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1. I NTRODUCTION

Variational inequality theory, introduced by Stampacchia [20] in the early 1960’s, has wit-
nessed an explosive growth in theoretical advances, algorithmic developments and applications
across all disciplines of pure and applied sciences. Variational inequalities have been gener-
alized and extended in various directions using innovative techniques. A useful and signifi-
cant generalization of variational inequalities is called the mixed quasi variational inequality
involving the nonlinear bifunction which enables us to study the free-moving, unilateral and
equilibrium problems arising in elasticity, fluid flow through porous media, finance, economics,
transportation, circuit and structural analysis in a unified framework, see [1]-[12]. As a result
of interaction among different branches of mathematical and engineering sciences, there exist
now a variety of techniques including the projection method and its variant forms, auxiliary
principle, resolvent equations, to suggest and analyze various iterative algorithms for solving
variational inequalities and related optimization problems. It is well known that the projection
method and its variant forms cannot be extended for mixed quasi variational inequalities due
to the presence of the bifunction. However, if the bifunction is a proper, convex and lower
semicontinuous function with respect to the first argument, then it has been shown [11] that the
mixed quasi variational inequalities are equivalent to the fixed-point problem and the resolvent
equations. This alternative equivalent formulation has been used to suggest and analyze some it-
erative methods for solving mixed quasivariational inequalities. In recent years, much attention
has been given to reformulate the variational inequality as an optimization problem. A function
which can constitute an equivalent optimization problem is called a merit (gap) function. Merit
functions turn out to be very useful in designing new globally convergent algorithms and in
analyzing the rate of convergence of some iterative methods. Various merit (gap) functions for
variational inequalities and complementarity problems have been suggested and proposed by
many authors, see [4, 5, 16, 17, 18, 19] and the references therein. Error bounds are functions
which provide a measure of the distance between a solution set and an arbitrary point. There-
fore, error bounds play an important role in the analysis of global or local convergence analysis
of algorithms for solving variational inequalities. To the best of our knowledge, very few merit
functions have been considered for mixed quasivariational inequalities.

In this paper, we construct some merit functions for the mixed quasivariational inequalities
using the equivalence between the fixed-point and the mixed quasivariational inequalities cou-
pled with the auxiliary principle technique. Proofs of our results is simple and straightforward
as compared with other methods. As special cases, we obtain a number of known and new
results for variational inequalities.

2. FORMULATIONS AND BASIC FACTS

Let H be a real Hilbert space, whose inner product and norm are denoted by〈·, ·〉 and‖ · ‖,
respectively. LetK be a closed and convex set inH andT : H −→ H be a nonlinear operator.
Let ϕ(., u) : H × H −→ R ∪ {+∞} be a function such that for allu ∈ H, ϕ(.′u) is not
identically∞.

A mixed quasivariational inequalityconsists in findingu ∈ H, such that

〈Tu, v − u〉+ ϕ(v, u) ≥ ϕ(u, u), ∀v ∈ H.(2.1)

It is well known [2]-[12] that a large class of obstacle, unilateral, contact, free, moving, and
equilibrium problems arising in economics, finance, physical, mathematical, engineering and
applied sciences can be studied in the unifying and general framework of (2.1). For example,
the mixed quasivariational inequality (2.1) characterizes the Signorini problem with non-local
friction. If S is an open bounded domain inRn with regular boundary∂S, representing the
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interior of an elastic body subject to external forces and if a part of the boundary may come into
contact with a rigid foundation, then (2.1) is simply a statement of the virtual work for an elastic
body restrained by friction forces, assuming that a non-local law of friction holds. The strain
energy of the body corresponding to an admissible displacementv is 〈Tv, v〉. Thus〈Tu, v− u〉
is the work produced by the stresses through strains caused by the virtual displacementv − u.
The friction forces are represented by the bifunctionϕ(., .). Similar problems arise in the study
of the fluid flow through porous media. For the physical and mathematical formulation of the
mixed quasivariational inequalities of type (2.1); see [2, 3, 8, 9].

Forϕ(v, u) = ϕ(v),∀u ∈ H, (2.1) shrinks to findingu ∈ H, such that

〈Tu, v − u〉+ ϕ(v) ≥ ϕ(u), ∀v ∈ H,(2.2)

which is called the mixed variational inequality or variational inequality of the second kind;
see [2]-[13]. IfTu is a gradient andϕ is convex, then (2.2) corresponds to a free optimization
problem.

If the functionϕ(.) is the indicator function of a closed and convex setK in H, that is

ϕ(u) =

{
0, if u ∈ K,
+∞, otherwise,

then (2.1) is equivalent to findingu ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K.(2.3)

which is known as the classic variational inequality introduced and studied by Stampacchia [20]
in 1964. For the state of the art in this theory; see [1]-[20].

We also need the following well-known concepts and results.

Definition 2.1. The operatorT : H −→ H is said to be
(a) strongly monotone,iff, there exists a constantα > 0, such that

〈Tu− Tv, u− v〉 ≥ α‖u− v‖2. ∀u, v ∈ H.

(b) Lipschitz continuous,iff, there exists a constantβ > 0 such that

‖Tu− Tv‖ ≤ ‖u− v‖, ∀ u, v ∈ H.

(c) hemicontinuous,if ∀u, v ∈ H, the mappingt −→ 〈T (u + t(v − u)), v − u〉 is continuous
∀t ∈ [0, 1].

In particular, from (a) and (b), it follows thatα ≤ β.

Definition 2.2. The bifunctionϕ(., .) is said to beskew-symmetric,iff

ϕ(u, v) + ϕ(v, u) ≤ ϕ(u, u) + ϕ(v, v), ∀u, v ∈ H.

Clearly, if the skew-symmetric bifunctionϕ(., .) is linear in both arguments, then

ϕ(u, u)− ϕ(u, v)− ϕ(v, u) + ϕ(v, v) = ϕ(u− v, u− v) ≥ 0, ∀u, v ∈ H.

Definition 2.3. A function M : H −→ R ∪ {+∞} is called a merit (gap ) function for the
mixed quasivariational inequalities (2.1), if and only if,
(i). M(u) ≥ 0, ∀v ∈ H.
(ii). M(u) = 0, iff, u ∈ H solves (2.1).

Definition 2.4. Let A be a maximal monotone set-valued operator. Then the resolvent operator
associated withA is defined as

JA(u) = (I + ρA)−1(u), ∀u ∈ H,

whereρ > 0 is a constant andI is the identity operator. It is well known that the operatorJA is
a single-valued and Lipschitz map onH.
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Remark 2.1. It is well known that the subdifferential∂ϕ(., u) of a proper convex and lower-
semicontinuous function onH for eachu ∈ H is a maximal monotone operator, so its resolvent
is defined by

Jϕ(u) = (I + ρ∂ϕ(., u))−1 ≡ (I + ρ∂ϕ(u))−1,(2.4)

where∂ϕ(u) ≡ ∂ϕ(., u), unless otherwise specified.

The resolvent operatorJϕ(u) has the following characterization.

Lemma 2.1. Letϕ(., u) be a proper convex lower-semicontinuous function onH for eachu ∈
H. For a givenu ∈ H, z ∈ H satisfies the inequality

〈u− z, v − u〉+ ρϕ(v, u) ≥ ρϕ(u, u), ∀v ∈ H,(2.5)

if and only if

u = Jϕ(u)z,

whereJϕ(u) is the resolvent operator andρ > 0 is a constant.

Lemma 2.2. Let the operatorT be monotone and hemicontinuous. If the bifunctionϕ(., .) is
convex in the first argument, then problem (2.1) is equivalent to findingu ∈ H such that

〈Tv, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ H.(2.6)

Proof. Let u ∈ H be a solution of (2.1). Then

〈Tu, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ H,

which implies, using the monotonicity ofT,

〈Tv, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ H.

Conversely letu ∈ H be such that (2.6) hold. Fort ∈ [0, 1], u, v ∈ H, let vt = u+ t(v−u) ∈
H. Takingv = vt in (2.6), we have

0 ≤ t〈Tvt, v − u〉+ ϕ(vt, u)− ϕ(u, u)

≤ t〈Tvt, v − u〉+ t{ϕ(v, u)− ϕ(u, u)},
sinceϕ(., .) is convex with respect to the first argument. Dividing the above inequality byt and
letting t −→ 0, we have

〈Tu, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ H,

the required (2.1).

Remark 2.2. Inequality of type (2.6) is called thedual mixed quasi variational inequality.From
Lemma 2.2, it is clear that the solution sets of both problems (2.1) and (2.6) are equivalent.
Lemma 2.2 plays an important part in the approximation of the variational inequalities. Lemma
2.2 can be viewed as a natural generalization of a Minty’s Lemma.

We now study those conditions under which the mixed quasivariational inequality (2.1) has a
unique solution, which is the main motivation for our next result.

Theorem 2.3. Let T be a strongly monotone with constantα > 0 and Lipschitz continuous
operator with constantβ > 0. If the bifunctionϕ(., .) is skew-symmetric and0 < ρ < 2α

β2 , then
the mixed quasivariational inequality (2.1) has a unique solution.

Proof.
(a). Uniqueness. Letu1 6= u2 ∈ H be two solutions of (2.1). Then, we have
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〈Tu1, v − u1〉 + ϕ(v, u1)− ϕ(u1, u1) ≥ 0, ∀v ∈ H,(2.7)

〈Tu2, v − u2〉 + ϕ(v, u2)− ϕ(u2, u2) ≥ 0,(2.8)

Taking v = u2 in (2.7) andv = u1 in (2.8), adding the resultant and using the skew-
symmetry of the bifunctionϕ(., .), we have

〈Tu1 − Tu2, u1 − u2〉 ≤ ϕ(u1, u2)− ϕ(u1, u1)− ϕ(u2, u2) + ϕ(u2, u1)

≤ 0.

SinceT is strongly monotone, there exists a constantα > 0, such that

α‖u1 − u2‖2 ≤ 〈Tu1 − Tu2, u1 − u2〉 ≤ 0,

which implies thatu1 = u2, the uniqueness of the solution of (2.1).
(b). Existence. We now use the auxiliary principle technique to prove the existence of a

solution of (2.1). For a givenu ∈ H, we consider the problem of finding aw ∈ H such
that

〈w, v − w〉+ ρϕ(v, w) ≥ ρϕ(w, w) + 〈u, v − w〉 − ρ〈Tu, v − w〉, ∀v ∈ H,(2.9)

whereρ > 0 is a constant. Inequality of type (2.9) is called the auxiliary variational
inequality associated with the problem (1). It is clear that the relation (2.9) defines a
mappingu −→ w. It is enough to show that the mappingu −→ w defined by the
relation (2.9) has a fixed point belonging toH satisfying the mixed quasivariational
inequality (2.1). Letw1, w2 be two solutions of (2.9) related tou1, u2 ∈ H respectively.
It is sufficient to show that for a well chosenρ > 0,

‖w1 − w2‖ ≤ θ‖u1 − u2‖,
with 0 < θ < 1, whereθ is independent ofu1 andu2. Takingv = w2(respectivelyw1) in
(2.9) related tou1 (respectivelyu2), adding the resultant and using the skew-symmetry
of the bifunctionϕ(., .), we have

〈w1 − w2, w1 − w2〉 ≤ 〈u1 − u2 − ρ(Tu1 − Tu2), w1 − w2〉,
from which, we have

‖w1 − w2‖2 ≤ ‖u1 − u2 − ρ(Tu1 − Tu2)‖2

≤ ‖u1 − u2‖2 − 2ρ〈u1 − u2, Tu1 − Tu2〉+ ρ2‖Tu1 − Tu2‖2

≤ (1− 2ρα + ρ2β2)‖u1 − u2‖2,

sinceT is both strongly monotone and Lipschitz continuous operator with constants
α > 0 andβ > 0 respectively. Thus

‖w1 − w2‖ ≤ θ‖u1 − u2‖,

whereθ =
√

1− 2ρα + ρ2β2 < 1 for 0 < ρ < 2α
β2 showing that the mapping defined by

(2.9) has a fixed point belonging toH, which is the solution of (2.1), the required result.

We note that if the operatorT is linear, symmetric, positive and the bifunctionϕ(., .) is convex
in the first argument, then the solution of the auxiliary mixed quasi variational inequality (2.9)
is equivalent to finding the minimum of the functionI[w], where

I[w] =
1

2
〈w − u, w − u〉+ ρ〈Tu, w − u〉+ ρϕ(u, w)− ρϕ(u, u),(2.10)
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which is a differentiable function associated with the inequality (2.9). This auxiliary functional
can be used to construct a gap (merit) function whose stationary points solve the variational
inequality (2.1). In fact, one can easily show that the mixed quasi variational inequality (2.1)
is equivalent to the optimization problem. This approach is used to suggest and analyze some
descent-type iterative methods for solving mixed quasi variational inequalities.

We also need the following condition .

Assumption 1. ∀u, v, w ∈ H, the operatorJϕ(u) satisfies the condition

‖Jϕ(u)w − Jϕ(v)w‖ ≤ ν‖u− v‖,(2.11)

whereν > 0 is a constant.

For the applications and the examples of Assumption 1, see [11, 12, 13, 15].

3. M AIN RESULTS

In this section, we consider three merit functions for the mixed quasivariational inequalities
(2.1) and obtain error bounds for the solution of the mixed quasivariational inequalities (2.1).

From now onward, it is assumed that the functionϕ(., .) is proper convex and lower-semicontinuous
onH for all u ∈ H, unless otherwise specified.

We need the following result, which can be proved by using Lemma 2.1.

Lemma 3.1. The mixed quasi variational inequality (2.1) has a solutionu ∈ H if and only if
u ∈ H satisfies the relation

u = Jϕ(u)[u− ρTu],(3.1)

whereρ > 0 is a constant.

Lemma 3.1 implies that problems (2.1) and (3.1) are equivalent. This alternative equivalent
formulation plays an important part in suggesting and analyzing several iterative methods for
solving variational inequalities. This fixed-point formulation has been used to suggest and
analyze several iterative methods for solving the mixed quasivariational inequalities (2.1).

We now consider the residue vector

Rρ(u) ≡ R(u) := u− Jρ
ϕ(u)[u− ρTu] ≡ u− Jϕ(u)[u− ρTu].(3.2)

It is clear from Lemma 3.1 that (2.1) has a solutionu ∈ H, iff, u ∈ H is a root of the equation

R(u) = 0.(3.3)

It is known that the normal residue vectorR(u) defined by the relation (3.2) is merit function
for the mixed quasivariational inequality (2.1). We use this merit function to derive the error
bound for the solution of (2.1).

Theorem 3.2.Let the functionϕ(., u) be proper convex and lower-semicontinuous onH for all
u ∈ H and skew-symmetric. Letu ∈ H be a solution of (2.1) and let Assumption 1 hold. If the
operatorT is both strongly monotone and Lipschitz continuous with constantsα > 0 and and
β > 0 respectively, then

k1‖R(u)‖ ≤ ‖u− u‖ ≤ k2‖R(u)‖, ∀u ∈ H,(3.4)

wherek1, k2 are generic constants.

Proof. Let u ∈ H be solution of (2.1). Then

〈Tu, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ H.(3.5)
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Takingv = Jϕ(u)[u− ρTu] in (3.5), we have

〈Tu, Jϕ(u)[u− ρTu]− u〉+ ϕ(Jϕ(u)[u− ρTu], u)− ϕ(u, u) ≥ 0.(3.6)

Lettingu = Jϕ(u)[u− ρTu], z = u− ρTu andv = u in (2.5), we have

〈ρTu + Jϕ(u)[u− ρTu]− u, u− Jϕ(u)[u− ρTu]〉+ ρϕ(u, Jϕ(u)[u− ρTu])

−ρϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu]) ≥ 0.(3.7)

Adding (3.6), (3.7) and using the skew-symmetry of the bifunctionϕ(., .), we obtain

〈Tu− Tu + (1/ρ)(u− Jϕ(u)[u− ρTu]), Jϕ(u)[u− ρTu]− u〉 ≥ 0.(3.8)

SinceT is a strongly monotone, there exists a constantα > 0, such that

α‖u− u‖2 ≤ 〈Tu− Tu, u− u〉
= 〈Tu− Tu, u− Jϕ(u)[u− ρTu]〉

+〈Tu− Tu, Jϕ(u)[u− ρTu]− u〉
≤ (1/ρ)〈u− Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu]− u + u− u〉

+〈Tu− Tu, Jϕ(u)[u− ρTu]− u〉
≤ −(1/ρ)‖R(u)‖2 + (1/ρ)‖R(u)‖‖u− u‖

+‖Tu− Tu‖‖R(u)‖
≤ (1/ρ)(1 + β)‖R(u)‖‖u− u‖

which implies that

‖u− u‖ ≤ k2‖R(u)‖,(3.9)

the right-hand inequality in (3.4) withk2 = (1/αρ)(1 + β).
Now from Assunption 1 and Lipschitz continuity ofT, we have

‖R(u)‖ = ‖u− Jϕ(u)[u− ρTu]‖
= ‖u− u + Jϕ(u)[u− ρTu]− Jϕ(u)[u− ρTu]‖
≤ ‖u− u‖+ ‖Jϕ(u)[u− ρTu]− Jϕ(u)[u− ρTu]‖

+‖Jϕ(u)[u− ρTu]− Jϕ(u)[u− ρTu]‖
≤ ‖u− u‖+ ν‖u− u‖+ ‖u− u + ρ(Tu− Tu)‖
≤ {2 + ν + ρβ}‖u− u‖ = k1‖u− u‖,

from which we have

(1/(k1)‖R(u)‖ ≤ ‖u− u‖,(3.10)

the left-most inequality in (3.4) withk1 = (2 + ν + ρβ).
Combining (3.9) and (3.10), we obtain the required (3.4).

Lettingu = 0 in (3.4), we have

(1/k1)‖R(0)‖ ≤ ‖u‖ ≤ k2‖R(0)‖.(3.11)

Combining (3.4) and (3.11), we obtain a relative error bound for any pointu ∈ H.

Theorem 3.3.Assume that all the assumptions of Theorem 3.2 hold. If0 6= u ∈ H is the unique
solution of (2.1), then

c1‖R(u)‖/‖R(0)‖ ≤ ‖u− u‖/‖u‖ ≤ c2‖R(u)‖/‖R(0)‖.
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Note that the normal residue vector (merit function)R(u) defined by (3.4) is nondifferen-
tiable. To overcome the nondifferentiability, which is a serious drawback of the residue merit
function, we consider another merit function associated with problem (2.1). This merit function
can be viewed as a regularized merit function, see [18, 19]. We consider the function

Mρ(u) = 〈Tu, u− Jϕ(u)[u− ρTu]〉+ ϕ(u, Jϕ(u)[u− ρTu])

−ϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu])

−(1/2ρ)‖u− Jϕ(u)[u− ρTu]‖2, ∀u ∈ H.(3.12)

from which it follows thatMρ(u) ≥ 0, ∀u ∈ H.
We now show that the functionMρ(u) defined by (3.12) is a merit function and this is the

main motivation of our next result.

Theorem 3.4.∀u ∈ H, we have

Mρ(u) ≥ (1/2ρ)‖R(u)‖2.(3.13)

In particular, we haveMρ(u) = 0, iff, u ∈ H is a solution of (2.1).

Proof. Settingv = u, u = Jϕ(u)[u− ρTu] andz = u− ρTu in (2.5), we have

〈Tu − (1/ρ)(u− Jϕ(u)[u− ρTu]), u− Jϕ(u)[u− ρTu]〉+ ϕ(u, Jϕ(u)[u− ρTu])

−ϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu]) ≥ 0

which implies that

〈Tu, R(u)〉 − ϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu])

+ϕ(u, Jϕ(u)[u− ρTu]) ≥ (1/ρ)‖R(u)‖2.(3.14)

Combining (3.12) and (3.14), we have

Mρ(u) = 〈Tu, R(u)〉 − ϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu])

+ϕ(u, Jϕ(u)[u− ρTu])− (1/2ρ)‖R(u)‖2

≥ (1/ρ)‖R(u)‖2 − (1/2ρ)‖R(u)‖2

= (1/2ρ)‖R(u)‖2,

the required result (3.13). Clearly we haveMρ(u) ≥ 0, ∀u ∈ H.
Now if Mρ(u) = 0, then clearlyR(u) = 0. Hence by Lemma 3.1, we see thatu ∈ H is

a solution of (2.1). Conversely, ifu ∈ H is a solution of (2.1), thenu = Jϕ(u)[u − ρTu] by
Lemma 3.1. Consequently, from (3.12), we see thatMρ(u) = 0, the required result.

From Theorem 3.4, we see that the functionMρ(u) defined by (3.12) is a merit function for
the mixed quasivariational inequalities (2.1). We now derive the error bounds without using the
Lipschitz continuity ofthe operatorT.

Theorem 3.5. Let T be a strongly monotone with a constantα > 0 and the bifunctionϕ(., .)
be a skew symmetric function. Ifu ∈ H is a solution of (2.1), then

‖u− u‖2 ≤ (2ρ)/(2αρ− 1)Mρ(u), ∀u ∈ H.(3.15)

Proof. From (3.12), we have

Mρ(u) ≥ 〈Tu, u− u〉+ ϕ(u, u)− ϕ(u, u)− (1/2ρ)‖u− u‖2

≥ 〈Tu, u− u〉+ α‖u− u‖2

+ϕ(u, u)− ϕ(u, u)− (1/2ρ)‖u− u‖2,(3.16)
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where we have used the fact that the operatorT is strongly monotone with a constantα > 0.
Takingv = u in (3.5), we have

〈Tu, u− u〉+ ϕ(u, u)− ϕ(u, u) ≥ 0.(3.17)

From (3.16) and (3.17), we have

Mρ(u) ≥ α‖u− u‖2 − (1/2ρ)‖u− u‖2

= (α− 1/2ρ)‖u− u‖2,

from which the result (3.15) follows.

We consider another function merit function associated with mixed quasivariational inequal-
ities (2.1), which can be viewed as a difference of two regularized merit functions. Such type
of the merit functions functions were introduced and studied by many authors for solving varia-
tional inequalities and complementarity problems; see [15, 16, 17]. Here we define the D-merit
function by a formal difference of the regularized merit function defined by (3.12). To this end,
we consider the following function

Dρ,µ(u) = 〈Tu, Jϕ(u)[u− µTu]− Jϕ(u)[u− ρTu]〉+ ϕ(u, Jϕ(u)[u− µTu])

−ϕ(u, Jϕ(u)[u− ρTu]) + (1/2µ)‖u− Jϕ(u)[u− µTu]‖2

−(1/2ρ)‖u− Jϕ(u)[u− ρTu]‖2

= 〈Tu, Rρ(u)−Rµ(u)〉+ ϕ(u, Jϕ(u)[u− µTu])

−ϕ(u, Jϕ(u)[u− ρTu]) + (1/2µ)‖Rµ(u)‖2

−(1/2ρ)‖Rρ(u)‖2, u ∈ H, ρ > µ > 0.(3.18)

It is clear that theDρ,µ(u) is everywhere finite. We now show that the functionDρ,µ(u) defined
by (3.18) is indeed a merit function for the mixed quasivariational inequalities (2.1) and this is
the motivation of our next result.

Theorem 3.6.∀u ∈ H, ρ > µ > 0, we have

(ρ− µ)‖Rρ(u)‖2 ≥ 2ρµDρ,µ(u) ≥ (ρ− µ)‖Rµ(u)‖2.(3.19)

In particular, Dρ,µ(u) = 0, iff u ∈ H solves problem (2.1).

Proof. Takingv = Jϕ(u)[u− µTu], u = Jϕ(u)[u− ρTu] andz = u− ρTu in (2.5), we have

〈Jϕ(u)[u− ρTu]− u + ρTu, Jϕ(u)[u− µTu]− Jϕ(u)[u− ρTu]〉
+ρϕ(Jϕ(u)[u− µTu], Jϕ(u)[u− ρTu])− ρϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu]) ≥ 0,

which implies that

〈Tu, Rρ(u)−Rµ(u)〉 + ϕ(Jϕ(u)[u− µTu], Jϕ(u)[u− ρTu])

−ϕ(Jϕ(u)[u− ρTu], Jϕ(u)[u− ρTu])

≥ (1/ρ)〈Rρ(u), Rρ(u)−Rµ(u)〉.(3.20)

From (3.18) and (3.20), we have

Dρ,µ(u) ≥ (1/ρ)〈Rρ(u), Rρ(u)−Rµ(u)〉+ (1/2µ)‖Rµ(u)‖2

−(1/2ρ)‖Rρ(u)‖2

= 1/2(1/µ− 1/ρ)‖Rµ(u)‖2 + (1/ρ)〈Rρ(u), Rρ(u)−Rµ(u)〉
−(1/2ρ)‖Rρ(u)−Rµ(u)‖2 − (1/ρ)〈Rµ(u), Rρ(u)−Rµ(u)〉

= 1/2(1/µ− 1/ρ)‖Rµ(u)‖2 + (1/2ρ)‖Rρ(u)−Rµ(u)‖2

≥ 1/2(1/µ− 1/ρ)‖Rµ(u)‖2,(3.21)
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which implies the right-most inequality in (3.19).
In a similar way, by takingu = Jϕ(u)[u − µTu], z = u − µTu andv = Jϕ(u)[u − µTu] in

(2.5), we have

〈Jϕ(u)[u− µTu]− u + µTu, Jϕ(u)[u− µTu]− Jϕ(u)[u− µTu]〉
+µϕ(Jϕ(u)[u− µTu], Jϕ(u)[u− µTu])− µϕ(Jϕ(u)[u− µTu], Jϕ(u)[u− µTu]) ≥ 0,

which implies that

〈Tu, Rρ(u)−Rµ(u)〉 − ϕ(Jϕ(u)[u− µTu], Jϕ(u)[u− µTu])

+ϕ(Jϕ(u)[u− µTu], Jϕ(u)[u− µTu])

≤ (1/µ)〈Rµ(u), Rρ(u)−Rµ(u)〉.(3.22)

Consequently, from (3.18) and (3.22), we obtain

Dρ,µ(u) ≤ (1/µ)〈Rµ(u), Rρ(u)−Rµ(u)〉+ (1/2µ)‖Rµ(u)‖2

−(1/2ρ)‖Rρ(u)‖2

= 1/2(1/µ− 1/ρ)‖Rµ(u)‖2 + (1/ρ)〈Rρ(u), Rρ(u)−Rµ(u)〉
−(1/2ρ)‖Rρ(u)−Rµ(u)‖2 − (1/ρ)〈Rµ(u), Rρ(u)−Rµ(u)〉

= 1/2(1/µ− 1/ρ)‖Rρ(u)‖2 − (1/2µ)‖Rρ(u)−Rµ(u)‖2

≤ 1/2(1/µ− 1/ρ)‖Rρ(u)‖2,(3.23)

which implies the left-most inequality in (3.19).
Combining (3.21) and (3.23), we obtain (3.19), the required result.

Using essentially the technique of Theorem 3.5, we can obtain the following result.

Theorem 3.7. Let u ∈ H be a solution of (2.1). If the operatorT is strongly monotone with
constantα > 0, then

‖u− u‖2 ≤ (2ρµ)/(ρ(2µα + 1)− µ)Dρ,µ, ∀u ∈ H.(3.24)

Proof. Let u ∈ H be a solution of (2.1). Then, takingv = u in (3.5), we have

〈Tu, u− u〉+ ϕ(u, u)− ϕ(u, u) ≥ 0.(3.25)

Also from (3.18), (3.25) and strongly monotonicity ofT, we have

Dρ,µ(u) ≥ 〈Tu, u− u〉 − ϕ(u, u) + ϕ(u, u)

+(1/2µ)‖u− u‖2 − (1/2ρ)‖u− u‖2

≥ 〈Tu, u− u〉 − ϕ(u, u) + ϕ(u, u)

α‖u− u‖2 + (1/2µ)‖u− u‖2 − (1/2ρ)‖u− u‖2

≥ (α + (1/2µ)− (1/2ρ))‖u− u‖2,

from which the required result (3.24) follows.

REFERENCES

[1] C. BAIOCCHI, and A. CAPELO,Variational and Quasi Variational Inequalities,John Wiley and
Sons, New York, NY, 1984.

[2] H. BREZIS,Operateur Maximaux Monotones et Semigroupes de Contractions dans les Espaces de
Hilbert, North-Holland, Amsterdam, Holland, 1973.

[3] J. CRANK,Free and Moving Boundary Problems,Clarendon Press, Oxford, UK, 1984.

AJMAA, Vol. 3, No. 2, Art. 17, pp. 1-11, 2006 AJMAA

http://ajmaa.org


MERIT FUNCTIONS AND ERRORBOUNDS FORM IXED QUASIVARIATIONAL INEQUALITIES 11

[4] M. FUKUSHIMA, Equivalent Differentiable Optimization Problems and Descent Methods for
Asymmetric Variational Inequality Problems,Mathematical Programming, Vol. 53, pp. 99-110,
1992.

[5] F. GIANNESSI, and A. MAUGERI,Variational Inequalities and Network Equilibrium Problems,
Plenum Press, New York, NY, 1995.

[6] F. GIANNESSI, A. MAUGERI, and M. S. PARDALOS,Equilibrium Problems: Nonsmooth Op-
timization and Variational Inequality Models,Kluwer Academic Publishers, Dordrecht, Holland,
2001.

[7] R. GLOWINSKI, J. L. LIONS, and R. TREMOLIERES,Numerical Analysis of Variational In-
equalities,North-Holland, Amsterdam, Holland, 1981.

[8] N. KIKUCHI, and J. T. ODEN,Contact Problems in Elasticity,SIAM, Philadelphia, Pennsylvania,
1988.

[9] D. KINDERLEHRER, and G. STAMPACCHIA,An Introduction to Variational Inequalities and
Their Applications,SIAM, Philadelphia, Pennsylvania, 2000.

[10] M. A. NOOR, Nonlinear Variational Inequalities in Elastostatics,International Journal of Engi-
neering Sciences, Vol. 26, pp. 1043-1053, 1988.

[11] M. A. NOOR, Set-Valued Mixed Quasi Variational Inequalities and Implicit Resolvent Equations,
Mathematical and Computer Modelling, Vol. 29, pp. 1-11, 1999.

[12] M. A. NOOR, Mixed Quasivariational Inequalities,Applied Mathematics and Computations, Vol.
146, pp. 553-578, 2003.

[13] M. A. NOOR, Resolvent Algorithms for Mixed Quasivariational Inequalities,Journal of Optimiza-
tion Theory and Applications, Vol. 119, pp. 137-149, 2003.

[14] M. A. NOOR, Some Developments in General Variational Inequalities,Applied Mathematics and
Computation, Vol. 152, pp. 199-277, 2004.

[15] M. A. NOOR, Fundamentals of Mixed Quasi Variational Inequalities,International Journal of Pure
and Applied Mathematics, Vol. 15, pp. 137-258, 2004.

[16] M. PATRIKSSON,Nonlinear Programming and Variational Inequalities: A Unified Approach,
Kluwer Academic Publishers, Dordrecht, Holland, 1999.

[17] J. M. PENG, Equivalence of Variational Inequality Problems to Unconstrained Optimization,Math-
ematical Programming, Vol. 78, pp. 347-356, 1997.

[18] M. V. SOLODOV, Merit Functions and Error Bounds for Generalized Variational Inequalities,Jour-
nal of Mathematical Analysis and Applications,Vol. 287, pp. 405-414, 2003.

[19] M. V. SOLODOV, and P. TSENG, Some Methods Based on the D-Gap Functions for Solving
Monotone Variational Inequalities,Computational Optimization and Applications,Vol. 17, pp. 255-
277, 2000.

[20] G. STAMPACCHIA, Formes Bilineaires Coercitives sur les Ensembles Convexes,Comptes Rendus
de l’Academie des Sciences, Paris, Vol.258, pp. 4413-4416, 1964.

AJMAA, Vol. 3, No. 2, Art. 17, pp. 1-11, 2006 AJMAA

http://ajmaa.org

	1. Introduction
	2. Formulations and Basic Facts
	3. Main Results 
	References

