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ABSTRACT. In this paper, we consider the classA of the functionsf(z) of the form

f(z) = z +
∞∑

k=2

akzk, (z ∈ ∆ := {z ∈ C : |z| < 1}),

which are analytic in an open disk∆ := {z ∈ C : |z| < 1}) and study certain subclass of the
classA, for which

Iσ
a f(z) =

(1 + a)σ

zaΓ(σ)

∫ z

0

[
log

z

t

]σ−1

ta−1f(t)dt

has some property. Certain inclusion and the closure properties like convolution with convex
univalent function etc. are studied.
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2 T. N. SHANMUGAM AND C. RAMACHANDRAN

1. I NTRODUCTION

LetH(∆) be the class of all analytic functionsf defined in an open disk of the form
∆ := {z ∈ C : |z| < 1}. LetA denote the subclass ofH(∆) consisting of functionsf of the
form

(1.1) f(z) = z +
∞∑

k=2

akz
k, z ∈ ∆ := {z ∈ C : |z| < 1}.

Also let S,S∗ andC denote the subclasses ofA consisting of functions which are univalent,
starlike and convex in∆ respectively. A functionf inA is said to be a close-to-convex univalent
function if

Re

{
f ′(z)

g′(z)

}
> 0, z ∈ ∆,

for someg ∈ C. This class is denoted byK. A function f in A is said to be a quasi- convex
univalent function if there exists a functiong ∈ C such that

Re

{
(zf ′(z))′

g′(z)

}
> 0, z ∈ ∆.

Denote the class of all such functions byK∗. Leth be a convex univalent function withh(0) = 1
andRe{h(z)} > 0, z ∈ ∆. We denote several subclass ofA respectively by

S∗(h) =

{
f ∈ A :

zf ′(z)

f(z)
≺ h(z)

}
;

C(h) =

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ h(z)

}
;

K(h) =

{
f ∈ A :

f ′(z)

g′(z)
≺ h(z)

}
;

where≺ denote the subordination. For details regarding this and other terms mentioned above,
we refer to Goodman [6] and references therein. Lethi(z), i = 1, 2 be two convex univalent
function withhi(0) = 1, i = 1, 2 andRe{hi(z)} > 0, z ∈ ∆, i = 1, 2. We denote by,

K(h1, h2) =

{
f ∈ A :

f ′(z)

g′(z)
≺ h1(z), z ∈ ∆

}
;

K∗(h1, h2) =

{
f ∈ A : 1 +

(zf ′(z))′

g′(z)
≺ h1(z), z ∈ ∆

}
;

for someg ∈ C(h2). Clearlyf ∈ K∗(h1, h2) if and only if zf ′ ∈ K(h1, h2).
There are various operators in the literature, related to the study of function theory. One such
operator, called Komatu operator which generalizes various operators extensively (for example
see, Balasubramanian, Ponnusamy and Prabhakaran [1]) is given by

Iσ
a f(z) =

(1 + a)σ

zaΓ(σ)

∫ z

0

[
log

z

t

]σ−1

ta−1f(t)dt;

(1.2) Iσ
a f(z) =

(1 + a)σ

Γ(σ)

∫ 1

0

[
log

1

t

]σ−1

ta−1f(tz)dt;
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KOMATU INTEGRAL TRANSFORMS OFANALYTIC FUNCTIONS 3

a > 0, σ > 0, f ∈ A. It can be observed easily that,

Iσ
a f(z) = z +

∞∑
n=2

(
1 + a

n+ a

)σ

anz
n;

that is ,

(1.3) Iσ
a f(z) = f(z) ∗ ψσ,a(z),

where,

ψσ,a(z) = z +
∞∑

n=2

(
1 + a

n+ a

)σ

zn.

In particular fora = 1, this operator have been discussed by Jung, Kim and Srivastava [5] and
various results were obtained which are generalized in this paper. More precisely, the properties
of

(1.4) Iσ
1 f(z) =

(1 + a)σ

zΓ(σ)

∫ z

0

[
log

z

t

]σ−1

f(t)dt, σ > 0, f ∈ A,

subordinate to certain convex univalent functions were discussed. This operatorIσ
1 f is closely

related to multiplier transformations studied earlier by Flett [13]. It follows from(1.4) that one
can define the operatorIσ

1 f for any real numberσ. Certain properties of this operator have been
studied by Jung, Kim and Srivastava [5], Uralegadi and Somanatha [18], Li [8] and Liu [9]. We
define the following subclasses ofA of functions, using the operatorIσ

a f.

S∗σ,a(h) = {f ∈ A : Iσ
a f ∈ S∗(h)} ;

Cσ,a(h) = {f ∈ A : Iσ
a f ∈ C(h)} ;

Kσ,a(h) = {f ∈ A : Iσ
a f ∈ K(h)} ;

Kσ,a(h1, h2) = {f ∈ A : Iσ
a f ∈ K(h1, h2)} ;

K∗σ,a(h1, h2) = {f ∈ A : Iσ
a f ∈ K∗(h1, h2)} .

Noor [14] introduced and studied some classes of functions defined through Ruschweyh deriv-
atives.
A functionf ∈ A is said to be in the classR if it satisfies the inequality

(1.5) Re {f ′(z)} > 0, z ∈ ∆.

The classR was studied systematically by MacGregor [12]. LetHp, (0 < p ≤ ∞) denote the
Hardy space of analytic functionsf ∈ ∆, and define the integral means

(1.6) Mp(r, f) =


1
2π

∫ 2π

0
|f(reiθ)|pdθ, 0 < p <∞

max|z|=r |f(z)|, p = ∞
Then, by definition, an analytic functionf ∈ ∆ to the Hardy spaceHp, 0 < p ≤ ∞ if

(1.7) lim
r→1−

{Mp(r, f)} <∞, 0 < p ≤ ∞.

For1 ≤ p ≤ ∞,Hp is a Banach space with the norm defined by Duren [4].

(1.8) ||f ||p = lim
r→1−

{Mp(r, f)} , 1 ≤ p ≤ ∞.
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4 T. N. SHANMUGAM AND C. RAMACHANDRAN

Furthermore,H∞ is the class of bounded analytic functions in∆, while H2 is the class of
the power series

∑∞
n=2 anz

n with
∑∞

n=2 |an|2 ≤ ∞. In the present paper, we prove certain
inclusion relations for the subclassesS∗σ,a(h), Cσ,a(h),Kσ,a(h),Kσ,a(h1, h2),K∗σ,a(h1, h2) and
discuss certain integral operators defined on those classes. In addition to , we aim at proving
a number of inclusion theorems involving the Hardy spaceHp, the classR of function inA
satisfying the inequality (1.5), and the following integral operatorIσ

a f. In avoiding repetition
we say once and for all in this paper, unless otherwise specified thath(z) denote a convex
univalent function on∆ with h(0) = 1 andRe{h(z)} > 0, z ∈ ∆.

2. M AIN RESULTS AND PRELIMINARY L EMMAS

Theorem 2.1. If f ∈ S∗σ,a(h), thenf ∈ S∗σ+1,a(h), for every real numberσ > 0, that is,

S∗σ,a(h) ⊆ S∗σ+1,a(h).

Theorem 2.2. If f ∈ Cσ,a(h), thenf ∈ Cσ+1,a(h), for every real numberσ > 0, that is,

Cσ,a(h) ⊆ Cσ+1,a(h).

Theorem 2.3. If f ∈ Kσ,a(h1, h2), thenKσ+1,a(h1, h2), for every real numberσ > 0, that is,

Kσ,a(h1, h2) ⊆ Kσ+1,a(h1, h2).

Theorem 2.4. If f ∈ K∗σ,a(h1, h2), thenK∗σ+1,a(h1, h2), for every real numberσ > 0, that is,

K∗σ,a(h1, h2) ⊆ K∗σ+1,a(h1, h2).

We note that, for the casea = 1, all the theorems stated above were obtained by Liu [10]. In
order to prove our main results, we need the following Lemmas.

Lemma 2.5. If f ∈ S∗(h), then(zIσ
a f)′ = Iσ

a (zf ′)

Proof. Sincef ∈ A, we have

z(Iσ
a f)′ = z(f ∗ ψσ,a)

′ = zf ′ ∗ ψσ,a = Iσ
a (zf ′).

Lemma 2.6. If f(z) be the function defined by(1.1) in the classA. Then

Iσ
a f(z) =

(1 + a)σ

zaΓ(σ)

∫ z

0

[
log

z

t

]σ−1

ta−1f(t)dt, σ > 0,

satisfying the equations,

(2.1) z(Iσ+1
a f)′ = (a+ 1)Iσ

a (f)− aIσ+1
a (f).

Lemma 2.7.

Iσ
a f(z) = f(z) ∗ ψσ,a(z)

is a convex function for every integerσ > 0, a > 0.
Where

ψσ,a(z) = z +
∞∑

n=2

(
1 + a

n+ a

)σ

zn.
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Proof. From the equationIσ
a f(z) = f(z) ∗ ψσ,a(z). If σ > 0, a > 0 is an integer, then

ψσ,a(z) = ψ1,a(z) ∗ ψ1,a(z) ∗ ... ∗ ψ1,a(z),

whereψ1,a(z) = z+
∑∞

n=2

(
1+a
n+a

)
zn.Nowψ1,a(z) is the Libra transformation [7] of the function

z
1−z

, which is a convex univalent function. As convolution of two convex univalent functions
is a convex univalent function; for example see, Ruscheweyh [16], we haveψσ,a(z) is a convex
univalent function. Clearly, this is true for every integerσ > 0.

Lemma 2.8. [3]; Let β, γ ∈ C andh be convex function in∆ with h(0) = 1 andRe{βh(z) +
γ} > 0, z ∈ ∆ and letp ∈ H(∆) with p(0) = 1, then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) ⇒ p(z) ≺ h(z).(2.2)

A modification of Lemma 2.8 is given by ,

Lemma 2.9. [15]; Let β, γ ∈ C andh be convex function in∆ with h(0) = 1 andRe{βh(z) +
γ} > 0, z ∈ ∆ and letq ∈ H(∆) with q(0) = 1 andq(z) ≺ h(z), z ∈ ∆, if p ∈ H(∆) with
p(0) = 1, then

p(z) +
zp′(z)

βq(z) + γ
≺ h(z) ⇒ p(z) ≺ h(z).(2.3)

3. PROOF OF THEOREMS 2.1, 2.2, 2.3, 2.4

Proof of the Theorem 2.1.Let f ∈ S∗σ,a(h) and takingp(z) =
z(Iσ+1

a f)′

Iσ+1
a f

, therefore

p(z)

z(Iσ+1
a f)′

=
1

Iσ+1
a f

⇒ p(z)Iσ
a f

z(Iσ+1
a f)′

=
Iσ
a f

Iσ+1
a f

.

Using (2.1), we have
Iσ
a f

Iσ+1
a f

=
1

a+ 1

(
z(Iσ+1

a f)′

Iσ+1
a f

+ a

)
that is,

Iσ
a f

Iσ+1
a f

=
1

a+ 1
(p(z) + a) .

Now, taking the logarithmic derivative we get,

z(Iσ
a f)′

Iσ
a f

=
z(Iσ+1

a f)′

Iσ+1
a f

+
zp′(z)

p(z) + a

z(Iσ
a f)′

Iσ
a f

= p(z) +
zp′(z)

p(z) + a
≺ h(z),

an application of Lemma 2.8 withβ = 1 andγ = a givesf ∈ S∗σ+1,a(h).

Remark 3.1. If h(z) = 1+(1−2γ)z
1−z

anda = 1, then the Theorem 2.1 reduces to of Theorem 1 of
Liu [9].

Proof of the Theorem 2.2.We have,f ∈ Cσ,a(h) ⇒ Iσ
a f ∈ C(h) ⇒ z(Iσ

a f)′ ∈ S∗(h).
Therefore By Lemma 2.6,Iσ

a (zf ′) ∈ S∗(h) ⇒ zf ′ ∈ S∗σ,a(h) which by Theorem 2.1 , gives
(zf ′) ∈ S∗σ+1,a(h) and henceIσ+1

a (zf ′) ∈ S∗(h) ⇒ z(Iσ+1
a f)′ ∈ S∗(h), by Lemma 2.6 , gives

Iσ+1
a f ∈ C(h) ⇒ f ∈ Cσ+1,a(h).
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6 T. N. SHANMUGAM AND C. RAMACHANDRAN

Proof of the Theorem 2.3.Let f ∈ K(h1, h2), then there is a functionk(z) ∈ S∗(h2) such that
z(Iσ

a f)′

k(z)
≺ h1(z). Taking the functiong(z) which satisfiesIσ

a g = k(z), we haveg(z) ∈ S∗σ(h2)

and
z(Iσ

a f)′

Iσ
a g

≺ h1(z), z ∈ ∆. Consider,

z(Iσ
a f)′

Iσ
a g

=
Iσ
a (zf ′)

Iσ
a g

,

=
1

a+ 1

{
z(Iσ+1

a zf ′)′ + aIσ+1
a (zf ′)

z(Iσ+1
a g)′ + aIσ+1

a g

}
by (2.1)

=
1

a+ 1


z(Iσ+1

a zf ′)′

Iσ+1
a g

+ a
Iσ+1
a (zf ′)

Iσ+1
a g

z(Iσ+1
a g)′

Iσ+1
a g

+ a

 .

Now, takingp(z) =
z(Iσ+1

a f)′

Iσ+1
a g

andq(z) =
z(Iσ+1

a g)′

Iσ+1
a g

subject toq(0) = 1 and

Re{q(z)} > 0, z ∈ U , we get,

z(Iσ
a f)′

Iσ
a g

=
1

a+ 1


z(Iσ+1

a zf ′)′

Iσ+1
a g

+ ap(z)

q(z) + a

 .(3.1)

Differentiatingz(Iσ+1
a f)′ = p(z)(Iσ+1

a g) on both sides, we have,

z(Iσ+1
a (zf ′))′ = z(Iσ+1

a g)p′(z) + z(Iσ+1
a g)′p(z)

which gives,

z(Iσ+1
a (zf ′))′

Iσ+1
a g

= zp′(z) +
z(Iσ+1

a g)′

Iσ+1
a g

p(z) = p(z)q(z) + zp′(z).(3.2)

From (3.1) and (3.2), we get

z(Iσ
a f)′

Iσ
a g

=
1

a+ 1

{
(a+ q(z))p(z) + zp′(z)

a+ q(z)

}
=

1

a+ 1

{
p(z) +

zp′(z)

a+ q(z)

}
≺ h(z)

an application of Lemma 2.9 givesp(z) ≺ h(z) ⇒ f ∈ Kσ+1,a(h1, h2).

Proof of the Theorem 2.4.Since

f ∈ K∗
σ,a(h1, h2) ⇒ Iσf ∈ K∗(h1, h2)

⇒ z(Iσ
a f)′ ∈ K(h1, h2)

⇒ Iσ
a (zf ′) ∈ K(h1, h2),

which gives

zf ′ ∈ Kσ,a(h1, h2) ⇒ zf ′ ∈ Kσ+1,a(h1, h2)

⇒ Iσ+1
a (zf ′) ∈ K∗(h1, h2),
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by Theorem 2.2

⇒ z(Iσ+1
a f)′ ∈ K∗(h1, h2)

⇒ Iσ+1
a f ∈ K∗(h1, h2).

Hencef ∈ K∗
σ+1,a(h1, h2).

4. A PARTICULAR I NTEGRAL OPERATOR

From the integral operator,

Iσ
a f(z) =

(1 + a)σ

zaΓ(σ)

∫ z

0

[
log

z

t

]σ−1

ta−1f(t)dt, σ > 0, a > 0, f ∈ A, z ∈ ∆,

now takingσ = 1, we have

(4.1) I1
af(z) =

1 + a

za

∫ z

0

ta−1f(t)dt, a > 0, f ∈ A, z ∈ ∆.

It is the Bernardi-Libra-Livingston integral operatorLa(f) = I1
af(z) = f(z) ∗ ψ1,a(z), where

ψ1,a(z) = z +
∞∑

n=2

(
1 + a

n+ a

)
zn, Re(z) > 0,

which is a Bernardi transformation of the convex univalent functionz
1−z

and hence a convex
univalent function. The operatorLa(f), for a = 1, L1(f) was investigated by Libra [7], where
a ∈ N = 1, 2, ... was studied by Bernardi [2].

Theorem 4.1. If f is in classR, thenIσ
a ∈ H∞ at least forσ > 1.

Remark 4.1. Theorem 4.1 for particular values ofσ anda are available in the literature. For
example, Jung, Kim and Srivastava[5] obtained independent results forσ = 1 anda = 1.

We state the theorem without proof, as they can be easily obtained in a way similar to the
results stated in Section 2.

Theorem 4.2.For every real numberσ > 0, we have

(i) If f ∈ S∗σ,a(h), thenLa(f) ∈ S∗σ,a(h).
(ii) If f ∈ Cσ,a(h), thenLa(f) ∈ Cσ,a(h).

(iii) If f ∈ Kσ,a(h1, h2), thenLa(f) ∈ Kσ,a(h1, h2).
(iv) If f ∈ K∗σ,a(h1, h2), thenLa(f) ∈ K∗σ,a(h1, h2).

For proving the Theorem 4.1, we required the following Lemmas.

Lemma 4.3. [4]; If f is analytic in∆, and ifRef(z) > 0, z ∈ ∆, thenf ∈ Hp, for all p < 1.

Lemma 4.4. [4]; If f is in the classR, thenf ∈ Hp, for all 0 < p <∞.

Lemma 4.5. [17]; If f ∈ S∗(h), thenLa(f) ∈ S∗(h).

Proof of the Theorem 4.1.Making use of (2.1) of Lemma 2.6, we obtain

(4.2) (Iσ+1
a f)′ =

1

z

{
(a+ 1)Iσ

a (f)− aIσ+1
a (f)

}
, σ > 1, a > 0,

which, in view of the elementary inequality

max(Ap, Bp) ≤ (A+B)p ≤ 2p(Ap +Bp), 0 < p <∞, A ≥ 0, B ≥ 0,
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8 T. N. SHANMUGAM AND C. RAMACHANDRAN

readily yields

(4.3) |(Iσ
a f)′|p ≤

(
2

r

)p {
ap|Iσ

a f |p + (a+ 1)p|Iσ−1
a f |p

}
,

where|z| = r, 0 < p <∞, σ > 1, a > 0. Forp = 1, a substantially improved inequality would
follow directly from (4.2), and we have

(4.4) |(Iσ
a f)′| ≤ 1

r

{
a|Iσ

a f |+ (a+ 1)|Iσ−1
a f |

}
,

which may be compared with a special case of (4.3) whenp = 1. Now, from the equation

Iσ
a f(z) =

(1 + a)σ

zaΓ(σ)

∫ z

0

[
log

z

t

]σ−1

ta−1f(t)dt

=
(1 + a)σ

Γ(σ)

∫ 1

0

[
log

1

t

]σ−1

ta−1f(tz)dt, σ > 0, a > 0, f ∈ A.

we set

(4.5) Re(Iσ
a f)′ =

(1 + a)σ

Γ(σ)

∫ 1

0

[
log

1

t

]σ−1

taRe[f ′(tz)]dt, σ > 0, a > 0.

Sincef ∈ R, it follows from (4.5) thatIσ
a f ∈ R, σ > 0, a > 0. Thus, by Lemma 4.4, we have

(4.6) Iσ
a f ∈ Hp, 0 < p <∞, σ > 0, a > 0.

In view of the definitions (1.6) and (1.8), the inequality (4.3) yields

M1(r, (I
σ
a f)′) ≤ 1

r

{
aM1(r, I

σ
a f) + (a+ 1)M1(r, I

σ−1
a f)

}
, |z| = r, σ > 1, a > 0

and

(4.7) ‖((Iσ
a f)′‖1 ≤ |a|‖Iσ

a f‖1 + |a+ 1|‖Iσ−1
a f‖1, σ > 1, a > 0.

Sinceσ > 1, it follows readily from the inclusion relation (4.6) that

(4.8) Iσ
a f ∈ H1 and Iσ−1

a f ∈ H1,

and hence (4.7) gives(Iσ
a f)′ ∈ H1, σ > 1, a > 0. Therefore, by appealing to a known result

Duren [4] [3, p. 42, Theorem 3.11], we conclude from (4.8) thatIσ
a f, (σ > 1, a > 0), is

continuous in
∆̄ = ∆ ∪ ∂∆ = {z ∈ ∆ : |z| ≤ 1} .

Finally, since∆̄ is compact,Iσ
a f is bounded in∆̄. ThusIσ

a f is bounded analytic function in
∆, which leads us to the assertion Theorem 4.1. This evidently completes the proof of the
Theorem 4.1.
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