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1. INTRODUCTION

Variational inequality theory, introduced by Stampacchia [20] in the early 1960’s, has wit-
nessed an explosive growth in theoretical advances, algorithmic developments and applications
across all disciplines of pure and applied sciences. Variational inequalities have been gener-
alized and extended in various directions using innovative techniques. A useful and signifi-
cant generalization of variational inequalities is called the mixed quasi variational inequality
involving the nonlinear bifunction which enables us to study the free-moving, unilateral and
equilibrium problems arising in elasticity, fluid flow through porous media, finance, economics,
transportation, circuit and structural analysis in a unified framework,see [1]-[12]. As a result
of interaction among different branches of mathematical and engineering sciences, there exist
now a variety of techniques including the projection method and its variant forms, auxiliary
principle, resolvent equations, to suggest and analyze various iterative algorithms for solving
variational inequalities and related optimization problems. It is well known that the projection
method and its variant forms cannot be extended for mixed quasi variational inequalities due
to the presence of the bifunction. However, if the bifunction is a proper, convex and lower
semicontinuous function with respect to the first argument, then it has been shown [11] that the
mixed quasi variational inequalities are equivalent to the fixed-point problem and the resolvent
equations. This alternative equivalent formulation has been used to suggest and analyze some it-
erative methods for solving mixed quasivariational inequalities. In recent years, much attention
has been given to reformulate the variational inequality as an optimization problem. A function
which can constitute an equivalent optimization problem is called a merit (gap) function. Merit
functions turn out to be very useful in designing new globally convergent algorithms and in
analyzing the rate of convergence of some iterative methods. Various merit (gap) functions for
variational inequalities and complementarity problems have been suggested and proposed by
many authors, seel[4] 5,116,/17] 18] 19] and the references therein. Error bounds are functions
which provide a measure of the distance between a solution set and an arbitrary point. There-
fore, error bounds play an important role in the analysis of global or local convergence analysis
of algorithms for solving variational inequalities. To the best of our knowledge, very few merit
functions have been considered for mixed quasivariational inequalities.

In this paper, we construct some merit functions for the mixed quasivariational inequalities
using the equivalence between the fixed-point and the mixed quasivariational inequalities cou-
pled with the auxiliary principle technique. Proofs of our results is simple and straightforward
as compared with other methods. As special cases, we obtain a number of known and new
results for variational inequalities.

2. FORMULATIONS AND BASIC FACTS

Let H be a real Hilbert space, whose inner product and norm are denoted bgnd|| - ||,
respectively. Let< be a closed and convex setihandT : H — H be a nonlinear operator.
Let o(.,u) : H x H — R U {400} be a function such that for all € H, ¢(./u) is not
identically cc.

A mixed quasivariational inequalitgonsists in finding, € H, such that

(2.1) (Tu,v —u) +(v,u) > e(u,u), YveH.

It is well known [2]-[12] that a large class of obstacle, unilateral, contact, free, moving, and
equilibrium problems arising in economics, finance, physical, mathematical, engineering and
applied sciences can be studied in the unifying and general framewdrk of (2.1). For example,
the mixed quasivariational inequalify (R.1) characterizes the Signorini problem with non-local
friction. If S is an open bounded domain " with regular boundary)S, representing the
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interior of an elastic body subject to external forces and if a part of the boundary may come into
contact with a rigid foundation, thep (2.1) is simply a statement of the virtual work for an elastic
body restrained by friction forces, assuming that a non-local law of friction holds. The strain
energy of the body corresponding to an admissible displacemieii v, v). Thus(T'u, v — u)
is the work produced by the stresses through strains caused by the virtual displacement
The friction forces are represented by the bifunctidn .). Similar problems arise in the study
of the fluid flow through porous media. For the physical and mathematical formulation of the
mixed quasivariational inequalities of type (2.1); see [2)3] 8, 9].

Forp(v, u) = p(v),Vu € H, (2.1) shrinks to finding: € H, such that
(2.2) (Tu,v —u) +¢(v) > ¢(u), VYveH,
which is called the mixed variational inequality or variational inequality of the second kind;
see[2]-{13]. IfTu is a gradient ang is convex, then (2]2) corresponds to a free optimization
problem.

If the functiony(.) is the indicator function of a closed and convex Kein H, that is

(1) = 0, if wekK,
PAW =Y 400, otherwise

then [2.1) is equivalent to finding € K such that

(2.3) (Tu,v —u) >0, YveK.

which is known as the classic variational inequality introduced and studied by Stampacchia [20]
in 1964. For the state of the art in this theory; see [1]-[20].
We also need the following well-known concepts and results.

Definition 2.1. The operatofl’ : H — H is said to be
(a) strongly monotonéff, there exists a constaat > 0, such that

(Tu —Tv,u—v) > alu—0v|* VuveH.

(b) Lipschitz continuousff, there exists a constamt > 0 such that
| Tu—Tv|| <|lu—02|, V wveH.
(c) hemicontinuousf Yu,v € H, the mapping — (T (u + t(v — u)),v — w) iS continuous
vt € [0, 1].
In particular, from (a) and (b), it follows that < .

Definition 2.2. The bifunctiony(., .) is said to beskew-symmetriciff

o(u,v) + p(v,u) < o(u,u) + e(v,v), Vu,ve H.
Clearly, if the skew-symmetric bifunctiop(., .) is linear in both arguments, then

o(u,u) — p(u,v) — p(v,u) + e(v,v) = plu —v,u —v) >0, Yu,v € H.

Definition 2.3. A function M : H — R U {+oc} is called a merit (gap ) function for the
mixed quasivariational inequalitigs (P.1), if and only if,
(). M(u)>0, VveH.
(i). M(w) =0,iff, w e H solves[2.IL).
Definition 2.4. Let A be a maximal monotone set-valued operator. Then the resolvent operator
associated with! is defined as

Ja(u) = (I + pA)t(u), Yu€ H,

wherep > 0 is a constant andl is the identity operator. It is well known that the operaiqris
a single-valued and Lipschitz map éh
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Remark 2.1. It is well known that the subdifferentidly(., «) of a proper convex and lower-
semicontinuous function oA for eachu € H is a maximal monotone operator, so its resolvent
is defined by

(2.4) Totwy = (I + pdp (., u))™" = (I + pdp(u)) ™",
wheredp(u) = dy¢(.,u), unless otherwise specified.

The resolvent operatof, ) has the following characterization.

Lemma 2.1. Lety(.,u) be a proper convex lower-semicontinuous functionbfor eachu €
H. Foragivenu € H, z € H satisfies the inequality

(2.5) (u—z,v—u) + pp(v,u) > pp(u,u), YveH,
if and only if

U= Jow?,
where.J,,, is the resolvent operator and> 0 is a constant.

Lemma 2.2. Let the operatofl’ be monotone and hemicontinuous. If the bifunctidn .) is
convex in the first argument, then problém [2.1) is equivalent to findieg? such that
(2.6) (Tv,v —u) + p(v,u) —p(u,u) >0, Yve H.
Proof. Letu € H be a solution of{(2]1). Then
(Tu,v —u) + o(v,u) — p(u,u) >0, YveH,
which implies, using the monotonicity Gf,
(Tv,v —u) + p(v,u) — p(u,u) >0, Vve H.

Conversely let: € H be such thaf (2|6) hold. Fore [0,1],u,v € H, letv, =u+t(v—u) €
H. Takingv = v in (2.G), we have

0 S t<TUt7 v — U) + @(Uta U) - QO(U, U)
< t(Tv, v —u) +t{o(v,u) — p(u,u)},

sincey(., .) is convex with respect to the first argument. Dividing the above inequalityeloyl
lettingt — 0, we have

<TU,U—U>+Q0(’U,U>—()O(U,'U,) 207 Vo € H7
the required[(2]1)x
Remark 2.2. Inequality of type[(2.6) is called ttaual mixed quasi variational inequalitffrom
Lemma[ 2.2, it is clear that the solution sets of both probldms (2.1)[and (2.6) are equivalent.

Lemmd 2.2 plays an important part in the approximation of the variational inequalities. Lemma
[2.7 can be viewed as a natural generalization of a Minty’s Lemma.

We now study those conditions under which the mixed quasivariational inequiality (2.1) has a
unique solution, which is the main motivation for our next result.

Theorem 2.3. Let T be a strongly monotone with constamt> 0 and Lipschitz continuous
operator with constans > 0. If the bifunctiony(., .) is skew-symmetric antl< p < 23, then

?7
the mixed quasivariational inequality (2.1) has a unique solution.

Proof.
(a). Uniqueness. Let, # uy € H be two solutions of (2]1). Then, we have
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(2.7) (Tuy,v—u1) + v,u1) —@(up,u) >0, YveH,
(2.8) (Tug,v —ug) + @(v,u9) — p(ug, ug) >0,

Takingv = uy in (2.7) andv = v, in (2.8), adding the resultant and using the skew-
symmetry of the bifunctiorp(., .), we have

o(ur, ug) — @(ur, ur) — @(ug, uz) + p(ug, ur)

<TU1 — Tuz,ul — U2> S
< 0.

SinceT is strongly monotone, there exists a constant 0, such that
alluy — ug||* < (Tuy — Tug, uy — ug) <0,

which implies that:; = u,, the uniqueness of the solution pf (2.1).

(b). Existence. We now use the auxiliary principle technique to prove the existence of a
solution of [2.1). For a given € H, we consider the problem of findinguac H such
that

(2.9) (w,v —w) + pp(v,w) > pp(w,w) + (u,v — w) — p(Tu,v —w), Vv € H,

wherep > 0 is a constant. Inequality of typg (2.9) is called the auxiliary variational
inequality associated with the problem (1). It is clear that the relafion (2.9) defines a
mappingu — w. It is enough to show that the mapping— w defined by the
relation [2.9) has a fixed point belonging 6 satisfying the mixed quasivariational
inequality [2.1). Letw;, w, be two solutions of (219) related tq, u, € H respectively.

It is sufficient to show that for a well chosert> 0,

w1 — wal| < Olur — usl,

with 0 < 6 < 1, wheref is independent of; andu,. Takingv = ws(respectivelyto,) in
(2.9) related ta:; (respectivelyu,), adding the resultant and using the skew-symmetry
of the bifunctiony(., .), we have
(wy — we,wy —wg) < (uy —ug — p(Tuy — Tuy), wy — wa),
from which, we have
[wy —wol® < fluy —ug — p(Tuy = Tuy)||?
<y — ug|)* = 2p(uy — ug, Tuy — Tug) + p?||Tuy — Tugl|?
< (1 =2pa+ p*B%)|lur — us|?,
sinceT is both strongly monotone and Lipschitz continuous operator with constants
a > 0andg > 0 respectively. Thus

w1 — wal| < 0lur — uyl,

wheref = /1 — 2pa + p23% < 1for0 < p < ;—C; showing that the mapping defined by
(2.9) has a fixed point belonging 6, which is the solution of (2]1), the required result.
|
We note that if the operatdr is linear, symmetric, positive and the bifunctigq, .) is convex

in the first argument, then the solution of the auxiliary mixed quasi variational inequality (2.9)
is equivalent to finding the minimum of the functidnv|, where
1

(2.10) Iw] = §<w —u,w —u) + p(Tu, w —u) + pp(u, w) — pp(u, u),
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which is a differentiable function associated with the inequd]ity] (2.9). This auxiliary functional
can be used to construct a gap (merit) function whose stationary points solve the variational
inequality [2.1). In fact, one can easily show that the mixed quasi variational ineq{iality (2.1)
is equivalent to the optimization problem. This approach is used to suggest and analyze some
descent-type iterative methods for solving mixed quasi variational inequalities.

We also need the following condition .

Assumption 1. Vu,v,w € H, the operatorJ,, satisfies the condition
(2.11) [ o@yw = Jowwll < vllu — vl
wherer > 0 is a constant.

For the applications and the examples of Assumptjon 1/see [11,112,/13, 15].

3. MAIN RESULTS

In this section, we consider three merit functions for the mixed quasivariational inequalities
(2.7) and obtain error bounds for the solution of the mixed quasivariational inequalities (2.1).

From now onward, it is assumed that the functidn .) is proper convex and lower-semicontinuous
on H for all w € H, unless otherwise specified.

We need the following result, which can be proved by using Lemnja 2.1.

Lemma 3.1. The mixed quasi variational inequality (2.1) has a solutiog H if and only if
u € H satisfies the relation

(3.1) u = Jpwylu — pTul,
wherep > 0 is a constant.

Lemma 3.1 implies that problenjs (2.1) apd [3.1) are equivalent. This alternative equivalent
formulation plays an important part in suggesting and analyzing several iterative methods for
solving variational inequalities. This fixed-point formulation has been used to suggest and
analyze several iterative methods for solving the mixed quasivariational inequdlities (2.1).

We now consider the residue vector

(3.2) Ry(u) = R(u) = u— Jfy[u— pTu] = u— Jowlu — pTul.
It is clear from Lemma@ 3]1 that (2.1) has a solutior H, iff, w € H is a root of the equation
(3.3) R(u) =0.

It is known that the normal residue vectB(u) defined by the relatio (3.2) is merit function
for the mixed quasivariational inequality (2.1). We use this merit function to derive the error
bound for the solution of (2] 1).

Theorem 3.2. Let the functionp(., ) be proper convex and lower-semicontinuougbior all

u € H and skew-symmetric. Lete H be a solution of[(2]1) and let Assumpt[dn 1 hold. If the
operatorT is both strongly monotone and Lipschitz continuous with constants) and and

0§ > 0 respectively, then

(3.4) k[ R(u)|| < llu —ull < kol R(u)l,  Vu € H,
wherek, ko, are generic constants.

Proof. Letw € H be solution of[(2.]L). Then

(3.5) (Tu,v —u) + ¢(v,u) — p(u,uw) >0, YveH.
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Takingv = J,[u — pTu] in (3.5), we have
(3.6) (T, Sy [u — pTu] — 1) + o(Jp[u — pTu],w) — (7, 1) = 0.
Lettingu = Jyw)[u — pTu], z=wu—pTuandv=1uin ), we have
(pTu + Jpwylu — pTu] —u, T — Jpwlu — pTul) + po(@, Jpw v — pTul)
Adding (3.8), [3.F) and using the skew-symmetry of the bifuncti¢n.), we obtain
(38) (T —Tu+(1/p)(u— Jyulu — pTu]), Jyulu — pTu] — 7) > 0
SinceT' is a strongly monotone, there exists a constant 0, such that
ol@—ul* < (Tu—Tu,@— u)
= (Tu—Tu,u — Jywlu — pTul)
+H(Tu — Tu, Jp|u — pTu| — u)
< (1/p)(u = Jowlu — pTul, Jow|u — pTu] — u+u — )
+(Tu — Tu, Jolu — pTu] — u)

< —(/pIRW)I + (1/p) | R(w)lllu — ]
7w = Tul[| R(u)]]
< (1/p)(A+ B) || B(u)ll[[a — ull

which implies that
(3.9) [T — ul| < kol [R(uw)]l,

the right-hand inequality irj (3/4) with, = (1/ap)(1 + 5).
Now from Assunptiofi [L and Lipschitz continuity &f we have

IR@I =~ Jyplu— pTe]]
= fu— T+ Tyl — pT) — Jylu — pTel|

< Nlu =l + | Jom[@ — pTa] — Jpmlu — pTul||
Sy u — pTu] — Jpw)[u — pTul]

< u—7all +vfu =73l + [lu =7+ p(Tu — TT)|

< {2+v+pBlu—7a| = kiflu -7,

from which we have
(3.10) (1/ (k)R] < [Ju— ],

the left-most inequality i (3]4) with, = (2 + v + pf).
Combining 3.9) and (3.10), we obtain the required](3s4).

Lettingu = 0in (3.4), we have
(3.11) (/EDIRO) < [[a]] < kol RO)]]-
Combining [3.4) and (3.11), we obtain a relative error bound for any potr.

Theorem 3.3. Assume that all the assumptions of Thedrer 3.2 holdAf: € H is the unique
solution of (2.11), then

al[B)|I/|RO)]| < llu —all/l|ul] < e[ R(u) ]|/ RO)]].
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Note that the normal residue vector (merit functidi(u) defined by|[(3.4) is nondifferen-
tiable. To overcome the nondifferentiability, which is a serious drawback of the residue merit
function, we consider another merit function associated with proljlern (2.1). This merit function
can be viewed as a regularized merit function, 5e&[18, 19]. We consider the function

My(u) = (Tu,u— Jywlu— pTul) + p(u, Jpw)|u — pTul)
_(P(Jgo(u) [u - pTU], J«p(u) [u - pTU])
(3.12) —(1/2p)|Ju — Jpuy[u — pTu]||>, Vu € H.
from which it follows that)/,(u) > 0, VYu € H.

We now show that the function/,(u) defined by |(3.12) is a merit function and this is the
main motivation of our next result.

Theorem 3.4.Vu € H, we have
(3.13) M,(u) = (1/2p)|| R(u)||*.
In particular, we havel/,(u) = 0, iff, u € H is a solution of[(2.]1).
Proof. Settingy = u, u = Jyw)[u — pTu] andz = u — pTw in (2.5), we have
(Tu = (1)t = Jyquy 1= pTu)), 1 = gy = ) + 9(uty Ty [ — pT'u)
—0( S [u = pTu], Jo(uy[u — pTu]) = 0
which implies that
(Tu, R(w)) —  @(Jplu — pTul, Jow)lu — pTul)
(3.14) +o(u, Jolu — pTul) = (1/p)|| R(w)|*.
Combining [(3.1R) and (3.14), we have
My(u) = (Tu, R(u)) = @(Jpq|u — pTu], Jpw|u — pTu])
+o(u, Jolu — pTul) — (1/2p)|| R(u)|?
> 1/ R@)|* = (1/2p)[| R(w)|?
= (1/20)| R,

the required resulf (3.13). Clearly we haVg(u) > 0, Vu € H.

Now if M,(u) = 0, then clearlyR(u) = 0. Hence by Lemma 3|1, we see thatc H is
a solution of [(2.11). Conversely, if ¢ H is a solution of [(2]1), them = J,[u — pT'u] by
Lemm. Consequently, fro 12), we see tagtu) = 0, the required resuly

From Theorem 3]4, we see that the functiiy(u) defined by[(3.12) is a merit function for
the mixed quasivariational inequaliti¢s (2.1). We now derive the error bounds without using the
Lipschitz continuity ofthe operatdr.

Theorem 3.5. Let T be a strongly monotone with a constant> 0 and the bifunctionp(_., .)
be a skew symmetric functiondfe H is a solution of[(2.]1), then
(3.15) lu—al? < (2p)/(2ap — )M, (), VueH
Proof. From (3.12), we have

My(u) > (Tu,u—1) + (u, ) — 0@, 7) — (1/2p)||lu — 7l
> (Tu,u— 1) + olu—u|?

(3.16) +o(u, @) — (@, a) — (1/2p)|Ju - Tlf?,
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where we have used the fact that the operdtas strongly monotone with a constamt> 0.
Takingv = » in (3.5), we have

(3.17) (Tu,u —uy + p(u,u) — ¢(u,u) > 0.
From (3.16) and (3.17), we have
My(u) > allu—1a|* - (1/2p) v — al|*
= (a—1/2p)llu -7l
from which the resulf (3.15) followss

We consider another function merit function associated with mixed quasivariational inequal-
ities (2.1), which can be viewed as a difference of two regularized merit functions. Such type
of the merit functions functions were introduced and studied by many authors for solving varia-
tional inequalities and complementarity problems; see [15, 16, 17]. Here we define the D-merit
function by a formal difference of the regularized merit function defined by|3.12). To this end,
we consider the following function

Dyp(u) = (Tu, Jpwlu — pTu] = Jow|u — pTul) + @(u, Jpw)[u — pTu])
—p(u, Jpu)[u — PTU]) (L/2m)lw = T [w — nTu]|*
—(1/2p)|lu = Jpqulu — pTu]||*
= (Tu, R,(u) — Ru( ) + o(u, Joo(u) [u — pTul)
—p(u, Joq[u — pTu]) + (1/2)[| R, (u) ||
(3.18) —(1/2p)[|R,(w)|)?>, we H, p>pu>D0.

It is clear that theD, ,(u) is everywhere finite. We now show that the functiop,,(u) defined
by (3.18) is indeed a merit function for the mixed quasivariational inequalftie (2.1) and this is
the motivation of our next result.

Theorem 3.6.Vu € H,p > > 0, we have
(3.19) (p— M)HRAU)HQ > 2ppDy . (u) = (p— N)||Ru(u)||2'
In particular, D, ,(u) = 0, iff u € H solves problen{ (2] 1).
Proof. Takingv = Ju)[u — pTu), u = Jyw(u — pTu] andz = u — pTu in (2.5), we have

(Jotw [ — pTu] = u+ pTu, Jpwu — pTu] = Jywlu — pTu])

+00(Jpquy [t — pTu], Jowy[w — pTul) — po(Jowy[u — pTul, Jpuylu — pTu]) > 0,
which implies that

(Tu, Rp(u) = Ru(u)) + o(Jowlu — pTu], Jowlu — pTu))
—o(Jopwu — pTu], Jpulu — pT'u))
(3.20) > (1/p)(Rp(u), Ry(u) — Ry(u)).
From (3.18) and (3.20), we have
Do) = (1/p){R,y(u), By(w) — Ru(w) + (1/20)]| By (w)

—(1/2p)[| R, (w)|*
1/2(1/i = 1/p)| Ru(w) | + (1/p)(Rp(u), Rp(u) — Ry (w))
~(1/2p)[|R,(u) = Ryu(u)[I* = (1/p){(Rpu(w), Ry(u) — Ry (u))
1/2(1/i = 1/p) | Ru()||* + (1/20) | Rp(u) — Ry (w)|”
1/2(1/p = 1/p) [ Ru(w)|1%,

(3.21)

v

n
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which implies the right-most inequality ifi (3]19).
In a similar way, by taking, = J,[u — pTul, 2 = v — pTu andv = Ju)[u — pT'u) in
(2.5), we have
(Jouy [t = pTu] — u+ pTu, Jpwyu — pTu] = Jpw)[u — pTu))
(S [ — pTu), Jp[u — pTu]) — po(Jp[u — pTul, Jpwlu — pTul) > 0,
which implies that
(Tu, Ry(u) = Bu(w)) = (o[t — pTu], Ty [u — pTu))
+o(Jp(u) [u — pTul, Jop(u) [u — puTul)
(3.22) < (/) {(Ru(u), Ry(u) = Ryu(w)).
Consequently, fronj (3.18) and (3]22), we obtain
Dpy(u) < (1/p)(Ru(u), Ry(u) — Ru(u)) + (1/2u) || R (w)|?
—(1/2p) || Ry(w)|*
1/2(1/ =1/ p) | Ru(@)|I” + (1/p)(Ry(u), Ryp(u) — Ry(u))
—(1/2p) 1R, (w) — Ru(u)||* = (1/p)(Ru(u), Ry(u) — Ry(w))
1/2(1/ 1= 1/p) IR (w)l* = (1/2p) | Rp(w) — Ryu(w)|?
(3.23) 1/2(1/p = 1/p) | Rp(w)lI*,
which implies the left-most inequality in (3.119).
Combining [3.2]1) and (3.23), we obtajn (3.19), the required regult.

Using essentially the technique of Theorlenj 3.5, we can obtain the following result.

IN

Theorem 3.7.Letu € H be a solution of[(2]1). If the operatdr is strongly monotone with
constaniv > 0, then

(3.24) lu —a||* < (2pp)/(p(2pa +1) = @)D,y Vu € H.
Proof. Letw € H be a solution of[(2]1). Then, taking= « in (3.5), we have
(3.25) (Tu,u —uy + p(u,u) — ¢(u,u) > 0.

Also from (3.18), [(3.2b) and strongly monotonicity Bf we have
D, (u) > (Tu,u—71)— @mu)+ ¢(u,u)
+(1/20)[[u = a|* = (1/2p)||u — 7|
> (Tu,u—1u) —e(u,u) + ¢(u,u)
aflu —al* + (1/2u)lu — @l|* — (1/2p)||u — Tl*
> (a+(1/2u) = (1/2p))u — @)%,
from which the required result (3.24) follows.
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