∣∣∣∣∣∣ekNw2T̂

∣∣∣∣∣∣
∞
,

whereN is an integer such thatN ≥ 1
t
. This completes the proof of Theorem 3.2. �

Theorem 3.3. Let B be a bounded subset ofSw1,w2 . Thenϕt(x) = 〈t−nT (x−y
t

), ϕ(x)〉 =∫
Rn t

−nT (x−y
t

)ϕ(y)dy → ϕ in Sw1,w2ast→ 0+ uniformly onB.

Proof. We note thatϕt ∈ Sw1,w2 ⊂ S′
w1,w2

for eacht > 0. If 0 < t < 1 andz = x−y
t

, then for
anyδ > 0, we can write

ekw1(y) |ϕt(x)− ϕ(y)| =

∫
Rn

ekw1(y)T (z) |ϕ(y + tz)− ϕ(y)| dz

≤ I1 + I2 + I3,

where

I1 =

∫
|y|≤δ

ekw1(y)T (z) |ϕ(y + tz)− ϕ(y)| dz,

I2 =

∫
|y|≥δ

ekw1(y)T (z) |ϕ(y + tz)| dz,

I3 =

∫
|y|≥δ

ekw1(y)T (z) |ϕ(y)| dz.

AJMAA, Vol. 14, No. 2, Art. 3, pp. 1-8, 2017 AJMAA

http://ajmaa.org


6 HAMED M. OBIEDAT AND LLOYD E. MOYO

We begin estimatingI1. For each0 < t < 1 andz ∈ Rn, there existsC > 0 such that

ekw1(y) |ϕ(y + tz)− ϕ(y)| ≤ Ct |z| .

We note that Condition 4 in Definition 2.1 implies that there existN ∈ N andC > 0 such that
|z| ≤ CeNw1(z). Substituting this intoI1, we obtain the estimate

I1 ≤
∫
|y|≤δ

Ct |z|T (z)dz(3.2)

≤ C

∫
|y|≤δ

teNw1(z)T (z)dz

≤ Cδt
∥∥eNw1T

∥∥
∞ .

Next, we estimateI2. Using the subaddivity ofw1 and0 < t < 1, we obtain

I2 ≤
∫
|y|≥δ

ekw1(y)T (z) |ϕ(y + tz)| dz(3.3)

≤
∫
|y|≥δ

ekw1(y+tz−tz)T (z) |ϕ(y + tz)| dz

≤
∫
|y|≥δ

ekw1(tz)T (z)
∣∣ekw1(y+tz)ϕ(y + tz)

∣∣ dz
≤

∥∥eNw1ϕ
∥∥
∞

∫
|z|≥δ

ekw1(z)T (z)dz

≤ C

∫
|z|≥δ

ekw1(z)T (z)dz.

Finally, let us estimateI3. We have

I3 =

∫
|z|≥δ

ekw1(y)T (z) |ϕ(y)| dz(3.4)

≤
∥∥ekw1ϕ

∥∥
∞

∫
|z|≥δ

ekw1(z)T (z)dz.

Therefore if we chooseδ to be sufficiently large andt sufficiently small then the estimates in
(3.2), (3.3) and (3.4) imply that

∥∥ekw1(y) (ϕt(x)− ϕ(y))
∥∥
∞ converges to0 ast → 0+. Now to

prove that
∥∥ekw2(ξ)F (ϕt(x)− ϕ(y)) (ξ)

∥∥
∞ converges to0 ast→ 0+, we consider

ekw2(ξ) |F (ϕt(x)− ϕ(y)) (ξ)| = ekw2(ξ)

∣∣∣∣F(

∫
Rn

t−nT (
x− y

t
)ϕ(y)dy)(ξ)−F(ϕ(y))(ξ)

∣∣∣∣
= ekw2(ξ)

∣∣∣∣F(

∫
Rn

t−nT (
x− y

t
)ϕ(y)dy)(ξ)−F(ϕ(y))(ξ)

∣∣∣∣
= ekw2(ξ)ϕ̂(ξ) |F(T )(tξ)−1|
≤

∥∥ekw2ϕ̂
∥∥
∞ |F(T )(tξ)−1| ≤ C |F(T )(tξ)−1| .

Now by uniform continuity ofF(T )(tξ),we observe thatF(T )(tξ) → F(T )(0) =
∥∥t−nT ( ·

t
)
∥∥

1
=

1, which implies thatC |F(T )(tξ)−1| → 0 ast → 0+ uniformly on compact subsets ofRn.
Thus

∥∥ekw2F(ϕt(x)− ϕ(y))
∥∥
∞ converges to0 uniformly onB. This completes the proof of

Theorem 3.3. �

AJMAA, Vol. 14, No. 2, Art. 3, pp. 1-8, 2017 AJMAA

http://ajmaa.org


APPLICATIONS OF THESTRUCTURETHHEOREM OFTEMPEREDULTRADISTRIBUTIONS 7

Example 3.1.Consider the heat kernel

E(x, t) =

{
(4πt)−

n
2 e−

|x|2
4t , for t > 0,

0, for t < 0.

It is known that‖E(·, t)‖1 = 1 for t > 0. Also, consider the Gauss-Weierstrass semigroups
{GWt}t≥0 defined by the integration with respect to the heat kernel

GW√
t(ϕ)(x) = 〈E(x− y, t), ϕ(y)〉 = 〈t−n/2T (

x− y√
t

), ϕ(y)〉.

This semigroup generated by the Laplacian onRn and the functionu(x, t) = GW√
t(ϕ)(x) is a

solution of the equationut − 4u = 0 with u(x, 0) = ϕ(x) for an appropriateϕ. That is, the
convolution

u(x, t) = E ∗ ϕ
is the solution to the heat equation and

u(x, 0) = ϕ(x) = lim
t→0+

GW√
t(ϕ)(x)

and the convergence is uniform on bounded subsets ofRn. Now it is clear thatE(x, t) ∈ Sw1,w2

for all w1, w2 ∈ Mc sinceE(x, t) is exponentially decreasing and using Theorem 3.2. More-
over, Theorem 3.2 implies that the action ofGW√

t onL ∈ S′
w1,w2

for all w1, w2 ∈ Mc can be
defined by the integral against the functionρ(x) given in (3.1) and by using Theorem 3.1, we
conclude that this is equivalent to

GW√
t(T ) = 〈Ly, 〈t−n/2T (

x− y√
t

), φ(x)〉〉

which implies thatlim
t→0+

GW√
t(T ) = T in the sense ofS′

w1,w2
and this is equivalent to

〈t−n/2T (
x− y√

t
), φ(x)〉〉 → ϕ in S′

w1,w2
ast→ 0+.

As a result, the(w1, w2)-tempered ultradistributions can be considered as boundary values of
the equationut − Au = 0.
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