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2 R. AGARWAL AND M. BOHNER

1. INTRODUCTION

Throughout, we lefl be a time scale (i.e., a nonempty closed subset of the real numbers)
which is unbounded above. For the theory of time scales, which unifies continuous and discrete
analysis and extends those concepts to “in between” cases, we refer to the monagraphs [5, 6]
and to [4, Section 7] for readers of this journal. Here we only mention that for a function
f:T—R,the

1. delta derivativef® satisfiesf®(t) = f'(t) if T =R, f2(t) = Af(t) = f(t+1)— f(2)if
T =Noandf2(t) = (f(qt) — f(1))/((¢ = D) if T=¢" = {¢" : n € No} with¢ > 1;
2. forward shiftf* = f o o, whereo : T — T is the forward jump operator, satisfies
fo(t) = (&) if T=TR, fo(t) = f(t+1)if T=Noandf(t) = f(qt) if T = ¢,
and that ifp : T — R is an rd-continuous and regressive (see [5, 6]) functiontare T, then
the

3. exponential function, (-, ty) is defined as the unique solution of the initial value problem
y> =p(t)y, ylto) = 1.
Now, let us introduce the dynamic equations that will be discussed in this paper. In Section

[2 below we will study oscillatory behavior and boundedness of solutions of first order dynamic
equations of the form

(1.1) e = p(t)a” + (1) (27)* = f(t),

(1.2) 2%+ p(t)a” — (1) (27)° = f(1),

(1.3) A+ p(t)a” + @ (1)(27)" — (1) (27)" = f(2),

(1.4) 2+ @ (t)(2)" — @(t)(2%)? = f(2),

while in Sectiorj B below we examine second order dynamic equations of the form
(1.5) [r (1) (@2)]% = p(t)a” + @ (1) (x7)* = f(1),

(1.6) [r(8) (@))% + p(t)a” — g2(8)(27)7 = f(2),

(1.7) [r(£)(@2)]2 + p(t)a” + a1 (1) (27)* — g2(t) (%) = f(2),

(1.8) ()% + @ ()(@)" = g2(t)(27)" = f(2),

subject to the general assumptions

D, q1,q2, [ : T — R arerd-continuous,
(1.9) r(t), p(t), 1 (t), 2(t) >0 forall teT,
' a, 3,7 are ratios of odd positive integers,
a>1, 0<pf<1,

and each of the equatiorjs ({1.1)—(1.8) is considered on a supset) of T, wheret, € T is
fixed. Throughout, we will make use of the rd-continuous functigng., g3, g4+ : T — R

defined by
w10) { 9= (= Dar/0mepe/eg 070, g, = (1= g) g ApaE-0 g0

A solution of any of the equationgs (1.1)—(lL.8) is caltexhoscillatoryif it is eventually positive

or eventually negative; otherwise it is calledcillatory. Any of the equationd (1}1)—(1.8) is
calledoscillatory if all of its solutions are oscillatory. In this paper, we shall give criteria in
terms ofr, p, 1, ¢2, @, (3, v guaranteeing solutions to equatiops [1/1)4(1.8) to be oscillatory.
We also give criteria that guarantee that all nonoscillatory solutions of such an equation are
bounded. Such criteria are available in the literature for differential equations (see, le.g., [3]),

Y
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difference equations (seel [1] for directly corresponding results[and [2, Section 1.15] for linear
difference equations andl[2, Section 6.5] for difference equations with deviating arguments)
and, in the linear case, for dynamic equations (see [7]; see also [5, Section 4.3] and [6, Section
4.5]).

We conclude this introduction by stating the following well-known inequality due to Hardy,
Littlewood and Polya [8]. This inequality is the major tool in the proofs of our criteria given in
Section$ 2 and| 3 below.

Lemma 1.1. If « andb are nonnegative, then

(i) a® — aab® ! + (a — 1)b* > O forall a > 1;
(i) a® — BabtP~t — (1 - )’ <0forall 0 < 3 < 1.

In the above inequalities, equality holds if and only i b.

2. FIRST ORDER DYNAMIC EQUATIONS

In this section, we give oscillation criteria for solutions to first order dynamic equations of
the form [1.1)4(1.4). Throughout, we assuine](1.9), use the notation (1.10), andfik.

Theorem 2.1.If

(2.1) lig(i)?f/t (f(1)+ ¢1(7))AT = —0c0 and limsup/ (f(1) — g1(1))AT = 00,

t—o0 to
then(1.1)is oscillatory.
Proof. By way of contradiction, assume that (1.1) is not oscillatory so that it has at least one
eventually positive solution or at least one eventually negative solution. First we assume that

satisfies[(1]1) and is eventually positive. Hence there existsT, ¢, > t,, such that:(¢) > 0
forall ¢ > t,. Set

and use Lemmja 1.1 (i) to obtain frofn (L.1) for ¢,
z2(t) = f(t) +pt)a’(t) — au(t)(2(1)"

t) + aa(t)(b(t))* " — (a(t))
)+ (= 1)(b(1))"

)

Q

it
i
f

< t
= f(t)+ g1(¢)
and thus
aB(t) = fﬁ(tl)*/t 2 (1)AT < x(t1)+/t (f(T) + (7)) AT
= o+ / (f(r) + gu(r) Ar
with

¢ = a(ty) - / (F() + qu(r) AT,

to

Employing the first condition irf (2] 1), we find
0 < liminfz(t) < —o0,

t—oo -
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which is a contradiction. Next, we assume thatatisfies[(1]1) and is eventually negative. If
we putz = —z, thenz is an eventually positive solution df (1.1), whefés replaced by-f.
This case therefore leads to a contradictions as in the first case, provided

lim inf/ (—f(7) + g1 (7)) AT = —00,

t—o00 to

which indeed holds due to the second condition in|(2a1).
Corollary 2.2. If

t
(2.2) hmlnf/ f(r)AT = —0o and limsup/ (AT =
t—o0 to
and
23) | oy ar < o,
to

then(1.1)is oscillatory.
Proof. As (2.2) and[(2.8) imply{(2]1), this follows from Theorém|2y1.

Example 2.1.LetT be a time scale satisfying

(2.4) u(t)y=o(t)—t#0forallt €T, t, €T, t, >0
and consider offty, co) the equation
1 " 1 g L+ o(t)
(25) xA - t(o‘(t>>2x + t(o_(t))4<x ) - ,u(t) e—2/u(0(t>7t0>7
which is of the forn{L.1) with
1 1 _t+oa() _
p<t> t(O’(t))Q’ Q1(t> - 75(0'(75))47 f(t) 'U/(t> € 2/#( (t)vtO)ﬂ o 3
Note now thatF'(t) = te_,/,(t, ty) satisfies
FA(t) = e gula(t),to) — ( )6 2/u(t, o)

= coapulo(0).t) + ez (o(0).10)

= MO et = £
where we used the product rule on time scg& S heorem 1.20 (iii))jand
(26) e—2/u(0<t)a tO) = (1 - :u(t)%) e—2/u(t7t0) = _e—Q/M(tvt0)7

which follows from[5, Theorem 2.36 (ii)] Note also tha(2.6) together withe_,,(to,ty) = 1
implies that

/t F(T)AT = F(t) — F(to) = te_a/u(t, to) — to

haslim inf equal to—oco andlim sup equal toco whent — oo, i.e.,(2.9)is satisfied. Moreover,
2 1 \%? 1\ Y2 2
t) = - -~
0i1=37% (o) (wor) = wvaew
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implies that (se¢5, Theorem 1.20 (iv)]

/t (1A 2 (1 1) 2 as
TIAT= ——= | —— - | — — 00,
L 3v3 \ty ¢ 3v/3t0

i.e.,(2.3)is satisfied. By Corollary 22, each solution(@5)is oscillatory. One such oscillatory
solution isz = F'. The same arguments apply to the equation

2 — qi()(0(1))%2% 4+ @ (t)(2°)® = %e_g/u(a(t), to),

whereq; : T — R is any rd-continuous function satisfyigg(¢) > 0 for all ¢ € T and

/too q.(1)(o(7))*AT < 0.

Theorem 2.3.If

(2.7) litrgti)?f/ (f(1)+ g2(7))AT = —0c0 and limsup/ (f(1) = g2(7)) AT = 00,

t—o0 to

then(T.2)is oscillatory.
Proof. We proceed exactly as in the proof of Theoienj 2.1, this time setting

. 1 . 1/(8-1)
a= q2/ﬁx” and b= (BPQQ /6)

and this time using Lemnja 1.1 (ii) in the subsequent calculation
22(t) = f(t) + qa(t) (@7 () — p(t)a” (t)

= f(t) + (a(t))” — Balt)(b(t))"

< () + (1= B)(b(t))
f(t) + g2(2),
and the rest of the proof is line by line the same as the proof of Theorém 2. Liwigiplaced
by go. §
Corollary 2.4. If (2.2)holds and

28) |6 e A <o,

to

then(1.2)is oscillatory.

Proof. As (2.2) and[(2.8) imply{(2]7), this follows from Theorém|2s3.
Example 2.2.Let T be a time scale satisfyin@.4) and consider ority, o) the equation

1 o 1 o\1/3 t+ U(t)
(2.9) o+ t(U(t))Qx - W(m ) /= WQ—Q/M<O-(t)7tO)>
which is of the forn{1.2) with
b0 = s O = e [0 = e (o), 5=,

As in Examplé 2]1(2.2) is satisfied, and

n0 =57 <t<a<1t>>2>_1/2 (W)/ - VA
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implies as in Examplg 2.1 th&P.8) is satisfied. By Corollary 2|4, each solution (#.9) is
oscillatory. One such oscillatory solutionis= F', whereF' is given in Examplg 2|1. The same
arguments apply to the equation

_ t+o(t
2 + 0(o(0) 2 =)o) = Lo (o0, 0,
whereg, : T — R is any rd-continuous function satisfyig(t) > 0 for all t € T and
/ qg(T)(a(T))l/3AT < 0.
to

Now we supply examples where Corollarjies| 2.2 2.4 cannot be applied but Thgorems 2.1
and2.3 can.

Example 2.3.LetT be a time scale satisfyin.4) and consider orit,, o) the equation

C3VB L BVB gttt
40'<t> 4(0‘(t))3( ) B ,u(t) _Q/M( (t>7t0)7
which is of the forn{1.1) with

P =208 =1 =", 0=

(2.10) At

While, as in Example 2.12.7)is satisfied,

a/(a—1 1/(1-a 3v3 i 3v3 e 3V3
() () = (40—(15)) <4(U(t))3) =

shows tha(2.3)is not satisfied. So we cannot employ Corolfary 2.2. However,

/to () +aun)AT = teoyu(tito) —to+ %¥(t — to)
- t€—2/u(t7t0) + % - %

shows that the first condition if2.1)is satisfied. By a similar calculation, the second condition
in (2.1)is seen to hold as well. Therefore, by Theofem 2.1, every soluti@I®)is oscillatory.
One such oscillatory solution is = F', whereF' is given in Example 2] 1. Similarly, we can use
Theoreny 2.3 but not Corollafy 3.4 to find that all solutions of

3vV3 3v/3 t+ o(t)

A x7 — 27)3 =
T eI i)

e—2/u(0(t), to)
are oscillatory.

Theorem 2.5. If there exists a constait> 0 such that

(2.11) liminf/t (f(1)+ g3(1))AT = —0c0 and limsup/ (f(1) — g3(1))AT = 00,

t—oo t—o00 tO

then(T.3)is oscillatory.
Proof. We proceed exactly as in the proof of Theofenj 2.1, this time setting

«@ 5 “1/a 1/(a—1) 1 + 6 _ 1/(5—1)
a; = Qi/ 27, b = (ap‘h Y ) VRS Q;/ﬁxga by = (TPQQ Uﬁ)
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and this time using Lemnja 1.1 (i) and (i) in the subsequent calculation
z2(t) = f(8) +0p(t)2”(t) — qu(t)(27 (1)) + ga2(t) (27 (1)) — (L + 0)p(t)a” (¢)
= f(t) +aa(®)(bi() " = (ar ()™ + (a2(1)” = Baa(t) (bo(1))"
< f®) +(a=D)0i®)* + (1= B)(ba(t))?
and the rest of the proof is line by line the same as the proof of Theorém 2. Ljwigiplaced
by gs. §
Corollary 2.6. If (2.2), (2.3)and (2.8) hold, then(T.3)is oscillatory.

Proof. As (2.2), [2.8) and (2]8) imply (2.11), this follows from Theorem 45.

Theorem 2.7.If there exists an rd-continuous functipn: T — R satisfyingp(t) > 0 for all
t € T such that

(2.12) ligigf/ (f(7)+ ga(17))AT = —00 and limsup/ (f(1) = ga(T))AT = 00,

to t—o0 to

then(1.4)is oscillatory.

Proof. We proceed exactly as in the proof of Theoflen 2.1, this time setting anda,, b, as
a, b from the proofs of Theorein 3.1 and Theorend 2.3, respectively, and this time using Lemma
[1.7 (i) and (i) in the subsequent calculation

z2(t) = f(6) +p()a7 () — q () (@ () + qa(t)(27(1))” — p(t)z7 (1)
= f(t) +aai()(0i(t)* " = (ar (1) + (a2(t))” = Bas(t) (ba(t)) "
< )+ (o= 1)(0u(0)" + (1= B)(ba(t))
= f(t) + g4(),
and the rest of the proof is line by line the same as the proof of Theorém 2. Liwigiplaced
by ga. 1
Corollary 2.8. If (2.2), (2.3)and (2.8) hold, then(I.4)is oscillatory.

Proof. As (2.2), [2.8) and (2]8) imply (2.12), this follows from Theorem A& 7.

Example 2.4.0n a time scalél satisfying(2.4) we consider

A 1 o3 1 o1z tHo(t)
(2.13) r +W($) —W(x )P = ) e—2/u(0(t), to),

which is of the form(L.4) with ¢1, g2, f, a, § as in Examplef 2|1 arjd 2.2. We definas in
those two examples, i.ex(t) = 1/(t(c(t))?), and then it follows from Exampe 2.1 thé&2)
and (2.3) are satisfied, and it follows from Example]2.2 tifai8) is satisfied. By Corollary 2|8,
each solution of(2.13)is oscillatory. One such oscillatory solutionis= F', whereF' is given
in Examplé 2.[L. The same arguments apply to the equation

2 4 g(0) @) — gO)o(0) @) = L0
u(t)
whereq : T — R is any rd-continuous function satisfyiggt) > 0 for all ¢t € T and

/Oo o) (o (7)) AT < oo.

to

6—2/#(0<t>7 tO)a
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We conclude this section by mentioning that the same arguments as above may be used to
establish criteria that guarantee that all nonoscillatory solutions of any of the equitidns (1.1)—
(1.4) are bounded. We state the following two such results and supply an example.

Theorem 2.9.1f (2.3)holds and

(2.14) /OO F() AT < oo,

to

then all nonoscillatory solutions gfL.1) are bounded.

Theorem 2.10.If there exists an rd-continuous functign: T — R satisfyingp(¢) > 0 for
all ¢ € T such that(2.3), (2.8) and (2.14) hold, then all nonoscillatory solutions dfL.1) are
bounded.

Example 2.5.LetT C (0, 00) be any time scale and consider the equation
2

LUA 1 o 3 z° 1/3 —
(249 Femr " Gyt =0
which is of the forn{I.4) with
1 1 . B B 1
QI(t)_Wa QZ(t)_W’ fX)=0, a=3, p= 5

Clearly, (2.13)is satisfied. We choogét) = t=2/3(o(t))~*/3. Then

| oo aey s = [T ey (L))) A

to to (U(T

<1
= / AT = 1
o TO(T) to
as in Examplé 2]1, i.e(2.3)is satisfied. However,

[ e wniear = [T oy (ﬁ)/ Ar

to to

= 2\/§/too(70(t))1/3AT = 00

so that(2.8)is not satisfied. So Theor¢m 2.10 is not applicable. In fac{tif = ¢ forall ¢ € T,
thenz is a nonoscillatory unbounded solution .15)

3. SECOND ORDER DYNAMIC EQUATIONS

In this section, we give oscillation criteria for second order dynamic equations of the form
(I.5)-[1.8). Throughout, we assume {1.9), use the notdtion| (1.10), atydiX.

Theorem 3.1.1If

( ligglf/; <% + %/qu(f) +gl(7>>m> " o= oo
lim sup /t (i + L /S(f(f) - gl(f))m) " As— o0

t—oc Jp \7(s)  7(s)Jr
forall T'>t, andall ceR,
then(T.5)is oscillatory.

(3.1)
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Proof. Proceeding as in the proof of Theorém|2.1, we assumertimtain eventually positive
solution of [1.5). Hence there existse T, t; > t, such that:(¢) > 0 forall ¢t > ¢;. Asin the
proof of Theorem 2]1, we may employ Lemfna]1.1 (i) to arrive at

[r(z2)]2(t) = f(t) + ()2’ (t) — () (@7 (1) < f(t) + gi(t)
for all £ > t;. Through integration, we obtain for> ¢,

OG0 < et [ () +m()ar
wherec = r(t;)(z?(t1))". Therefore, for > t,,
c 1 s 1/
_t — T H(THAT As.
(75 + 7 | -+ mmar)
Employing the first condition irf (3] 1), we find

o(t) < z(ty) + /t

t1

0 <liminfz(t) < —oc0,

t—o0

which is a contradiction. The case of an eventually negative solutidn ¢f (1.5) can be dealt with
as in the proof of Theorem 2.1, this time employing the second conditi¢n in @.1).

Corollary 3.2. If

.

t c s 1/
litrgglf/to (@ + % /to (f(r)+ gl(T))AT> As = —o0,
(3.2) . e I K
sy [ (o + [~ n(r)AT)  As = oo
forall ceR,

then(1.5)is oscillatory.

Proof. We show that[(3]2) and (3.1) are equivalent so that the claim follows from Th¢oreém 3.1.
Clearly, [3.1) implies[(3]2). Now assunje (3.2). llét> t, andc € R. Then

(3.3) /Tt (TCS) + %/Ts(fm +gl(7))m) " A
. +/t: <% + %/tj(f(f) +gl(7))m> " A

where

ey = / (F(7) + g1 (7)) A7

to

6= — /tOT (% + % /t:(f(f) + gl(T))AT> " A

so that the first condition ir (3.1) follows. By a similar argument, the second conditipn |n (3.1)
holds as well g

and
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Corollary 3.3. If (2.2)and(2.3)hold and

( t 1 S 1/’7
liminf/ (—/ f(r AT) As = —o0,
t—00 r r(s) Jr (7) y
s v
(34) limsup/ (L/ f(T)AT) As = 0,
t—oo Jp \7(8) Jr
forall T >t,

then(1.5)is oscillatory.

Proof. We show that](2]2)[ (2]3) and (3.4) imply (B.2) so that the claim follows from Corollary
[3.7. Assume[(2]2)[ (2.3) and (B.4). Le€ R. By (2.2) and[(2.B), there exisis > ¢, such that

/: FF)AT < —c— /: o (F)AT.

/v

/ (5+ [+ n(r)ar) A

/v

As

IN Il
5..\“5\“
e N R

=
==
S~—
o
+
3\8
K
—
\]
S~—
D
\]
+
g\ﬂ
=
\]
S~—
>
\]
_
+
<
==
S~—
'ﬂ\m
~
3
D
\]
~~

T
R t 1 s 1/y
= c—|—/T @ . f(T)AT) As,

where

[ (5 /;fmm)”” As

so that the first condition in (3.2) follows. By a similar argument, the second conditipn |n (3.2)
holds as well g

Example 3.1.0n a time scalél satisfying(2.4) we consider

tQ(U(t)Q A 8 1 o 1 a3 __ A
(3:9) (t+a<t>‘” ) T HemE” T iemp ) =0

whereG(t) = t*(o(t))*e—2/u(c(t), to)/1(t), which is of the fornfL.5) with

_ t(o(t))? 1 1 _ . B
S T e LA
By Exampl¢ 2]1(2.3)is satisfied. Furthermore, as
tQ(;—%))Q >t* —o00, t—oo since pu(t)=o(t)—t,
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(2.9)is satisfied as well. Finally, fof' > ¢, we have

)
- /T%Jsgs)e_g/u(a(s),to)As—G(T)/ sH00) A
1 1

= te_apult to) — Te_oyu(T,to) + G(T) (7 - T_>

so that(3.4) is satisfied as well. By Corollafy 3.3, each solution@f5) is oscillatory. One
such oscillatory solution is = F', whereF' is given in Examplg 2]1.

Without explicitly stating the results, we mention that the statement of Theorém 3.1 remains

true if (1.5) is replaced by (1.6, (1.7) arid (1.8) ands replaced byj,, g3 andg,, respectively.
The proofs of these three results are similar to the proof of Theforgm 3.1. We give the following

counterparts of Corollafy 3.3 for equations {1.5)-(1.8).

Corollary 3.4. If (2.2), (2.8)and (3.4) hold, then(I.8)is oscillatory.
Corollary 3.5. If (2.2), (2.3), (2.8)and(3.4) hold, then(I.7)is oscillatory.
Corollary 3.6. If (2.2), (2.3), (2.8)and (3.4) hold, then(1.8)is oscillatory.

As in Theorem§ 2]9 arid 2.]10, we can obtain results about the boundedness of all nonoscilla-
tory solutions of[(1.6)+(1]8). In particular, we state the following criterion[for] (1.8).

Theorem 3.7.If there exists an rd-continuous functipn: T — R satisfyingp(t) > 0 for all

t € T such that
|+ 75 [0+ aimar) Y ps < oo,

then all nonoscillatory solutions dff.8) are bounded.

ACKNOWLEDGEMENT

The authors would like to thank an anonymous referee for his/her careful reading of the entire
manuscript, which helped to significantly improve the quality of this paper.

REFERENCES

[1] R. P. AGARWAL, M. BOHNER, W. S. CHEUNG, and S. R. GRACE. Oscillation criteria for first
and second order forced difference equations with mixed nonlineaiMigth.. Comput. Modelling
45(7-8):965-973, 2007.

[2] R. P. AGARWAL, M. BOHNER, S. R. GRACE, and D. O'REGANDiscrete Oscillation Theory
Hindawi Publishing Corporation, 2005.

[3] R. P. AGARWAL, S. R. GRACE, and D. O'REGANDscillation Theory for Difference and Func-
tional Differential EquationsKluwer Academic Publishers, Dordrecht, 2000.

[4] D. ANDERSON and J. HOFFACKER. Positive periodic time-scales solutions for functional dy-
namic equationsiust. J. Math. Anal. Appl3(1):1-14, Art. 5, 2006.

[5] M. BOHNER and A. PETERSONDynamic Equations on Time Scales: An Introduction with Appli-
cations Birkh&auser, Boston, 2001.

[6] M. BOHNER and A. PETERSONAdvances in Dynamic Equations on Time ScaRiskhauser,
Boston, 2003.

AJMAA Vol. 5, No. 1, Art. 2, pp. 1-12, 2008 AIJMAA


http://ajmaa.org

12 R. AGARWAL AND M. BOHNER

[7] M. BOHNER and C. C. TISDELL. Oscillation and nonoscillation of forced second order dynamic
equationsPacific J. Math, 230(1):59-71, 2007.

[8] G. H. HARDY, J. E. LITTLEWOOD, and G. POLYAInequalities Cambridge University Press,
Cambridge, 1959.

AJMAA Vol. 5, No. 1, Art. 2, pp. 1-12, 2008 AIJMAA


http://ajmaa.org

	1. Introduction
	2. First Order Dynamic Equations
	3. Second Order Dynamic Equations
	Acknowledgement
	References

