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ABSTRACT. In this paper, we analyze the problem of constructing a timelike surface family
from a given non-null curve line of curvature. Using the Frenet frame of the non-null curve
in Minkowski space E3

1 we express the family of surfaces as a linear combination of the com-
ponents of this frame, and derive the necessary and sufficient conditions for the coefficients to
satisfy both the line of curvature and the isoparametric requirements. In addition, a necessary and
sufficient condition for the given non-null curve to satisfy the line of curvature and the geodesic
requirements is investigated. The extension to timelike surfaces of revolution is also outlined.
Meanwhile, some representative non-null curves are chosen to construct the corresponding time-
like surfaces which possessing these curves as lines of curvature. Results presented in this paper
have applications in geometric modeling and the manufacturing of products. In addition, some
computational examples are given and plotted.
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1. INTRODUCTION

Line of curvature is one of the most interesting topics in differential geometry and it is being
study by many mathematicians until now, for example [1, 2]. It is an important tool in surface
analysis for exhibiting variations of the principal directions. In Euclidean 3-space, surface
with common line of curvature has been the subject of many studies. Li et al. [3] studied the
parametric surface family which the given curve as the line of curvature. Moreover, they gave an
approach to constructing the developable surface through the given curve as line of curvature
[4]. Recently, due to its relationship with physical sciences in Minkowski space, the surface
pencils with a common line of curvature have been studied by [5, 6].

In this work, we extend the work of Wang et al. [7] to derive the sufficient and necessary con-
dition for a given non-null curve to be both iso-parametric and line of curvature on a timelike
surface. Then, we give family of timelike surfaces with a common line of curvature. Moreover,
we show with the helps of given examples that the member, having any desired property, can be
choosing the appropriate coefficients. Meanwhile, the extension to timelike surfaces of revolu-
tion is also outlined. In addition, the results of being theoretical interest also have applications
in geometric modeling and the manufacturing of products, for examples, designing agriculture
machines’ tools, development models of bulldozers moldboard by geometric modeling method
(engineering design).

2. PRELIMINARIES

Let E3
1 be the three-dimensional Minkowski space, that is, the three-dimensional real vector

space R3 with the metric
〈dy,dy〉 =dy21 + dy22 − dy23,

where (y1,y2,y3) denotes the canonical coordinates in R3. An arbitrary vector y of E3
1 is said

to be spacelike if 〈y,y〉>0 or y=0, timelike if 〈 y,y〉<0 and lightlike or null if 〈y,y〉=0 and
y=0. A timelike or light-like vector in E3

1 is said to be causal. For y∈E3
1 the norm is defined by

‖y‖ =
√
|〈y,y〉| , then the vector y is called a spacelike unit vector if 〈y,y〉=1 and a timelike

unit vector if 〈y,y〉= −1. Similarly, a regular curve in E3
1 can locally be spacelike, timelike or

null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike), respectively
[8, 9, 10, 11, 12, 13]. For any two vectors a= (a1, a2, a3) and b = (b1, b2, b3) of E3

1, the inner
product is the real number 〈a,b〉 = a1b1 + a2b2 − a3b3 and the vector product is defined by
a×b= ((a2b3 − a3b2), (a3b1 − a1b3),−(a1b2 − a2b1)).

Let us consider two non-null vectors x and y in E3
1, then there are the following cases;

i) Let x and y be spacelike vectors.
If x and y span a spacelike plane, then there is a unique real number 0 ≤ θ ≤ π such that
〈x,y〉 = ‖x‖ ‖y‖ cos θ. Here θ is called the spacelike angle between the vectors x and y.
If x and y span a timelike plane, then there is a unique real number θ ≥ 0 such that 〈x,y〉 =
ε ‖x‖ ‖y‖ cosh θ, where ε = +1 or ε = −1 according to sign(x2) = sign(y2) or sign(x2) 6=
sign(y2), respectively. In this case θ is called the central angle between the vectors x and y.
ii) Let x and y are timelike vectors.
Then, there is a unique real number θ ≥ 0 such that 〈x,y〉 = ε ‖x‖ ‖y‖ cosh θ, where ε = +1
or ε = −1 according to x and y have different time-orientation or the same time-orientation,
respectively. θ is called the Lorentzian timelike angle between the vectors x and y.
iii) Let x be a spacelike vector and y be timelike.
Then, there is a unique real number θ ≥ 0 such that 〈x,y〉 = ε ‖x‖ ‖y‖ sinh θ, where ε = +1
or ε = −1 according to sign(x2) = sign(y1) or sign(x2) 6= sign(y1). This number is called
the Lorentzian timelike angle between the vectors x and y.
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Let α = α(s) be a unit speed non-null curve in E3
1; κ(s) and τ(s) denote the natural curvature

and torsion of α = α(s), respectively. Consider the Frenet frame {T(s),N(s), B(s)} associated
with curve α = α(s) such that T(s), N(s) and B(s) are the unit tangent, the principal normal
and the binormal vector fields, respectively. Then, there are two cases for the Frenet formulae:
(i) T and N (resp. T and B) are spacelike vectors while B (resp. N) is timelike vector (similar
procedures will be applied):

(2.1)
d

ds

 T(s)
N(s)
B(s)

 =

 0 κ(s) 0
κ(s) 0 τ(s)
0 τ(s) 0

 T(s)
N(s)
B(s)

 ,

and

(2.2) T×N = −B, B×T = N, N×B = T.

(ii) T is a timelike vector while N and B are spacelike vectors

(2.3)
d

ds

 T(s)
N(s)
B(s)

 =

 0 κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0

 T(s)
N(s)
B(s)

 .

Let P = P(s, t) be a parametric timelike surface in E3
1 based on a given spacelike space curve

α = α(s) as follows:

(2.4) P(s, t) = α(s) + a(s, t)T(s)+b(s, t)N(s)+c(s, t)B(s); 0 ≤ t0 ≤ T, 0 ≤ s ≤ L,

where a(s, t), b(s, t) and c(s, t) are all C1 functions. If the parameter t is seen as the time, the
functions a(s, t), b(s, t) and c(s, t) can then be viewed as directed marching distances of a point
unit in the time t in the direction T; N; and B, respectively, and the position vector α(s) is seen
as the initial location of this point. The normal vector field is given by

(2.5) n(s, t) :=
∂P(s, t)

∂s
× ∂P(s, t)

∂t
= ζ1(s, t)T(s) + ζ2(s, t)N(s) + η3(s, t)B(s),

where

ζ1(s, t) = −
(
∂c(s,t)
∂s

+ b(s, t)τ(s)
)
∂b(s,t)
∂t

+
(
∂b(s,t)
∂s

+ a(s, t)κ(s) + c(s, t)τ(s)
)
∂c(s,t)
∂t

,

ζ2(s, t) = −
(

1 + ∂a(s,t)
∂s

+ b(s, t)κ(s)
)
∂c(s,t)
∂t

+
(
∂c(s,t)
∂s

+ b(s, t)τ(s)
)
∂a(s,t)
∂t

,

ζ3(s, t) = −(1 + ∂a(s,t)
∂s

+ b(s, t)κ(s))∂b(s,t)
∂t

+ (∂b(s,t)
∂s

+ a(s, t)κ(s) + c(s, t)τ(s))∂a(s,t)
∂t

.


P is called a timelike surface if the induced metric on P is a Lorentzian metric on each tangent
plane [8, 9, 10]. This is equivalent to saying that the normal vector n is spacelike at each point
of M . A non-null curve α= α(s) is called isoparametric line of curvature of timelike surface P
if it is both a line of curvature and an isoparametric curve on P.

The same argument used to timelike surface based on a given spacelike curve can be repeated
to timelike surface based on a given timelike curve; we omit the details here.

3. TIMELIKE SURFACES WITH A COMMON LINE OF CURVATURE

Our goal is to derive a necessary and sufficient conditions for which the given spacelike curve
α(s) is an isoparametric line of curvature on the timelike surface P(s, t).
Firstly, since the directrix α(s) is an isoparametric curve on the surface there exists a parameter
t = t0 such that α(s) = P(s, t0), that is, we have:

(3.1) a(s, t0) = b(s, t0) = c(s, t0) = 0.
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Thus, the normal vector field is

(3.2) n(s, t0) :=
∂P(s, t0)

∂s
× ∂P(s, t0)

∂t
= ζ1(s, t0)T(s) + ζ2(s, t0)N(s) + ζ3(s, t0)B(s),

where

(3.3)
ζ1(s, t0) = −∂c(s,t0)

∂s
∂b(s,t0)
∂t

+ ∂c(s,t0)
∂t

∂b(s,t0)
∂s

,

ζ2(s, t0) = −(1 + ∂a(s,t0)
∂s

)∂c(s,t0)
∂t

+ ∂a(s,t0)
∂t

∂c(s,t0)
∂s

,

ζ3(s, t0) = −(1 + ∂a(s,t0)
∂s

)∂b(s,t0)
∂t

+ ∂a(s,t0)
∂t

∂b(s,t0)
∂s

).


Secondly, let us choose a spacelike unit vector

(3.4) e(s) = cosh θN(s)+ sinh θB(s).

Hence, from Eqs. 3.2 and 3.4, we have that e(s)‖n(s, t0) if and only if there exists a function
λ(s) such that

(3.5) ζ1(s, t0) = 0, ζ2(s, t0) = λ(s) cosh θ, ζ3(s, t0) = λ(s) sinh θ.

Differentiating Eq. 3.4 and using the corresponding Frenet formulae 2.1, we find
de

ds
= (

dθ

ds
+ τ)e⊥ + κ cosh θT.

However, according to the Rodrigues’ formula, α = α(s) is spacelike line of curvature on the
timelike surface P(s, t) if and only if dθ

ds
+ τ = 0. This means that

(3.6) θ(s) = θ0 −
s∫

s0

τ(s)ds,

where s0 is the starting value of arc length and θ0 = θ(s0). From the analysis above, we can
draw a conclusion as follows:

Theorem 3.1. The given spacelike curve α(s) is a line of curvature on the timelike surface
P(s, t) if and only if

(3.7) a(s, t0) = b(s, t0) = c(s, t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L, λ(s) 6= 0,
ζ1(s, t0) = 0, ζ2(s, t0) = λ(s) cosh θ, ζ3(s, t0) = λ(s) sinh θ,

}
where the functions λ(s) and θ(s) are called controlling functions.

We call the set of surfaces defined by 2.4 and 3.7 the family of timelike surfaces with common
spacelike line of curvature. Any surface P(s, t) defined by 2.4 and satisfying 3.7 is a member
of this family. Similar with [7], for the purposes of simplification and analysis, we also consider
the case when the marching-scale functions a(s, t), b(s, t) and w(s, t) can be written into two
factors:

a(s, t) = l(s)A(t),
b(s, t) = m(s)B(t),
c(s, t) = n(s)C(t),

where l(s),m(s), n(s), A(t), B(t) and C(t) are C1 functions and l(s),m(s) and n(s) are not
identically zero. Thus, from the Theorem 3.1, we can get the following corollary:

Corollary 3.2. A necessary and sufficient condition of the spacelike curve α(s) being a line of
curvature on the timelike surface P(s, t) is

(3.8)
A(t0) = B(t0) = C(t0) = 0,

−n(s)dC(t0)
dt

= λ(s) cosh θ, −m(s)dB(t0)
dt

= λ(s) sinh θ.

}
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However, we can assume that the marching-scale functions depend only on the parameter t;
that is l(s) = m(s) = n(s) = 1. Then, we analyze the condition 3.8 according to the different
expressions of θ(s):
(i) In the case of τ(s) 6= 0, then θ(s) is a non-constant function of variable s and the condition
3.8 can be represented as

(3.9)
A(t0) = B(t0) = C(t0) = 0,

−dC(t0)
dt

= λ(s) cosh θ, dB(t0)
dt

= −λ(s) sinh θ,

}
(ii) In the case of τ(s) = 0, that is the curve is a spacelike planar curve, then θ(s) = θ0 is a
constant and we have
(a) In the case of θ0 6= 0, the condition 3.9 can be represented as

(3.10)
A(t0) = B(t0) = C(t0) = 0,

−dC(t0)
dt

= λ(s) cosh θ0,
dB(t0)
dt

= −λ(s) sinh θ0.

}
(b) In the case of θ0 = 0, the condition 3.9 can be represented as

(3.11)
A(t0) = B(t0) = C(t0) = 0,

−dC(t0)
dt

= λ(s), dB(t0)
dt

= o,

}
and from Eq. 3.4 the normal n(s, t0) ( resp. e(s)) is coincident with N. In this case, the curve
α= α(s) is not only a spacelike line of curvature line but also a spacelike geodesic.

3.1. Examples of timelike surfaces with a common spacelike line of curvature. In this para-
graph, some representative examples are illustrated to verify the method.

Example 3.1. In this example, we construct timelike surface pencil in which all the timelike
surfaces share a spacelike helix as common spacelike line of curvature. Given the spacelike
circle helix:

α(s) = (a1 sinh
s

a3
, a2

s

a3
, a1 cosh

s

a3
), a1 > 0, a2 6= 0, a21 + a22 = a23, −4 ≤ s ≤ 4.

It is easy to show that

T(s) = (a1
c

cosh s
a3
, a2
a3
, a1
a3

sinh s
a3

),

N(s) = (sinh s
a3
, 0, cosh s

a3
),

B(s) = (a2
a3

cosh s
a3
,−a1

a3
, a2
a3

sinh s
a3

),


and τ = a2

a23
, then θ(s) = a2

a23
s+ θ0. If θ0 = 0, we have θ(s) = a2

a23
s.

By choosing

l(s) = m(s) = n(s) = 1,

A(t) = αt, −B(t) = tλ(s) sinh θ, −C(t) = tλ(s) cosh θ, λ 6= 0,

and from formula 2.4, we obtain the following timelike surface pencil

P(s, t;α, λ) = (a1 sinh
s

a3
, a2

s

a3
, a1 cosh

s

a3
) + t(α,−λ sinh θ,−λ cosh θ)

×

 a1
a3

cosh s
a3

a2
a3

a1
a3

sinh s
a3

sinh s
a3

0 cosh s
a3

a2
a3

cosh s
a3
−a1

c
a2
a3

sinh s
a3

 .

So, if we choose t ∈ [−2, 0], a1 = 2, a2 = 1, then for α = 1, λ = −1 and α = −1, λ = 1, the
corresponding timelike surfaces are shown in Fig. 1A and Fig. 1B, respectively.
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(A) (B)

Figure 1: (A) P (s, t; 1,−1) (B) P (s, t;−
√
5/4,−

√
5/2).

Example 3.2. Suppose we are given a parametric spacelike curve

α(s) = (cos s, sin s, 0), −π ≤ s ≤ π.

After simple computation, we have

T(s) = (− sin s, cos s, 0), N(s) = (− cos s,− sin s, 0), B(s) = (0, 0, 1),

and τ = 0 which follows θ(s) = θ0 is a constant. By choosing

l(s) = m(s) = n(s) = 1,

A(t) = αt, −B(t) = tλ(s) sinh θ0, −C(t) = tλ(s) cosh θ0, λ 6= 0,

and from formula 2.4, we obtain the following timelike surface pencil

P(s, t;α, λ) = (cos s, sin s, 0) + t(α,−λ sinh θ0,−λ cosh θ0)

 − sin s cos s 0
− cos s − sin s 0

0 0 1

 .

So, if we choose t ∈ [−1, 1] and θ0 = 0.5, then for α = 1, λ = −1 and α = −1, λ = 1, the
corresponding timelike surfaces are shown in Fig. 2A, and Fig. 2B, respectively.

3.2. α = α(s) is a timelike line of curvature. This time the directrix α(s) is an isoparametric
timelike curve on the surface. As stated in the above case, we get the corresponding conditions
and we omit the details here.

Theorem 3.3. The given timelike curve α(s) is a line of curvature on the timelike surface P(s, t)
if and only if

(3.12)

a(s, t0) = b(s, t0) = c(s, t0) = 0,
∂c(s,t0)
∂t

∂b(s,t0)
∂s
− ∂c(s,t0)

∂s
∂b(s,t0)
∂t

= 0,

−(1 + ∂a(s,t0)
∂s

)∂c(s,t0)
∂t

+ ∂a(s,t0)
∂t

∂c(s,t0)
∂s

= λ(s) cos θ,

(1 + ∂a(s,t0)
∂s

)∂b(s,t0)
∂t
− ∂a(s,t0)

∂t
∂b(s,t0)
∂s

) = λ(s) sin θ.


where λ(s) 6= 0.
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(A) (B)

Figure 2: (A) P (s, t; 0.3,−0.5) (B) P (s, t; 3,−1).

Corollary 3.4. A necessary and sufficient condition of the timelike curve α(s) being a line of
curvature on the timelike surface P(s, t) is

(3.13)
A(t0) = B(t0) = C(t0) = 0,

−n(s)dC(t0)
dt

= λ(s) cos θ, m(s)dB(t0)
dt

= λ(s) sin θ,

}
where λ(s) 6= 0.

By a similar procedure, we also have the following:
(i) In the case of τ(s) 6= 0, then θ(s) is a non-constant function of variable s and the condi-
tion3.13 can be represented as

(3.14)
A(t0) = B(t0) = C(t0) = 0,

−dC(t0)
dt

= λ(s) cos θ, dB(t0)
dt

= λ(s) sin θ.

}
(ii) In the case of τ(s) = 0, that is the curve is a spacelike planar curve, then θ(s) = θ0 is a
constant and we have two different cases:
(a) In the case of sin θ0 6= 0, the condition 3.14 can be represented as

(3.15)
A(t0) = B(t0) = C(t0) = 0,

−dC(t0)
dt

= λ(s) cos θ0,
dB(t0)
dt

= λ(s) sin θ0.

}
(b) In the case of sin θ0 = 0, the condition 3.14 can be represented as

(3.16)
A(t0) = B(t0) = C(t0) = 0,

−dC(t0)
dt

= λ(s), dB(t0)
dt

= 0.

}
In this case, the curve α= α(s) is not only a timelike line of curvature but also a timelike
geodesic of the timelike surface P(s, t).

3.3. Examples of timelike surfaces with a common timelike line of curvature. In this para-
graph, by a similar arguments, some representative examples are illustrated to verify the method.

Example 3.3. Suppose we are given a parametric timelike helix

(3.17) α(s) = (a1 cosh
s

c
, b
s

c
, a1 sinh

s

c
), a1 > 0, a2 6= 0, a21 − a22 = a23, −2 ≤ s ≤ 2.
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We will construct a pencil of timelike surfaces sharing the helix α(s) as the timelike curvature
line. After simple computation, we have

(3.18)
T(s) = (a1

a3
sinh s

a3
, a2
a3
, a1
a3

cosh s
a3

),

N(s) = (cosh s
a3
, 0, sinh s

a3
),

B(s) = (a2
a3

sinh s
a3
, a1
a3
, a2
a3

cosh s
a3

),


where τ = a2

a3
, then θ(s) = a2

a23
s+ θ0 If θ0 = 0, we have θ(s) = a2

a23
s.

By choosing

l(s) = m(s) = n(s) = 1,

A(t) = αt, B(t) = tλ(s) sin θ, −C(t) = tλ(s) cos θ, λ 6= 0, 0 ≤ t ≤ T.

By putting these choices of functions A, B and C into Eq. 2.4, we obtain the following timelike
surface pencil:

P(s, t;α, λ) = (a1 cosh
s

a3
, a2

s

a3
, a1 sinh

s

a3
)+t(α, λ sin θ,−λ cos θ)

 a1
a3

sinh s
a3

a2
a3

a1
a3

cosh s
a3

cosh s
a3

0 sinh s
a3

a2
a3

sinh s
a3

a1
a3

a2
a3

cosh s
a3

 .

Here, we chose t ∈ [−2, 2], a1 = 2, a2 = 1. For α = 1, λ = −1 and α = −
√
3
4
, λ = −

√
3
2

, the
corresponding timelike surfaces are shown in Fig. 3A and Fig. 3B, respectively.

(A) (B)

Figure 3: (A) P (s, t; 1,−1) (B) P (s, t;−
√
5/4,−

√
5/2).

Example 3.4. Suppose we are given a parametric timelike curve

α(s) = (cosh s, 0, sinh s), −2 ≤ s ≤ 2.

After simple computation, we have

T(s) = (sinh s, 0, cosh s), N(s) = (cosh s, 0, sinh s), B(s) = (0, 1, 0),

and τ = 0 which follows θ is a nonzero constant. By choosing

l(s) = m(s) = n(s) = 1,

A(t) = αt, B(t) = tλ(s) sin θ, −C(t) = tλ(s) cos θ, λ 6= 0, 0 ≤ t ≤ T,
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and from formula 2.4, we obtain the following timelike surface pencil

P(s, t;α, λ) = (cosh s, 0, sinh s) + t(α, λ sin θ,−λ cos θ)

 sinh s 0 cosh s
cosh s 0 sinh s

0 1 0

 .

We chose θ = 0. For α=0.3, λ=-1, and t ∈[-2,0], the corresponding timelike surface is shown
in Fig. 4A. Fig. 4B shows the timelike surface with α=-0.3, λ=1, and t ∈[0,2].

(A) (B)

Figure 4: (A) P (s, t; 0.3,−0.5) (B) P (s, t; 3,−1).

3.4. Timelike surfaces of revolution. In this paragraph, for a given circle, we construct time-
like surface of revolution with this circle as a line of curvature. By a circle in E3

1, as in Euclidean
space, we mean a planar curve with constant curvature. In particular, given a surface of revo-
lution there exists a uniparametric family of planes of E3

1 whose intersection with it is a circle.
Since the circles are contained in a timelike surface, each circle of the foliation must be a space-
like curve. However, the planes containing the circles can be of any causal type. After an
isometry of the ambient space E3

1, a spacelike circle parametrizes as follows:
If Γ is the horizontal plane z = 0, the circle is given by

α(r) = (a1 cos r, a1 sin r, 0), a1 > 0, 0 ≤ r ≤ 2π.

In this case, the curve is a Euclidean horizontal circle. It is easy to get that

T(s) = (− sin r, cos r, 0), N(s) = (− cos r,− sin r, 0), B(s) = (0, 0, 1),

and τ = 0, which follows θ(s) = θ0 is a constant. Let

l(r) = m(r) = n(r) = 1, λ(r) =
∥∥∥α′

(r)
∥∥∥µ

A(t) = αt, −B(t) = tµ sinh θ0, −CC(t) = tλµ cosh θ0, µ 6= 0,

thus the timelike surface pencil can be expressed as

P(r, t;α, µ) = (a1 cos r, a1 sin r, 0) + t(α,−µ sinh θ0,−µ cosh θ0)

 − sin r cos r 0
− cos r − sin r 0

0 0 1

 .
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On the other hand, a surface of revolution (or rotational surface) of E3
1 with axis of rotation

L is a surface which is invariant under the action of the group of motions in E3
1. If the axis

is timelike ( resp. spacelike), we may suppose that the axis is the z − axis (resp. y − axis
), since every timelike (resp. spacelike) unit vector is transformed to (0,0,1) (resp. (0,1,0)) by
Lorentzian transformation. Then the surface is expressed as follows:

−
P(r, t) = (hy(t) cos r, hy(t) sin r, hz(t)) if the axis-is timelike,

where h(t)= (0, hy(t), hz(t)) is a timelike curve in the oyz-plane and hy(t) 6= 0. By combin-
ing the surfaces P(r, t) and P(r, t;α, µ) represent the same surface, we have

hy(t) = a1 + µt sinh θ0, hz(t) = −µt cosh θ0.

Hence, the timelike surface pencil of revolution can be written as

P(r, t; a1, µ, θ0) = ((a1 + µt sinh θ0) cos r, (a1 + µt sinh θ0) sin r,−µt cosh θ0)) .

The parametric curve h(t) is presented by

h(t)= (0, a1 + µt sinh θ0,−µt cosh θ0).

This means that P is formed by a uniparametric family of horizontal circles. We chose t ∈ [0, 1],
θ0 = 0.5, and r ∈ [0, 2π]. For a1 = µ = 1, and a1 = −µ = 1, the corresponding timelike
surfaces are shown in Fig. 5A and Fig. 5B, respectively.

(A) (B)

Figure 5: (A) P (r, t; 0.3,−0.5, 0.5) (B) P (r, t; 3,−1, 1).

If Γ is the vertical plane x = 0, the circle is given by

α(r) = (0, a1 sinh r, a1 cosh r), a1 > 0.

The curve describes a hyperbola in a vertical plane. As stated in the above case, it is easy to get
that

T(s) = (0, cosh r, sinh r), N(s) = (0, sinh r, cosh r), B(s) = (1, 0, 0),
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and τ = 0, which follows θ(s) = θ0 is a constant and we have

l(r) = m(r) = n(r) = 1, λ(r) =
∥∥∥α′

(r)
∥∥∥µ

A(t) = αt, −B(t) = tµ sinh θ0, −C(t) = tλ, µ cosh θ0, µ 6= 0.

Thus, the timelike surface pencil can be expressed as

P(r, t;α, µ) = (0, a1 sinh r, a1 cosh r) + t(α,−µ sinh θ0,−µ cosh θ0)

 0 cosh r sinh r
0 sinh r cosh r
1 0 0

 .

Analogously, the surface is expressed as follows:
−
P(r, t) = (hx(t), hz(t) sinh r, hz(t) cosh r) , if the axis-is spacelike,

where h(t)= (hx(t), 0, hz(t)) is a spacelike curve in the oxz-plane and hz(t) 6= 0. Also, we can
get

P(r, t; a, µ, θ0) = (−µt cosh θ0, (a1 − µt sinh θ0) sinh r, (a1 − µt sinh θ0) cosh r) .

h(t) = (− µt cosh θ0, 0, a1 − µt sinh θ0).

This means that P is formed by a family of vertical hyperbolas. We chose −2 ≤ r ≤ 2. For
t ∈ [−5, 0], a1 = µ = 1, θ0 = 0 and t ∈ [0, 5], a1 = µ = 1, θ0 = 0.01, the corresponding
timelike surfaces are shown in Fig. 6A and Fig. 6B, respectively.

(A) (B)

Figure 6: (A) P (r, t; 0.3,−0.5, .5) (B) P (r, t; 3,−1, 1).
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