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ABSTRACT. In this paper, we consider the cladf the functionsf(z) of the form
f)=z2+) az*, (zeA:={zeC: |z|<1}),
k=2

which are analytic in an open digk := {z € C : |z| < 1}) and study certain subclass of the

classA, for which
o _ (1 +a)a - E o=l a—1
125G) = S | [poat] T e

has some property. Certain inclusion and the closure properties like convolution with convex
univalent function etc. are studied.
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2 T. N. SHANMUGAM AND C. RAMACHANDRAN

1. INTRODUCTION

Let H(A) be the class of all analytic functiorfsdefined in an open disk of the form
A :={z € C: |z] < 1}. Let A denote the subclass &f(A) consisting of functiong of the
form

(1.1) f(z):z—i-iakzk, zeA:={z€C: |z| <1}
k=2

Also let S, S* andC denote the subclasses df consisting of functions which are univalent,
starlike and convex irh respectively. A functiory in A is said to be a close-to-convex univalent

function if
/
Re{f/(z)} >0,z € A,
9 (2)

for someg € C. This class is denoted b. A function f in A is said to be a quasi- convex
univalent function if there exists a functigne C such that

Re{%} >0,z € A.

Denote the class of all such functions&y. Let h be a convex univalent function with(0) = 1
andRe{h(z)} > 0,z € A. We denote several subclasséfespectively by

S*(h) = {feA:Z]{Ei;)<h(z)};

C(h) = {f eA:1+ ZJJ:;(ZZ)) < h(z)};
K(h) — {feA:‘Z((2<h(z)};

where< denote the subordination. For details regarding this and other terms mentioned above,
we refer to Goodman _[6] and references therein. L€t),i = 1,2 be two convex univalent
function withh;(0) = 1,7 = 1,2 andRe{h;(z)} > 0,z € A,i = 1,2. We denote by,

f'(2)
g (2)

’C(hl,hg) = {fGA: —<h1(z),z€A},

!/ /
]C*(hl,hg) = {f ceA:1 + (Zf <2)) < hl(Z),Z S A} X
9'(z)
for someg € C(hy). Clearly f € K*(hy, he) ifand only if zf" € KC(hy, ha).
There are various operators in the literature, related to the study of function theory. One such
operator, called Komatu operator which generalizes various operators extensively (for example
see, Balasubramanian, Ponnusamy and Prabhakaran [1]) is given by

rpe) = L /0 Z [logf]“ta—lf<t>dt;

22T (o) t
(1.2) 7 f(z) = (1;(0“))0 /0 [log H et )t
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a>0,0>0,f¢€ A Itcan be observed easily that,

o 1+a .
I - Z+Z(n+a) ’

thatis ,
(1.3) I7f(2) = [(2) * ¥, 4(2),

where,

1+a n
Voale) = Z+Z(n+a>

In particular fora = 1, this operator have been discussed by Jung, Kim and Srivastava [5] and
various results were obtained which are generalized in this paper. More precisely, the properties

of
(1.4) I7f(2) = (ilf(ga /O [logﬂal F)dt,o >0, f € A,

subordinate to certain convex univalent functions were discussed. This op&ratarclosely
related to multiplier transformations studied earlier by Fleti [13]. It follows ffom(1.4) that one
can define the operatffrf for any real numbes. Certain properties of this operator have been
studied by Jung, Kim and Srivastava [5], Uralegadi and Somanatha [18], Li [8] and/Liu [9]. We
define the following subclasses dfof functions, using the operatrf.

Soalh) = {feA:I7f €S (h)};

Coalh) = {feA:I]f€C(h)};
Kea(h) = {feA:IJf € K(h)};
’Ca,a(hla hg) = {f € ./4. . ]gf & K(hl,hg)},

’Cz’a(hl,hg) = {f < ./4 : ]gf < K*(hl,hg)} .

Noor [14] introduced and studied some classes of functions defined through Ruschweyh deriv-
atives.
A function f € A is said to be in the clasg if it satisfies the inequality

(1.5) Re{f'(z)} >0,z € A.

The classR was studied systematically by MacGregdor|[12]. Et, (0 < p < co) denote the
Hardy space of analytic functionse A, and define the integral means

LT f(re?)|PdB, 0 < p < o0
(1.6) My(r, f) =

maxX;|=r ’f(z)’,p =00
Then, by definition, an analytic functioh< A to the Hardy space(?,0 < p < oo if
(1.7) lirln_ {M,(r, f)} < 00,0 <p<o0.
For1 < p < oo, H? is a Banach space with the norm defined by Durén [4].
(1.8) 1fllp = lim {M,(r, )}, 1< p < oo,

AJMAA Vol. 4, No. 1, Art. 7, pp. 1-9, 2007 AIJMAA


http://ajmaa.org

4 T. N. SHANMUGAM AND C. RAMACHANDRAN

Furthermore,H> is the class of bounded analytic functionsAn while +? is the class of

the power serie$ ", a,2™ with > 7, |a,|* < oco. In the present paper, we prove certain
inclusion relations for the subclass8s, (1), Co.o(h), Kou(h), Ko a(hi, h2), K*5 a(hi, he) and
discuss certain integral operators defined on those classes. In addition to , we aim at proving
a number of inclusion theorems involving the Hardy spae the classR of function in .4
satisfying the inequality (15), and the following integral operdipf. In avoiding repetition

we say once and for all in this paper, unless otherwise specifiechthatdenote a convex
univalent function om\ with 2(0) = 1 andRe{h(z)} > 0,z € A.

2. MAIN RESULTS AND PRELIMINARY LEMMAS

Theorem 2.1.1f f € S; ,(h),thenf € S}, ,(h), for every real numbes > 0, that is,
S3a(h) C Stiralh).
Theorem 2.2.1f f € C, 4(h), thenf € C,11.4(h), for every real numbes > 0, that is,
Cra(h) C Coyralh).
Theorem 2.3.1f f € Ky o(h1, ha), thenK, 1 4(hi, hy), fOr every real numbes > 0, that is,
Ko.a(h1,h2) C Kyi1.a(ha, ho).
Theorem 2.4.1f f € K} ,(h1, hs), thenKC; ., ,(h1, hy), for every real numbes > 0, that is,
Koalhi;he) © K5y o(has ha).

We note that, for the case= 1, all the theorems stated above were obtained by/[Liu [10]. In
order to prove our main results, we need the following Lemmas.

Lemma 2.5.1f f € S*(h), then(zIZf) = I (= f")
Proof. Sincef € A, we have
TP = A 5ty 0) = 2f 5y 0 = 17 (2)).
|
Lemma 2.6. If f(z) be the function defined f.1)in the classA. Then

7 f(2) % /0 ) [logﬂgl 11 f(8)dt, o > 0,
satisfying the equations,
(2.1) A7) = (a+ DIT(f) —alTH ().
Lemma 2.7.

I7f(2) = [(2)*154(2)

is a convex function for every integer> 0,a > 0.
Where
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Proof. From the equatiod] f(z) = f(z) * ¥, ,(2). If ¢ > 0,a > 0 is an integer, then

77/}0 a(Z) = Qﬁl,a(z) * 77Z)1,a(z) ok wLa(z)?
wherey, ,(z ) = z+y o0, (&%) 2". Now, ,(z) is the Libra transformatiof [7] of the function

n+a

is a convex univalent function; for example see, Ruscheweyh [16], weshave ) is a convex
univalent function. Clearly, this is true for every integer- 0. 1

Lemma 2.8. [3]; Let 3,y € C andh be convex function itk with 2(0) = 1 and Re{Sh(z) +
v} >0,z € Aandletp € H(A) with p(0) = 1, then

2p'(2)
2.2 z2)+ ————— < h(z) = p(z) < h(2).
(2.2) p(2) 5002 + 7 (2) = p(2) < h(2)
A modification of Lemma& 28 is given by,
Lemma 2.9.[15]; Let 3,v € C andh be convex function ich with 2(0) = 1 and Re{5h(z) +

v} >0,z € Aandletqg € H(A) with¢(0) = 1 andq(z) < h(z),z € A, if p € H(A) with
p(0) =1, then

zp'(2)
2.3 ———— <h h(z).
(2.3) p(z) + Gaa) 17 (2) = p(z) < h(z)
3. PROOF OF THEOREMS [2.1,[2.2]2.B[ 24
o+1 /
Proof of the Theorem 2.1.et f € S} ,(h) and takingp(z) = Z([I(;T? therefore
p(z) 1 p()gf I

2y T Ietf T (e fy | Ietif

Ic o+1 £\/
oL (Y
I9Hf a4+ 1\ Ig+if

Using (2.1), we have

that is,
gy 1
Ig+1f - a+1 (p(z)—i—a)
Now, taking the logarithmic derivative we get,

Agfy A ()
Igf IgHf T p(z) +a
Algh) /(2

B = P <),

an application of Lemmja 2.8 with = 1 andy = a givesf € S;,, ,(h). &

Remark 3.1. If h(2) = “0=22% anda = 1, then the Theorev@.l reduces to of Theorem 1 of
Liu [9].
Proof of the Theorefn 2.2Ve have,f € C, .(h) C(h) = z(IZf) € S*(h).

I7f € C(h)
Therefore By Lemma 2|67 (zf') € S*(h) = zf’ €S " > o(h) which by Theorem 211, gives
(2f") € i1 .(h)and hencd*! (2 f") € S*(h) = 2(IJT f) € S*(h), by Lemma 2.6, gives

il
ITT f € C(h) = f € Cyyra(h).
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Proof of the Theorefn 2.3.et f € K (hy, hs), then there is a functioh(z) € S*(h2) such that
(13 f)
k(2)
andz(;Lf) < hi(z), z € A. Consider,

a9

a

< h1(z). Taking the functiory(z) which satisfied?g = k(z), we havey(z) € S*(hs)

2f) IS

Igg I7g
1 {Z(IZ+1Zf’)’ + al7™ (2 f')

Y

} by (2.1)

a+1 z(Igtlg) 4+ altlg
2Ug2fy 1S
_ 17y Iy
- +1 ]o’+1 !
‘ R
g
- U (7)o
Now, takingp(z) = W andq(z) = ]ng subject tog(0) = 1 and

Re{q(z)} >0,z € U, we get,
7Ly
2(IZf) 1 Iotlg

3.1 =
3.1) I7g a+1 q(z) +a

+ ap(z)

Differentiatingz(17 f)’ = p(z)(I7'g) on both sides, we have,
LT (=) = 2(I7 ) (2) + 2(17 ) 'p(2)
which gives,
(g (=)
17y
From (3.1) and[(3]2), we get
2Ugf)y 1 { (a+q(2))p(z) + 2p'(2) }

2(I7Mg)

(3.2) Y

= 2p'(2) +

Igg a+1 a+q(z)
= ail{p(z)—k%}% h(z)

an application of Lemmla 2.9 give$z) < h(z) = f € Kyi1a(h1, h2). 0
Proof of the Theorein 2.45ince
f S K;’a(hl,hg) = Iof S K*(hl,hg)

= 2(I7f) € K(h, hs)

= Ig(Zf/> € K(hl, hg),
which gives

Zf/ S Kg’a(hl, h2) = Zf/ € KU+1’a(h1, hg)
= [T (zf) € K*(hy, ho),
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by Theorenp 22
= 2(IJf) € K*(h, he)
= 17 f e K*(hy, hy).
Hencef € K, ,(hi,h2). N

4. A PARTICULAR INTEGRAL OPERATOR

From the integral operator,

o _ (1+a)a /Z E o1 a—1
2=y | [zogt} 1L f(#)dt, o > 0,a> 0, f € A,z € A,

now takinge = 1, we have

(4.1) I'f(2) = L ta / " f()dt,a > 0,f € A,z € A,
0

Za

Itis the Bernardi-Libra-Livingston integral operatbg(f) = I, f(z) = f(z) * 1, ,(2), where

b1 =24 3 (22 ) o Rel) 0.
n=2

n-+a

which is a Bernardi transformation of the convex univalent functﬂ@p and hence a convex
univalent function. The operatdr,(f), for a = 1, L1(f) was investigated by Libra[7], where
a € N =1,2, ... was studied by Bernardi|[2].

Theorem 4.1.1f f isin classR, thenIJ € H™ at least foro > 1.

Remark 4.1. Theoreni 4.]L for particular values efanda are available in the literature. For
example, Jung, Kim and Srivastava[5] obtained independent resulis=for anda = 1.

We state the theorem without proof, as they can be easily obtained in a way similar to the
results stated in Sectidn 2.

Theorem 4.2. For every real numbes > 0, we have
(i) If f €S (h), thenL,(f) € S; ,(h).
(i) If f €Cralh), thenL,(f) € Cyo(h).
(i) If f € Kyalhi,ha),thenLy(f) € Ko o(ha, ha).
(lV) If f € IC;a(hl, hg), thenLa(f) < }C;a(hl, hg)

For proving the Theorem 4.1, we required the following Lemmas.
Lemma 4.3. [4]; If fis analyticinA, andif Ref(z) > 0,z € A, thenf € H?, forall p < 1.
Lemma 4.4.[4]; If fisinthe classk, thenf € HP forall 0 < p < oc.
Lemma 4.5.[17]; If f € S*(h), thenL,(f) € S*(h).
Proof of the Theoremn 4.MMaking use of[(Z.]l) of Lemm[a 2.6, we obtain

1
(4.2) (ITH fY = - {a+D)IJ(f) —aIl™ ()}, o>1,a>0,
which, in view of the elementary inequality
max (AP, BP) < (A+ B)P < 2P(AP + BP), O<p<oo, A>0, B2>0,
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readily yields
@3) zoyp < (2) {@hizs + s iz}

where|z| =r,0 < p < o0, 0 > 1,a > 0. Forp = 1, a substantially improved inequality would
follow directly from (4.2), and we have

(4.4 Tzt < - aliz i+ o ol

which may be compared with a special casg of|(4.3) whenl. Now, from the equation

rre) = Sl [Meat] T e o

o 1 o—1
S / {zogl} " f(t2)dt,  0>0, a>0, feA
0

['(o) t
we set
(45)  Re(I°f) — (1F+< a))a / 1 {logﬂ U ERf (A 00, a>0.
o 0

Sincef € R, it follows from (4.8) thatl/ f € R,o > 0,a > 0. Thus, by Lemma 4]4, we have
(4.6) I7f € H”, 0<p< oo, c>0, a>0.
In view of the definitions[(1]6) and (1.8), the inequalfty (4.3) yields

1
M(r,(I7f)) < = {aMl(r, ITF) + (a+ 1) My(r, 1771 )}, |z|=r, o>1, a>0
r

and

(4.7) ICCZH I < lalll L f Il + o+ 1T f . o>1, a>0.
Sinceo > 1, it follows readily from the inclusion relatiof (4.6) that

(4.8) I°fer' and I77'feH!,

and hence (4]7) gived? f)' € H', o > 1, a > 0. Therefore, by appealing to a known result
Duren [4] [3, p. 42, Theorem 3.11], we conclude frdm [4.8) thaf, (c > 1,a > 0), is
continuous in

A=AUIA={z€A:|z| <1}

Finally, sinceA is compact,/¢ f is bounded inA. Thus ¢ f is bounded analytic function in
A, which leads us to the assertion Theorien 4.1. This evidently completes the proof of the

Theoreni 4.11 3
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