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t y (t) ∈ F (t, y (t)) + G (t, y (t)) , t ∈ J := [0, 1] , δ ∈ (1, 2) ,
y (0) = α, y (1) = β, α, β 6= 0.

A sufficient condition is established for the existence of solutions of the above problem by using
a fixed point theorem for multivalued maps due to Dhage. Our result is proved under the mixed
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2 YONG-KUI CHANG

1. I NTRODUCTION

Recently, great attention has been paid to the existence results for fractional differential equa-
tion due to its wide applications in engineering, economics and other fields, see for instance
[1, 5, 6, 7, 8, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24] and references therein. In particular,
Zhang [24] studied the existence of solutions for equation

C
0 Dδ

t u (t) = g (t, u (t)) , t ∈ J := [0, 1] , δ ∈ (1, 2) ,

u (0) = α, u (1) = β, α, β 6= 0

by using Schauder fixed point theorem, whereC
0 Dδ

t y (t) denotes the Caputo’s derivative,g :
J × R → R is a continuous function.

On the other hand, realistic problems arising from economics, optimal control and so on can
be modeled as differential inclusions, so differential inclusions are widely investigated by many
authors, see [3, 4, 9, 10] and references therein.

Motivated by [3, 4, 13, 15, 24], in this paper, we shall consider the existence of solutions for
the following perturbed fractional differential inclusions with boundary conditions

C
0 Dδ

t y (t) ∈ F (t, y (t)) + G (t, y (t)) , t ∈ J := [0, 1] , δ ∈ (1, 2) ,(1.1)

y (0) = α, y (1) = β, α, β 6= 0,(1.2)

whereC
0 Dδ

t y (t) is the Caputo’s derivative,F, G : J × R → 2R\{∅} are multivalued maps.
A sufficient condition is established for the existence results of the above problem by using a
recent fixed point theorem due to Dhage [11]. Our result is proved under the mixed generalized
Lipschitz and Carathéodory conditions.

2. PRELIMINARIES

In this section, we shall introduce some basic definitions, notations and lemmas which are
used throughout this paper.

Let C(J) denote a Banach space of continuous functions fromJ into R with the norm‖y‖ =
supt∈J {|y (t)|}.

Let L1(J, R) be the Banach space of functionsy : J → R which are Lebesgue integrable and
normed by

||y||L1 =

∫ 1

0

|y(t)|dt, for all y ∈ L1(J, R).

Let (X, |·|) be a Banach space. Then a multivalued mapΘ : X → 2X is convex (closed)
valued if Θ(x) is convex (closed) for allx ∈ X. Θ is bounded on bounded sets ifΘ(B) =
∪x∈BΘ(x) is bounded inX for any bounded setB of X (i.e. supx∈B{sup{|y| : y ∈ Θ(x)}} < ∞
).

Θ is called upper semicontinuous (u.s.c.) onX if for each x0 ∈ X, the setΘ (x0) is a
nonempty closed subset ofX, and if for each open setB of X containingΘ (x0) , there exists
an open neighborhoodN of x0 such thatΘ (N ) ⊆ B.

Θ is said to be completely continuous ifΘ(B) is relatively compact for every bounded subset
B of X.

If the multivalued mapΘ is completely continuous with nonempty compact values, thenΘ is
u.s.c. if and only ifΘ has a closed graph, i.e.,

xn → x∗, yn → y∗, yn ∈ Θ (xn) imply y∗ ∈ Θ (x∗) .

LetPb,cl (X) andPcp,cv (X) denote respectively the classes of all bounded-closed and compact-
convex subsets ofX. Similarly, Pbcc (X) denotes the classes of all bounded, closed and convex
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subsets ofX. Forx ∈ X andY, Z ∈ Pb,cl (X) , we denote byD (x, Y ) = inf {‖x− y‖ : y ∈ Y } ,
andρ (Y, Z) = supa∈Y D (a, Z) .

Define the functionH : Pb,cl (X)× Pb,cl (X) → R+ by

H (Y, Z) = max {ρ (Y, Z) , ρ (Z, Y )} .

The functionH is called a Hausdorff metric onPb,cl (X) .
Θ has a fixed point if there is anx ∈ X such thatx ∈ Θ (x). For more details on multivalued

maps see the books of Deimling [9] and Hu and Papageorgious [16].

Definition 2.1. [10] Θ : X → Pb,cl (X) be a multi-valued map. ThenΘ is called a multi-valued
contraction if there exists a constantk ∈ (0, 1) such that for eachx, y ∈ X, we have

H (Θ (x) , Θ (y)) ≤ k|x− y|.

The constantk is called a contraction constant ofN.

Definition 2.2. [24] Caputo’s derivative for a functionf : [0,∞) → R can be written as

C
0 Ds

xf (x) =
1

Γ (n− s)

∫ x

0

fn (t)

(x− t)s+1−n dt, n− 1 < s < n,

whereΓ is the gamma function.

Definition 2.3. [18] The Riemann-Liouville fractional integral of orders for a functionf is
defined as

Isf (x) =
1

Γ (s)

∫ x

0

f (t)

(x− t)1−s dt, x > 0, s > 0

provided the right side is pointwise defined on(0,∞).

From the above definitions, we can see that

C
0 Ds

xf (x) =
1

Γ (n− s)

∫ x

0

fn (t)

(x− t)s+1−n dt = In−sf (x) .

Definition 2.4. [13, 24] A functiony ∈ C(J) is said to be a solution of (1.1)-(1.2) if there
existsf, g ∈ L1(J, R) such thatf(t) ∈ F (t, y(t)), g(t) ∈ G (t, y(t)) and

y (t) = α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 f (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f (s) ds

+
1

Γ (δ)

∫ t

0

(t− s)δ−1 g (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 g (s) ds.

The following properties are well known (see [1, 5, 18, 24]).

Lemma 2.1. Let ε, ε be two positive real numbers, then
(i) Iε : L1(J, R) → L1(J, R).
(ii) IεIεf (x) = Iε+εf (x) , f ∈ L1(J, R).
(iii) limε→n Iεf (x) = Inf (x) , n = 1, 2, · · · , I1f (x) =

∫ x

0
f (t) dt.
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4 YONG-KUI CHANG

Let us list the following hypotheses:
(H1) F : J ×R → Pbcc (R) ; (t, y) → F (t, y) is measurable with respect tot for eachy ∈ R,

u.s.c. with respect toy for a.e.t ∈ J , and for each fixedy ∈ R the set

SF,y :=
{
f ∈ L1(J, R) : f (t) ∈ F (t, y) for a.e.t ∈ J

}
is nonempty.

(H2) There exists a Carathédory functionQ : J × R+ → R+ which is nondecreasing with
respect to its second argument such that

‖F (t, y)‖ := sup {|v| : v(t) ∈ F (t, y)} ≤ Q(t, |y|) for a.e.t ∈ J andy ∈ R.

(H3) The multi-valued mapt 7→ G (t, y) is measurable for eachy ∈ R and integrally
bounded, i.e. there exists a functionM ∈ L1 (J, R+) such that

‖G (t, y)‖ := sup {|g| : g(t) ∈ G (t, y)} ≤ M (t) for a.e.t ∈ J andy ∈ R.

(H4) G : J × R → Pbcc (R) and there exists a functionl ∈ L1 (J, R) such that

H (G (t, x) , G (t, y)) ≤ l (t) |x− y| , t ∈ J

for all x, y ∈ R with
2

Γ (δ)
‖l‖L1 < 1.

(H5) There exists a real numberr > 0 such that

r

|α|+ |β − α|+ 2
Γ(δ)

[∫ 1

0
Q(t, r)dt + ‖M‖L1

] > 1.

Remark 2.1. It is known from Hu and Papageorgiou [16] that ifG is integrablly bounded, then
the setSG,y = {g ∈ L1(J, R) : g(t) ∈ G(t, y)} of all integrable selections ofG is closed and
nonempty.

The following lemmas are of great importance in the proof of our main results.

Lemma 2.2. [11] Let B (0, r) andB [0, r] denote respectively the open and closed balls in a
Banach spaceE centered at origin and of radiusr and letA : E → Pbcc (E) andB : B [0, r] →
Pcp,cv (E) be two multi-valued operators satisfying:

(i) A is a multi-valued contraction, and
(ii) B is upper semicontinuous and completely continuous.

Then either
(a) the operator inclusionx ∈ A(x) + B(x) has a solution inB [0, r] , or
(b) there exists au ∈ E with ‖u‖ = r such thatλu ∈ A(u) + B(u) for someλ > 1.

Lemma 2.3. [17] LetI be a compact real interval. LetF be a multivalued map satisfying (H1)
and letz be a linear continuous fromL1 (I, R) → C (I) , then the operator

z ◦ SF : C (I) → Pbcc (C (I)) , y 7→ (z ◦ SF ) (y) = z (SF,y) ,

is a closed graph operator inC (I)× C (I) .
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3. EXISTENCE RESULTS

In this section, we shall present and prove our main result.
In view of Ref. [24], ify ∈ C (J) is a solution of the problem (1.1)-(1.2), theny satisfies the

following inclusions

y (t) ∈ α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 F (s, y(s)) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 F (s, y(s)) ds

+
1

Γ (δ)

∫ t

0

(t− s)δ−1 G (s, y(s)) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 G (s, y(s)) ds, t ∈ J.

Now we define the multivalued mapsA andB as follows

A(y) =

{
h ∈ C(J) : h(t) =

1

Γ (δ)

∫ t

0

(t− s)δ−1 g (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 g (s) ds, g ∈ SG,y

}
,(3.1)

B(y) =

{
z ∈ C(J) : z(t) = α + (β − α) t +

1

Γ (δ)

∫ t

0

(t− s)δ−1 f (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f (s) ds, f ∈ SF,y

}
.(3.2)

We shall prove that the operatorsA andB satisfy all the conditions of Lemma {refl2.2.

Lemma 3.1. Assume that (H3)-(H4) hold. Then the operatorA defined by (3.1) has bounded,
closed and convex values onC(J).

Proof. From Remark 2.1 and condition (H3), the operatorA has closed values. Next we show
thatA has convex and bounded values.

Step 1.A has convex values.
In fact, if h1, h2 belong toA(y), then there existg1, g2 ∈ SG,y such that, for eacht ∈ J , we

have

hi(t) =
1

Γ (δ)

∫ t

0

(t− s)δ−1 gi (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 gi (s) ds, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for eacht ∈ J, we have

[λh1 + (1− λ) h2] (t)

=
1

Γ (δ)

∫ t

0

(t− s)δ−1 [λg1 (s) + (1− λ) g2 (s)] ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 [λg1 (s) + (1− λ) g2 (s)] ds.

SinceSG,y is convex (becauseG has convex values), we obtainλh1 + (1− λ) h2 ∈ A (y) .
Step 2.A is bounded on bounded sets ofC(J).
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Let Bq = {y ∈ C(J) : ‖y‖ ≤ q} be a bounded set inC(J). Now, for eachy ∈ Bq, h ∈ A(y),
there exists a functiong ∈ SG,y such that for eacht ∈ J ,

h(t) =
1

Γ (δ)

∫ t

0

(t− s)δ−1 g (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 g (s) ds.

Then, by (H3) we have

|h(t)| ≤ 2

Γ (δ)

∫ 1

0

M(t)dt.

Thus, for eachh ∈ A(Bq), we get

‖h‖ ≤ 2

Γ (δ)

∫ 1

0

M(t)dt.

i.e. A is bounded on bounded sets ofC(J).

Lemma 3.2. Suppose that (H3)and (H4) are satisfied. Then the operator defined by (3.1) is a
contraction operator.

Proof. Let y, y ∈ C(J) andh ∈ A(y). Then there exists a functiong ∈ SG,y such that for each
t ∈ J ,

h(t) =
1

Γ (δ)

∫ t

0

(t− s)δ−1 g (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 g (s) ds.

From (H4) it follows that

H (G(t, y), G(t, y)) ≤ l(t)|y(t)− y(t)|.
Hence there exists a functionw ∈ G(t, y) such that

|g(t)− w(t)| ≤ l(t)|y(t)− y(t)|.
Consider the operatorU(t) = SG,y ∩W (t), where

W (t) = {w : |g(t)− w(t)| ≤ l(t)|y(t)− y(t)|} .

Since the multivalued operatorU(t) is measurable (see [2, Proposition III. 4 ]), there exists a
measurable selection functiong(t) for U . Thus,g(t) ∈ G(t, y) and

|g(t)− g(t)| ≤ l(t)|y(t)− y(t)|.
Define

h(t) =
1

Γ (δ)

∫ t

0

(t− s)δ−1 g (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 g (s) ds.

It follows thath ∈ A(y) and ∣∣h (t)− h (t)
∣∣

≤ 1

Γ (δ)

∣∣∣∣∫ t

0

(t− s)δ−1 [g (s)− g (s)] ds

∣∣∣∣
+

t

Γ (δ)

∣∣∣∣∫ 1

0

(1− s)δ−1 [g (s)− g (s)] ds

∣∣∣∣
≤ 2

Γ (δ)

∫ 1

0

|g (s)− g (s)| ds

≤ 2

Γ (δ)

∫ 1

0

l (s) |y (s)− y (s)| ds

≤ 2

Γ (δ)
‖l‖L1 ‖y − y‖ .
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Then

‖h− h‖ ≤ 2

Γ (δ)
‖l‖L1 ‖y − y‖ .

From this and the analogous inequality obtained by interchanging the roles ofy andy, we get

H (A(y), A(y)) ≤ 2

Γ (δ)
‖l‖L1 ‖y − y‖ .

This shows thatA is a multivalued contraction, since2
Γ(δ)

‖l‖L1 < 1 by (H4).

Lemma 3.3. Assume that (H1)-(H2) hold. Then the operator defined by (3.2) is completely
continuous with convex values.

Proof. For the sake of convenience, we break the proof into several steps.
Step 1.B(y) is convex for eachy ∈ C(J).
In fact, if z1, z2 belong toB(y), then there existf1, f2 ∈ SF,y such that, for eacht ∈ J , we

have

zi (t) = α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 fi (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 fi (s) ds, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for eacht ∈ J, we have

[λz1 + (1− λ) z2] (t)

= α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 [λf1 (s) + (1− λ) f2 (s)] ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 [λf1 (s) + (1− λ) f2 (s)] ds.

SinceSF,y is convex (becauseF has convex values), we obtainλz1 + (1− λ) z2 ∈ B (y) .
Step 2.B is bounded on bounded sets ofC(J).
Let Bq = {y ∈ C(J) : ‖y‖ ≤ q} be a bounded set inC(J). Now, for eachy ∈ Bq, z ∈ B(y),

there exists a functionf ∈ SF,y such that for eacht ∈ J ,

z (t) = α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 f (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f (s) ds,

Then, by (H2) we have

|z(t)| ≤ |α|+ |β − α|+ 2

Γ (δ)

∫ 1

0

Q(t, |y(t)|)dt

≤ |α|+ |β − α|+ 2

Γ (δ)

∫ 1

0

Q(t, ‖y‖)dt

Thus, for eachz ∈ B(Bq), we get

‖z‖ ≤ |α|+ |β − α|+ 2

Γ (δ)

∫ 1

0

Q(t, q)dt.

i.e. B is bounded on bounded sets ofC(J).
Step 3.B sends bounded sets into equicontinuous sets ofC(J).
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Let t′, t′′ ∈ J, t′ < t′′ andBq = {y ∈ C(J) : ‖y‖ ≤ q} be a bounded set inC(J). If y ∈ Bq

andz ∈ B (y) , then there exists a functionf ∈ SF,y such that for eacht ∈ J we have

z (t) = α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 f (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f (s) ds.

Thus

|z (t′′)− z (t′)|
≤

∣∣(β − α) (t′′ − t′) + Iδf (t′′)− Iδf (t′)

−t′′ − t′

Γ (δ)

∫ 1

0

(1− s)δ−1 f (s) ds

∣∣∣∣
≤ |β − α| (t′′ − t′) +

t′′ − t′

Γ (δ)

∫ 1

0

Q (s, q) ds

+

∣∣∣∣∣ 1

Γ (δ)

∫ t′

0

[
(t′′ − s)

δ−1 − (t′ − s)
δ−1

]
f (s) ds

∣∣∣∣∣
+

∣∣∣∣∣ 1

Γ (δ)

∫ t′′

t′
(t′′ − s)

δ−1
f (s) ds

∣∣∣∣∣
≤ |β − α| (t′′ − t′) +

t′′ − t′

Γ (δ)

∫ 1

0

Q (s, q) ds

+
1

Γ (δ)

∫ t′

0

∣∣∣(t′′ − s)
δ−1 − (t′ − s)

δ−1
∣∣∣ Q (s, q) ds

+
1

Γ (δ)

∫ t′′

t′
Q (s, q) ds.

The right hand side of the above inequality tends to zero independently ofy ∈ Bq ast′′ → t′.
As a consequence of Step 1 to Step 3 together with the Ascoli-Arzela theorem, we can con-

clude thatB is a compact valued map.
Step 4.B has closed graph.
Let yn → y∗, zn ∈ B (yn) andzn → z∗. We need to show thatz∗ ∈ B (y∗) . The relation

zn ∈ B (zn) means that there existsfn ∈ SF,yn such that for eacht ∈ J,

zn (t) = α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 fn (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 fn (s) ds.

We must show that there existsf∗ ∈ SF,y∗ such that for eacht ∈ J,

z∗ (t) = α + (β − α) t +
1

Γ (δ)

∫ t

0

(t− s)δ−1 f∗ (s) ds

− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f∗ (s) ds.
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Consider the continuous linear operator

z : L1 (J, R) → C (J)

f 7→ z (f) (t) =
1

Γ (δ)

∫ t

0

(t− s)δ−1 f (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f (s) ds.

Clearly,

‖(zn (t)− α− (β − α) t)− (z∗ (t)− α− (β − α) t)‖ → 0, asn →∞.

From Lemma 2.3 it follows thatz ◦ SF is a closed graph operator. Moreover, we have

zn (t)− α− (β − α) t ∈ z (SF,yn) .

Sinceyn → y∗, Lemma 2.3 implies that

z∗ (t)− α− (β − α) t =
1

Γ (δ)

∫ t

0

(t− s)δ−1 f∗ (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 f∗ (s) ds

for somef∗ ∈ SF,y∗ .
Therefore,B is a compact multivalued map, u.s.c. with convex closed values.

Theorem 3.4. Suppose that (H1)-(H5) are satisfied. Then the problem (1.1)-(1.2) admits at
least one solution onJ .

Proof. Define an open ballB(0, r) in C(J), where the real numberr satisfies the inequality
given in condition (H5). As a consequence of Lemmas 3.1-3.3, we can see that the operatorA
andB satisfy all the conditions of Lemma 2.2. Now, we shall show that the second assertion of
Lemma 2.2 is not true. Letu ∈ C(J) be a possible solution ofλu ∈ A(u) + B(u) for some
λ > 1 with ‖u‖ = r. Then there existfu ∈ SF,u andgu ∈ SG,u such that for eacht ∈ J we
have

u (t) =
1

λ

(
α + (β − α) t +

1

Γ (δ)

∫ t

0

(t− s)δ−1 fu (s) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 fu (s) ds

+
1

Γ (δ)

∫ t

0

(t− s)δ−1 gu (s)) ds− t

Γ (δ)

∫ 1

0

(1− s)δ−1 gu (s) ds

)
.

In view of (H2)-(H3) we obtain

|u (t)| ≤ |α|+ |β − α|+ 2

Γ (δ)

∫ 1

0

Q (t, |u|) dt +
2

Γ (δ)

∫ 1

0

M (t) dt

≤ |α|+ |β − α|+ 2

Γ (δ)

∫ 1

0

Q (t, ‖u‖) dt +
2

Γ (δ)
‖M‖L1 .

Thus we have

‖u‖ ≤ |α|+ |β − α|+ 2

Γ (δ)

∫ 1

0

Q (t, ‖u‖) dt +
2

Γ (δ)
‖M‖L1 .

Substituting‖u‖ = r in the above inequality yields
r

|α|+ |β − α|+ 2
Γ(δ)

(∫ 1

0
Q (t, r) dt + ‖M‖L1

) ≤ 1,

which contradicts (H5). As a result, the conclusion of (b) in Lemma 2.2 does not hold. Conse-
quently, the conclusion of (a) in Lemma 2.2 implies that the problem (1.1)-(1.2) has at least one
solution onJ . This ends of the proof.
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LetG ≡ 0, then the problem (1.1)-(1.2) reduces to the following differential inclusions which
was considered in [5]

C
0 Dδ

t y (t) ∈ F (t, y (t)) , t ∈ J := [0, 1] , δ ∈ (1, 2) ,(3.3)

y (0) = α, y (1) = β, αβ 6= 0.(3.4)

Now from Theorem 3.4, we can obtain the following corollary.

Corollary 3.5. Assume that (H1)-(H2) hold. Suppose further that if there exists a real number
r > 0 such that

r

|α|+ |β − α|+ 2
Γ(δ)

∫ 1

0
Q(t, r)dt

> 1.

Then the problem (3.3)-(3.4) has at least one solution onJ .

Remark 3.1. Let F (t, y) = {f (t, y)} in the problem (3.3)-(3.4), wheref : J × R → R is a
continuous function. Then Corollary 3.5 gives a new sufficient condition for the corresponding
single-valued problem in [24]. And also this corollary presents a new existence theorem for the
problem discussed in [5]
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