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2 R. AGARWAL AND M. BOHNER

1. I NTRODUCTION

Throughout, we letT be a time scale (i.e., a nonempty closed subset of the real numbers)
which is unbounded above. For the theory of time scales, which unifies continuous and discrete
analysis and extends those concepts to “in between” cases, we refer to the monographs [5, 6]
and to [4, Section 7] for readers of this journal. Here we only mention that for a function
f : T → R, the

1. delta derivativef∆ satisfiesf∆(t) = f ′(t) if T = R, f∆(t) = ∆f(t) = f(t+1)−f(t) if
T = N0 andf∆(t) = (f(qt)− f(t))/((q − 1)t) if T = qN0 = {qn : n ∈ N0} with q > 1;

2. forward shiftfσ = f ◦ σ, whereσ : T → T is the forward jump operator, satisfies
fσ(t) = f(t) if T = R, fσ(t) = f(t + 1) if T = N0 andfσ(t) = f(qt) if T = qN0,

and that ifp : T → R is an rd-continuous and regressive (see [5, 6]) function andt0 ∈ T, then
the

3. exponential functionep(·, t0) is defined as the unique solution of the initial value problem
y∆ = p(t)y, y(t0) = 1.

Now, let us introduce the dynamic equations that will be discussed in this paper. In Section
2 below we will study oscillatory behavior and boundedness of solutions of first order dynamic
equations of the form

x∆ − p(t)xσ + q1(t)(x
σ)α = f(t),(1.1)

x∆ + p(t)xσ − q2(t)(x
σ)β = f(t),(1.2)

x∆ + p(t)xσ + q1(t)(x
σ)α − q2(t)(x

σ)β = f(t),(1.3)

x∆ + q1(t)(x
σ)α − q2(t)(x

σ)β = f(t),(1.4)

while in Section 3 below we examine second order dynamic equations of the form

[r(t)(x∆)γ]∆ − p(t)xσ + q1(t)(x
σ)α = f(t),(1.5)

[r(t)(x∆)γ]∆ + p(t)xσ − q2(t)(x
σ)β = f(t),(1.6)

[r(t)(x∆)γ]∆ + p(t)xσ + q1(t)(x
σ)α − q2(t)(x

σ)β = f(t),(1.7)

[r(t)(x∆)γ]∆ + q1(t)(x
σ)α − q2(t)(x

σ)β = f(t),(1.8)

subject to the general assumptions

(1.9)


r, p, q1, q2, f : T → R are rd-continuous,
r(t), p(t), q1(t), q2(t) > 0 for all t ∈ T,
α, β, γ are ratios of odd positive integers,
α > 1, 0 < β < 1,

and each of the equations (1.1)–(1.8) is considered on a subset[t0,∞) of T, wheret0 ∈ T is
fixed. Throughout, we will make use of the rd-continuous functionsg1, g2, g3, g4 : T → R
defined by

(1.10)

{
g1 = (α− 1)αα/(1−α)pα/(α−1)q

1/(1−α)
1 , g2 = (1− β)ββ/(1−β)pβ/(β−1)q

1/(1−β)
2 ,

g3 = δα/(α−1)g1 + (1 + δ)β/(β−1)g2 with δ > 0, g4 = g1 + g2.

A solution of any of the equations (1.1)–(1.8) is callednonoscillatoryif it is eventually positive
or eventually negative; otherwise it is calledoscillatory. Any of the equations (1.1)–(1.8) is
calledoscillatory if all of its solutions are oscillatory. In this paper, we shall give criteria in
terms ofr, p, q1, q2, α, β, γ guaranteeing solutions to equations (1.1)–(1.8) to be oscillatory.
We also give criteria that guarantee that all nonoscillatory solutions of such an equation are
bounded. Such criteria are available in the literature for differential equations (see, e.g., [3]),
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DYNAMIC EQUATIONS WITH M IXED NONLINEARITIES 3

difference equations (see [1] for directly corresponding results and [2, Section 1.15] for linear
difference equations and [2, Section 6.5] for difference equations with deviating arguments)
and, in the linear case, for dynamic equations (see [7]; see also [5, Section 4.3] and [6, Section
4.5]).

We conclude this introduction by stating the following well-known inequality due to Hardy,
Littlewood and Pólya [8]. This inequality is the major tool in the proofs of our criteria given in
Sections 2 and 3 below.

Lemma 1.1. If a andb are nonnegative, then

(i) aα − αabα−1 + (α− 1)bα ≥ 0 for all α > 1;
(ii) aβ − βabβ−1 − (1− β)bβ ≤ 0 for all 0 < β < 1.

In the above inequalities, equality holds if and only ifa = b.

2. FIRST ORDER DYNAMIC EQUATIONS

In this section, we give oscillation criteria for solutions to first order dynamic equations of
the form (1.1)–(1.4). Throughout, we assume (1.9), use the notation (1.10), and fixt0 ∈ T.

Theorem 2.1. If

(2.1) lim inf
t→∞

∫ t

t0

(f(τ) + g1(τ))∆τ = −∞ and lim sup
t→∞

∫ t

t0

(f(τ)− g1(τ))∆τ = ∞,

then(1.1) is oscillatory.

Proof. By way of contradiction, assume that (1.1) is not oscillatory so that it has at least one
eventually positive solution or at least one eventually negative solution. First we assume thatx
satisfies (1.1) and is eventually positive. Hence there existst1 ∈ T, t1 ≥ t0, such thatx(t) > 0
for all t ≥ t1. Set

a = q
1/α
1 xσ and b =

(
1

α
pq
−1/α
1

)1/(α−1)

and use Lemma 1.1 (i) to obtain from (1.1) fort ≥ t1

x∆(t) = f(t) + p(t)xσ(t)− q1(t)(x
σ(t))α

= f(t) + αa(t)(b(t))α−1 − (a(t))α

≤ f(t) + (α− 1)(b(t))α

= f(t) + g1(t)

and thus

x∆(t) = x(t1) +

∫ t

t1

x∆(τ)∆τ ≤ x(t1) +

∫ t

t1

(f(τ) + g1(τ))∆τ

= c +

∫ t

t0

(f(τ) + g1(τ))∆τ

with

c = x(t1)−
∫ t1

t0

(f(τ) + g1(τ))∆τ .

Employing the first condition in (2.1), we find

0 ≤ lim inf
t→∞

x(t) ≤ −∞,
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4 R. AGARWAL AND M. BOHNER

which is a contradiction. Next, we assume thatx satisfies (1.1) and is eventually negative. If
we putx̃ = −x, thenx̃ is an eventually positive solution of (1.1), wheref is replaced by−f .
This case therefore leads to a contradictions as in the first case, provided

lim inf
t→∞

∫ t

t0

(−f(τ) + g1(τ))∆τ = −∞,

which indeed holds due to the second condition in (2.1).

Corollary 2.2. If

(2.2) lim inf
t→∞

∫ t

t0

f(τ)∆τ = −∞ and lim sup
t→∞

∫ t

t0

f(τ)∆τ = ∞

and

(2.3)
∫ ∞

t0

(p(τ))α/(α−1)(q1(τ))1/(1−α)∆τ < ∞,

then(1.1) is oscillatory.

Proof. As (2.2) and (2.3) imply (2.1), this follows from Theorem 2.1.

Example 2.1.LetT be a time scale satisfying

(2.4) µ(t) = σ(t)− t 6= 0 for all t ∈ T, t0 ∈ T, t0 > 0

and consider on[t0,∞) the equation

(2.5) x∆ − 1

t(σ(t))2
xσ +

1

t(σ(t))4
(xσ)3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

which is of the form(1.1)with

p(t) =
1

t(σ(t))2
, q1(t) =

1

t(σ(t))4
, f(t) =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0), α = 3.

Note now thatF (t) = te−2/µ(t, t0) satisfies

F∆(t) = e−2/µ(σ(t), t0)−
2t

µ(t)
e−2/µ(t, t0)

= e−2/µ(σ(t), t0) +
2t

µ(t)
e−2/µ(σ(t), t0)

=
µ(t) + 2t

µ(t)
e−2/µ(σ(t), t0) = f(t),

where we used the product rule on time scales[5, Theorem 1.20 (iii)]and

(2.6) e−2/µ(σ(t), t0) =

(
1− µ(t)

2

µ(t)

)
e−2/µ(t, t0) = −e−2/µ(t, t0),

which follows from[5, Theorem 2.36 (ii)]. Note also that(2.6) together withe−2/µ(t0, t0) = 1
implies that ∫ t

t0

f(τ)∆τ = F (t)− F (t0) = te−2/µ(t, t0)− t0

haslim inf equal to−∞ andlim sup equal to∞ whent →∞, i.e.,(2.2) is satisfied. Moreover,

g1(t) =
2

3
√

3

(
1

t(σ(t))2

)3/2(
1

t(σ(t))4

)−1/2

=
2

3
√

3tσ(t)
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implies that (see[5, Theorem 1.20 (iv)])∫ t

t0

g1(τ)∆τ =
2

3
√

3

(
1

t0
− 1

t

)
→ 2

3
√

3t0
as t →∞,

i.e.,(2.3)is satisfied. By Corollary 2.2, each solution of(2.5)is oscillatory. One such oscillatory
solution isx = F . The same arguments apply to the equation

x∆ − q1(t)(σ(t))2xσ + q1(t)(x
σ)3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

whereq1 : T → R is any rd-continuous function satisfyingq1(t) > 0 for all t ∈ T and∫ ∞

t0

q1(τ)(σ(τ))3∆τ < ∞.

Theorem 2.3. If

(2.7) lim inf
t→∞

∫ t

t0

(f(τ) + g2(τ))∆τ = −∞ and lim sup
t→∞

∫ t

t0

(f(τ)− g2(τ))∆τ = ∞,

then(1.2) is oscillatory.

Proof. We proceed exactly as in the proof of Theorem 2.1, this time setting

a = q
1/β
2 xσ and b =

(
1

β
pq
−1/β
2

)1/(β−1)

and this time using Lemma 1.1 (ii) in the subsequent calculation

x∆(t) = f(t) + q2(t)(x
σ(t))β − p(t)xσ(t)

= f(t) + (a(t))β − βa(t)(b(t))β−1

≤ f(t) + (1− β)(b(t))β

= f(t) + g2(t),

and the rest of the proof is line by line the same as the proof of Theorem 2.1 withg1 replaced
by g2.

Corollary 2.4. If (2.2)holds and

(2.8)
∫ ∞

t0

(p(τ))β/(β−1)(q2(τ))1/(1−β)∆τ < ∞,

then(1.2) is oscillatory.

Proof. As (2.2) and (2.8) imply (2.7), this follows from Theorem 2.3.

Example 2.2.LetT be a time scale satisfying(2.4)and consider on[t0,∞) the equation

(2.9) x∆ +
1

t(σ(t))2
xσ − 1

t(σ(t))4/3
(xσ)1/3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

which is of the form(1.2)with

p(t) =
1

t(σ(t))2
, q2(t) =

1

t(σ(t))4/3
, f(t) =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0), β =

1

3
.

As in Example 2.1,(2.2) is satisfied, and

g2(t) =
2

3
√

3

(
1

t(σ(t))2

)−1/2(
1

t(σ(t))4/3

)3/2

=
2

3
√

3tσ(t)
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6 R. AGARWAL AND M. BOHNER

implies as in Example 2.1 that(2.8) is satisfied. By Corollary 2.4, each solution of(2.9) is
oscillatory. One such oscillatory solution isx = F , whereF is given in Example 2.1. The same
arguments apply to the equation

x∆ + q2(t)(σ(t))−2/3xσ − q2(t)(x
σ)1/3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

whereq2 : T → R is any rd-continuous function satisfyingq2(t) > 0 for all t ∈ T and∫ ∞

t0

q2(τ)(σ(τ))1/3∆τ < ∞.

Now we supply examples where Corollaries 2.2 and 2.4 cannot be applied but Theorems 2.1
and 2.3 can.

Example 2.3.LetT be a time scale satisfying(2.4)and consider on[t0,∞) the equation

(2.10) x∆ − 3
√

3

4σ(t)
xσ +

3
√

3

4(σ(t))3
(xσ)3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

which is of the form(1.1)with

p(t) =
3
√

3

4σ(t)
, q1(t) =

3
√

3

4(σ(t))3
, f(t) =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0), α = 3.

While, as in Example 2.1,(2.2) is satisfied,

(p(t))α/(α−1)(q1(t))
1/(1−α) =

(
3
√

3

4σ(t)

)3/2(
3
√

3

4(σ(t))3

)−1/2

=
3
√

3

4

shows that(2.3) is not satisfied. So we cannot employ Corollary 2.2. However,∫ t

t0

(f(τ) + g1(τ))∆τ = te−2/µ(t, t0)− t0 +
2

3
√

3

3
√

3

4
(t− t0)

= te−2/µ(t, t0) +
t

2
− 3t0

2

shows that the first condition in(2.1) is satisfied. By a similar calculation, the second condition
in (2.1)is seen to hold as well. Therefore, by Theorem 2.1, every solution of(2.10)is oscillatory.
One such oscillatory solution isx = F , whereF is given in Example 2.1. Similarly, we can use
Theorem 2.3 but not Corollary 2.4 to find that all solutions of

x∆ +
3
√

3

4σ(t)
xσ − 3

√
3

4(σ(t))1/3
(xσ)1/3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0)

are oscillatory.

Theorem 2.5. If there exists a constantδ > 0 such that

(2.11) lim inf
t→∞

∫ t

t0

(f(τ) + g3(τ))∆τ = −∞ and lim sup
t→∞

∫ t

t0

(f(τ)− g3(τ))∆τ = ∞,

then(1.3) is oscillatory.

Proof. We proceed exactly as in the proof of Theorem 2.1, this time setting

a1 = q
1/α
1 xσ, b1 =

(
δ

α
pq
−1/α
1

)1/(α−1)

, a2 = q
1/β
2 xσ, b2 =

(
1 + δ

β
pq
−1/β
2

)1/(β−1)
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and this time using Lemma 1.1 (i) and (ii) in the subsequent calculation

x∆(t) = f(t) + δp(t)xσ(t)− q1(t)(x
σ(t))α + q2(t)(x

σ(t))β − (1 + δ)p(t)xσ(t)

= f(t) + αa1(t)(b1(t))
α−1 − (a1(t))

α + (a2(t))
β − βa2(t)(b2(t))

β−1

≤ f(t) + (α− 1)(b1(t))
α + (1− β)(b2(t))

β

= f(t) + g3(t),

and the rest of the proof is line by line the same as the proof of Theorem 2.1 withg1 replaced
by g3.

Corollary 2.6. If (2.2), (2.3)and (2.8)hold, then(1.3) is oscillatory.

Proof. As (2.2), (2.3) and (2.8) imply (2.11), this follows from Theorem 2.5.

Theorem 2.7. If there exists an rd-continuous functionp : T → R satisfyingp(t) > 0 for all
t ∈ T such that

(2.12) lim inf
t→∞

∫ t

t0

(f(τ) + g4(τ))∆τ = −∞ and lim sup
t→∞

∫ t

t0

(f(τ)− g4(τ))∆τ = ∞,

then(1.4) is oscillatory.

Proof. We proceed exactly as in the proof of Theorem 2.1, this time settinga1, b1 anda2, b2 as
a, b from the proofs of Theorem 2.1 and Theorem 2.3, respectively, and this time using Lemma
1.1 (i) and (ii) in the subsequent calculation

x∆(t) = f(t) + p(t)xσ(t)− q1(t)(x
σ(t))α + q2(t)(x

σ(t))β − p(t)xσ(t)

= f(t) + αa1(t)(b1(t))
α−1 − (a1(t))

α + (a2(t))
β − βa2(t)(b2(t))

β−1

≤ f(t) + (α− 1)(b1(t))
α + (1− β)(b2(t))

β

= f(t) + g4(t),

and the rest of the proof is line by line the same as the proof of Theorem 2.1 withg1 replaced
by g4.

Corollary 2.8. If (2.2), (2.3)and (2.8)hold, then(1.4) is oscillatory.

Proof. As (2.2), (2.3) and (2.8) imply (2.12), this follows from Theorem 2.7.

Example 2.4.On a time scaleT satisfying(2.4)we consider

(2.13) x∆ +
1

t(σ(t))4
(xσ)3 − 1

t(σ(t))4/3
(xσ)1/3 =

t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

which is of the form(1.4) with q1, q2, f , α, β as in Examples 2.1 and 2.2. We definep as in
those two examples, i.e.,p(t) = 1/(t(σ(t))2), and then it follows from Example 2.1 that(2.2)
and (2.3)are satisfied, and it follows from Example 2.2 that(2.8) is satisfied. By Corollary 2.8,
each solution of(2.13)is oscillatory. One such oscillatory solution isx = F , whereF is given
in Example 2.1. The same arguments apply to the equation

x∆ + q(t)(xσ)3 − q(t)(σ(t))8/3(xσ)1/3 =
t + σ(t)

µ(t)
e−2/µ(σ(t), t0),

whereq : T → R is any rd-continuous function satisfyingq(t) > 0 for all t ∈ T and∫ ∞

t0

q(τ)(σ(τ))3∆τ < ∞.
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We conclude this section by mentioning that the same arguments as above may be used to
establish criteria that guarantee that all nonoscillatory solutions of any of the equations (1.1)–
(1.4) are bounded. We state the following two such results and supply an example.

Theorem 2.9. If (2.3)holds and

(2.14)
∫ ∞

t0

|f(τ)|∆τ < ∞,

then all nonoscillatory solutions of(1.1)are bounded.

Theorem 2.10. If there exists an rd-continuous functionp : T → R satisfyingp(t) > 0 for
all t ∈ T such that(2.3), (2.8) and (2.14)hold, then all nonoscillatory solutions of(1.1) are
bounded.

Example 2.5.LetT ⊂ (0,∞) be any time scale and consider the equation

(2.15) x∆ +
1

(σ(t))3
(xσ)3 − 2

(σ(t))1/3
(xσ)1/3 = 0,

which is of the form(1.4)with

q1(t) =
1

(σ(t))3
, q2(t) =

1

(σ(t))1/3
, f(t) ≡ 0, α = 3, β =

1

3
.

Clearly, (2.14)is satisfied. We choosep(t) = t−2/3(σ(t))−5/3. Then∫ ∞

t0

(p(τ))3/2(q1(τ))−1/2∆τ =

∫ ∞

t0

(τ−2/3(σ(τ))−5/3)3/2

(
1

(σ(τ))3

)−1/2

∆τ

=

∫ ∞

t0

1

τσ(τ)
∆τ =

1

t0

as in Example 2.1, i.e.,(2.3) is satisfied. However,∫ ∞

t0

(p(τ))−1/2(q2(τ))3/2∆τ =

∫ ∞

t0

(τ−2/3(σ(τ))−5/3)−1/2

(
2

(σ(τ))1/3

)3/2

∆τ

= 2
√

2

∫ ∞

t0

(τσ(t))1/3∆τ = ∞

so that(2.8) is not satisfied. So Theorem 2.10 is not applicable. In fact, ifx(t) = t for all t ∈ T,
thenx is a nonoscillatory unbounded solution of(2.15).

3. SECOND ORDER DYNAMIC EQUATIONS

In this section, we give oscillation criteria for second order dynamic equations of the form
(1.5)–(1.8). Throughout, we assume (1.9), use the notation (1.10), and fixt0 ∈ T.

Theorem 3.1. If

(3.1)


lim inf

t→∞

∫ t

T

(
c

r(s)
+

1

r(s)

∫ s

T

(f(τ) + g1(τ))∆τ

)1/γ

∆s = −∞,

lim sup
t→∞

∫ t

T

(
c

r(s)
+

1

r(s)

∫ s

T

(f(τ)− g1(τ))∆τ

)1/γ

∆s = ∞

for all T ≥ t0 and all c ∈ R,

then(1.5) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 2.1, we assume thatx is an eventually positive
solution of (1.5). Hence there existst1 ∈ T, t1 ≥ t0 such thatx(t) > 0 for all t ≥ t1. As in the
proof of Theorem 2.1, we may employ Lemma 1.1 (i) to arrive at

[r(x∆)γ]∆(t) = f(t) + p(t)xσ(t)− q1(t)(x
σ(t))α ≤ f(t) + g1(t)

for all t ≥ t1. Through integration, we obtain fort ≥ t1

r(t)(x∆(t))γ ≤ c +

∫ t

t1

(f(τ) + g1(τ))∆τ ,

wherec = r(t1)(x
∆(t1))

γ. Therefore, fort ≥ t1,

x(t) ≤ x(t1) +

∫ t

t1

(
c

r(s)
+

1

r(s)

∫ s

t1

(f(τ) + g1(τ))∆τ

)1/γ

∆s.

Employing the first condition in (3.1), we find

0 ≤ lim inf
t→∞

x(t) ≤ −∞,

which is a contradiction. The case of an eventually negative solution of (1.5) can be dealt with
as in the proof of Theorem 2.1, this time employing the second condition in (3.1).

Corollary 3.2. If

(3.2)


lim inf

t→∞

∫ t

t0

(
c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ))∆τ

)1/γ

∆s = −∞,

lim sup
t→∞

∫ t

t0

(
c

r(s)
+

1

r(s)

∫ s

t0

(f(τ)− g1(τ))∆τ

)1/γ

∆s = ∞

for all c ∈ R,

then(1.5) is oscillatory.

Proof. We show that (3.2) and (3.1) are equivalent so that the claim follows from Theorem 3.1.
Clearly, (3.1) implies (3.2). Now assume (3.2). LetT ≥ t0 andc ∈ R. Then

(3.3)
∫ t

T

(
c

r(s)
+

1

r(s)

∫ s

T

(f(τ) + g1(τ))∆τ

)1/γ

∆s

= c1 +

∫ t

t0

(
c2

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ))∆τ

)1/γ

∆s,

where

c2 = c−
∫ T

t0

(f(τ) + g1(τ))∆τ

and

c1 = −
∫ T

t0

(
c2

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ))∆τ

)1/γ

∆s

so that the first condition in (3.1) follows. By a similar argument, the second condition in (3.1)
holds as well.
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Corollary 3.3. If (2.2)and (2.3)hold and

(3.4)


lim inf

t→∞

∫ t

T

(
1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s = −∞,

lim sup
t→∞

∫ t

T

(
1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s = ∞,

for all T ≥ t0,

then(1.5) is oscillatory.

Proof. We show that (2.2), (2.3) and (3.4) imply (3.2) so that the claim follows from Corollary
3.2. Assume (2.2), (2.3) and (3.4). Letc ∈ R. By (2.2) and (2.3), there existsT ≥ t0 such that∫ T

t0

f(τ)∆τ ≤ −c−
∫ ∞

t0

g1(τ)∆τ .

Then ∫ t

t0

(
c

r(s)
+

1

r(s)

∫ s

t0

(f(τ) + g1(τ))∆τ

)1/γ

∆s

≤
∫ t

t0

(
c

r(s)
+

1

r(s)

∫ ∞

t0

g1(τ)∆τ +
1

r(s)

∫ s

t0

f(τ)∆τ

)1/γ

∆s

=

∫ t

t0

(
1

r(s)

[
c +

∫ ∞

t0

g1(τ)∆τ +

∫ T

t0

f(τ)∆τ

]
+

1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s

≤
∫ t

t0

(
1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s

= c̃ +

∫ t

T

(
1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s,

where

c̃ =

∫ T

t0

(
1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s

so that the first condition in (3.2) follows. By a similar argument, the second condition in (3.2)
holds as well.

Example 3.1.On a time scaleT satisfying(2.4)we consider

(3.5)

(
t2(σ(t))2

t + σ(t)
x∆

)∆

− 1

t(σ(t))2
xσ +

1

t(σ(t))4
(xσ)3 = G∆(t),

whereG(t) = t2(σ(t))2e−2/µ(σ(t), t0)/µ(t), which is of the form(1.5)with

r(t) =
t2(σ(t))2

t + σ(t)
, p(t) =

1

t(σ(t))2
, q1(t) =

1

t(σ(t))4
, f = G∆, α = 3, γ = 1.

By Example 2.1,(2.3) is satisfied. Furthermore, as

t2(σ(t))2

µ(t)
≥ t3 →∞, t →∞ since µ(t) = σ(t)− t,
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(2.2) is satisfied as well. Finally, forT ≥ t0 we have∫ t

T

(
1

r(s)

∫ s

T

f(τ)∆τ

)1/γ

∆s =

∫ t

T

s + σ(s)

s2(σ(s))2
(G(s)−G(T ))∆s

=

∫ t

T

s + σ(s)

µ(s)
e−2/µ(σ(s), t0)∆s−G(T )

∫ t

T

s + σ(s)

s2(σ(s))2
∆s

= te−2/µ(t, t0)− Te−2/µ(T, t0) + G(T )

(
1

t2
− 1

T 2

)
so that(3.4) is satisfied as well. By Corollary 3.3, each solution of(3.5) is oscillatory. One
such oscillatory solution isx = F , whereF is given in Example 2.1.

Without explicitly stating the results, we mention that the statement of Theorem 3.1 remains
true if (1.5) is replaced by (1.6), (1.7) and (1.8) andg1 is replaced byg2, g3 andg4, respectively.
The proofs of these three results are similar to the proof of Theorem 3.1. We give the following
counterparts of Corollary 3.3 for equations (1.6)–(1.8).

Corollary 3.4. If (2.2), (2.8)and (3.4)hold, then(1.6) is oscillatory.

Corollary 3.5. If (2.2), (2.3), (2.8)and (3.4)hold, then(1.7) is oscillatory.

Corollary 3.6. If (2.2), (2.3), (2.8)and (3.4)hold, then(1.8) is oscillatory.

As in Theorems 2.9 and 2.10, we can obtain results about the boundedness of all nonoscilla-
tory solutions of (1.5)–(1.8). In particular, we state the following criterion for (1.8).

Theorem 3.7. If there exists an rd-continuous functionp : T → R satisfyingp(t) > 0 for all
t ∈ T such that ∫ ∞

t0

(
1

r(s)
+

1

r(s)

∫ s

t0

(|f(τ)|+ g4(τ))∆τ

)1/γ

∆s < ∞,

then all nonoscillatory solutions of(1.8)are bounded.
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