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ABSTRACT. In the present work, we deal with the biharmonic problems in a bounded domain in
the plane with the nonlinear boundary integral conditions. After applying the Boundary integral
method, a system of nonlinear boundary integral equations is obtained. The result show that
when the nonlinearity satisfies some conditions lead the existence and uniqueness of the solution.
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1. I NTRODUCTION

Problems involving nonlinearities form a basis of mathematical models of various phenom-
ena and processes in mechanics, physics and many other areas of science.
In the paper [7] and [8]), a nonlinear boundary conditions for the Laplace equation is consid-
ered. Using the boundary integral method the problem is converted into a nonlinear integral
equation for the unknown data of the boundary. For studying the solvability of the nonlinear
equation the authors give some assumption on the nonlinearity part.
The purpose of the present paper is to see the feasibility of extending the approach in [7] and
[8]), for the Laplace equation to the biharmonic equation.

The biharmonic equations are an important class of equations in both physics and engineer-
ing. In fluid dynamics, the so-called stream function satisfies the biharmonic equation. Many
problems in elasticity can also be formulated in terms of the biharmonic equation where the
fundamental physical quantities such as displacement, stress, and strain all satisfy the bihar-
monic equation. There have been extensive research activities on the biharmonic equation both
theoretically and computationally (see, for example, [5], [9]).

In the present paper, we look for the solution of the Bilaplacian equation with nonlinear data
of the form:

∆2u(x) = 0 , x ∈ Ω,(1.1)

∆u(x) = −
∫

Γ

K1 (x, u(y), ∂nu(y)) dsy + f(x) , x ∈ Γ,(1.2)

−∂n∆u(x) = −
∫

Γ

K2 (x, u(y), ∂nu(y)) dsy + g(x) , x ∈ Γ.(1.3)

We denote byn = (n1, n2) the unit outward normal vector toΓ, and the normal derivative by
∂n(.) := ∂(.)

∂n
.

The given functionsf ∈ H− 1
2 (Γ) andg ∈ H− 3

2 (Γ) are defined onΓ .
The boundary operators(∆) , (−∂n∆) and(∆2) are defined by

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

∆2u =
∂2

∂x2
1

(
∂2u

∂x2
1

+
∂2u

∂x2
2

) +
∂2

∂x2
2

(
∂2u

∂x2
2

+
∂2u

∂x2
1

)

−∂n∆u = −n1
∂∆u

∂x1

− n2
∂∆u

∂x2

physically,(∆u) is the bending moment and−∂n∆u is the transverse force consisting of the
shear force and twisting moment . Foru ∈ H2(Ω) we have thatu|Γ ∈ H

3
2 (Γ) and∂nu|Γ ∈

H
1
2 (Γ).

In (1.1), we assumeΩ is an open bounded region inR2 with a smooth boundaryΓ = ∂Ω , and

f : Γ → R , K1 : Γ× R× R → R
g : Γ → R , K2 : Γ× R× R → R

are given real value functions with some precise assumptions onKi , i = 1, 2 that we will state
below.

Now integration by parts leads to the first Green formula in the form

(1.4)
∫

Ω

(∆2uvdx = a(u, v)−
∫

Γ

{∂nv.∆u− v.∂n∆u} ds, x ∈ Ω
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where the bilinear forma(u, v) is defined by

(1.5) a(u, v) =

∫
Ω

∆u∆vdx.

We note that the bilinear forma(., .) is well defined for functions inH2(Ω). Now let u ∈
H2(Ω,42) where

H2(Ω,42) = {u ∈ H2(Ω);42u ∈ H̃−2(Ω)}
with H̃−2(Ω) denoting the dual space ofH2(Ω) and choosev ∈ H2(Ω). Then the above Green
formula holds and by duality argument one shows that∆u ∈ H− 1

2 (Γ) and−∂n∆u ∈ H− 3
2 (Γ)

are well defined, whereH− 1
2 (Γ) andH− 3

2 (Γ) are the dual spaces ofH
1
2 (Γ) andH

3
2 (Γ), respec-

tively.
By the integral equation method, we formulate a system of nonlinear integral equations on the
boundaryΓ of the domainΩ. Under some assumptions on the Kernel of the nonlinear integral
equationsKi (x, u, ∂nu) we prove the existence and uniqueness of the solution.

Definition 1.1. (see [1], [3], [5], and [10]).
Let m ∈ N, we denote byHm(Ω) the Sobolev space

Hm(Ω) = {u ∈ L2(Ω); Dαu ∈ L2(Ω), |α| ≤ m}.

Definition 1.2. (see [1], [3], [5], and [10]).
Let s ∈ R , we denote byHs(Rn) the Sobolev space :

Hs(Rn) = {u ∈ L2(Rn); (1 + |ξ|2)
s
2 |F [u]| ∈ L2(Rn)},

and the associated norm:

‖u‖Hs = (

∫
Rn

(1 + |ξ|2)s|F [u]|2dξ)
1
2 ,

with F [.] the Fourier transform.

Definition 1.3. ,(see [1], [3], [5], and [10]).
Let Ω ⊂ Rn a bounded domain andΓ := ∂Ω, we defined

Hs(Ω) = {u|Ω : u ∈ Hs(Rn)}, s ∈ R

Hs(Γ) =

 {u|Γ : u ∈ Hs+ 1
2 (Rn)}, s > 0

L2(Γ), s = 0
(H−s(Γ))

′
( dual space), s < 0

.

2. THE BOUNDARY I NTEGRAL METHOD

For reformulate the problem (1.1, 1.2 and 1.3) as a system of nonlinear boundary integral
equations, we start with the Green representation formula of a weak solution inH2(Ω)

(2.1) u(x) = V(∆u,−∂n∆u)(x)−W(u, ∂nu)(x) , x ∈ Ω,

in term of simple and double layer potentiels [3], and [5]. Here

V : H− 1
2 (Γ)×H− 3

2 (Γ) → H2(Ω) andW : H
3
2 (Γ)×H

1
2 (Γ) → H2(Ω)

are continuous operators defined by

V(∆u,−∂n∆u)(x) =

∫
Γ

{
E(x, y)(−∂n∆u(y)) + ∂nyE(x, y)(∆u(y))

}
dsy, x ∈ R2 \ Γ,
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4 R. HAMDOUCHE AND H. SAKER

W(u, ∂nu)(x) =

∫
Γ

{
∆yE(x, y)∂nu(y)− ∂ny∆E(x, y)u(y)

}
dsy, x ∈ R2 \ Γ

where

(2.2) E (x, y) :=
1

8π
|x− y|2 log |x− y|

is the fundamental solution of the biharmonic equation.
Lettingx → Γ from insideΩ, and following the standard procedure in potential theory involving
jump relations, we obtain the following integral equations onΓ (see [3], and [5]):

u(x) =

∫
Γ

{
E(x, y).(−∂n∆u(y)) + ∂nyE(x, y).∆u(y)

}
dsy +

1

2
u(x)

(2.3) −
∫

Γ

{
(∆yE(x, y))∂nyu + (−∂ny∆E(x, y)).u(y)

}
dsy,

∂nu(x) =

∫
Γ

{
∂E(x, y)

∂nx

(−∂n∆u(y)) + (
∂2E

∂nx∂ny

(x, y)∆u(y)

}
dsy +

1

2
∂nu(x)

(2.4) −
∫

Γ

{
(

∂

∂nx

∆yE(x, y))∂nyu(y) + (
∂

∂nx

(−∂n∆)yE(x, y))u(y)

}
dsy.

In present time, in order to formulate the integral equations, we define the following operators
at the boundary:

Definition 2.1. Let u ∈ C∞ (Γ). We define the following operators forx ∈ Γ:

K11u(x) =

∫
Γ

(−∂n∆y)E(x, y))u(y)dsy

V12∂nu(x) = −
∫

Γ

∆yE(x, y)
∂u

∂ny

dsy

D21u(x) =

∫
Γ

∂

∂nx

(−∂n∆y)E(x, y))u(y)dsy

K22∂nu(x) = ∂nV12∂nu(x)

V13∆u(x) =

∫
Γ

∂E

∂ny

(x, y)∆u(y)dsy

V14(−∂n∆u(x)) =

∫
Γ

E(x, y)(−∂n∆)u(y)dsy

V23∆u(x) = ∂nV13∆u(x)

V24(−∂n∆)u(x) = ∂nV14(−∂n∆)u(x)

Ai(x, u(x), ∂nu(x)) =

∫
Γ

Ki (x, u(y), ∂nu(y)) dsy , i = 1, 2

.

The mapping properties of the integrals operators are collected in the following lemma.

Lemma 2.1. (see[1], [3], [5], and[10]) . The operators defined by :

K11 : Hs (Γ) −→ Hs (Γ) , D21 : Hs (Γ) −→ Hs−1 (Γ)

V12 : Hs (Γ) −→ Hs+1 (Γ) , V13 : Hs (Γ) −→ Hs+3 (Γ)
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V14 : Hs (Γ) −→ Hs+3 (Γ) , V23 : Hs (Γ) −→ Hs+1 (Γ)

V24 : Hs (Γ) −→ Hs+3 (Γ) , K22 : Hs (Γ) −→ Hs (Γ)

are continuous.

For the problem (1.1, 1.2 and 1.3) as integral equations at the boundaryΓ, we consider
u ∈ H2 (Ω, ∆2) satisfying the boundary conditions of the problem (1.1, 1.2 and 1.3).
If we introduce in the system (2.3) and (2.4) the given functions and the unknown functions on
Γ such that: {

u (x) = v (x) (unknown function)
∂nu (x) = w (x) (unknown function)

, x ∈ Γ,

and {
∆u(x) = A1(x, u(x), ∂nu(x)) + f(x) , x ∈ Γ

−∂n∆u(x) = A2(x, u(x), ∂nu(x)) + g(x) , x ∈ Γ
,

the equation (2.3)and (2.4) may be written as{
(1

2
I + K11)v − V12w + V14A2(x, v, w) + V13A1(x, v, w) = V14g + V13f

−D21v + (1
2
I −K22)w + V24A2(x, v, w) + V23A1(x, v, w) = V24g + V23f

.

This system of equations can be written in a matrix form as follows[
1
2
I + K11 −V12

−D21
1
2
I −K22

] [
v(x)
w(x)

]
+

[
V14 V13

V24 V23

] [
A2(x, v, w)
A1(x, v, w)

]
=[

V14 V13

V24 V23

] [
g(x)
f(x))

]
(2.5) L(U) + V (A(U)) = V (F ) onΓ,

where

L =

[
1
2
I + K11 −V12

−D21
1
2
I −K22

]
, V =

[
V14 V13

V24 V23

]
, A =

[
A2(x, v, w)
A1(x, v, w)

]
and

U =

(
v
w

)
, F =

(
g
f

)
.

For studying the solvability of the nonlinear equation (2.5 ) , we give some assumptions to
be made here.
(H1) The KernelsK1(., ., .) andK2(., ., .) are a Caratheodory functions.
(H2) We assume that for allx ∈ Γ,

K1(x, ., .) : R× R → R , K2(x, ., .) : R× R → R

are differentiable and the derivatives are bounded satisfying

0 < α ≤ ∂K1

∂v
≤ l1 < +∞ , |∂K1

∂w
| ≤ β

0 < α ≤ ∂K2

∂w
≤ l2 < +∞ , |∂K2

∂v
| ≤ β

for some constantsα, β andli, i = 1, 2 with α > β.
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Remark 2.1. 1) The functionsK1(., ., .) andK2(., ., .) are Caratheodory functions(H1) (i.e)
K1(., v, w) andK2(., v, w) are measurable for all(v, w) ∈ R×R andK1(x, ., .), K2(x, ., .) are
continuous for almost allx ∈ Γ.

2) The assumption(H2) implies that the Nemytski operator

A : L2(Γ)× L2(Γ) → L2(Γ)× L2(Γ)

is Lipschitz continuous and strongly monotonous.
From the Lagrange’s mean value theorem, there existsζ1, ζ2 such that:

K1(v, w)−K1(v
′, w′) = (K1(v, w)−K1(v

′, w)) + (K1(v
′, w)−K1(v

′, w′))

=
∂K1(ζ1, w)

∂v
(v − v′) +

∂K1(v
′, ζ2)

∂w
(w − w′),

then

(v − v′)(A1(v, w)− A1(v
′, w′)) ≥ mes(Γ)(α |v − v′|2 − β |v − v′| |w − w′|)

≥ mes(Γ)(α |v − v′|2 − 1

2
β |v − v′|2 − 1

2
β |w − w′|2),

such that

|a.b| ≤ 1

2
|a|2 +

1

2
|b|2 .

In the same manner it can be shown that

(w − w′)(A2(v, w)− A2(v
′, w′)) ≥ mes(Γ)(α |w − w′|2 − 1

2
β |v − v′|2 − 1

2
β |w − w′|2).

Finally combining these inequalities, we obtain

(U − U ′, A(U)− A(U ′)) = ((v − v′), A1(v, w)− A1(v
′, w′))

+ ((w − w′), A2(v, w)− A2(v
′, w′))

≥ mes(Γ)(α− β)(‖v − v′‖2
+ ‖w − w′‖2

)

≥ mes(Γ)(α− β) ‖U − U ′‖2
0 ,

with U = (v, w), U ′ = (v′, w′) ∈ L2(Γ)× L2(Γ) Hence the operatorA(U) is strongly monoto-
nous.
For the continuity of the Nemytski operatorA(U)

|K1(v, w)−K1(v
′, w′)| = |(K1(v, w)−K1(v

′, w)) + (K1(v
′, w)−K1(v

′, w′))|

= |∂K1(ζ1, w)

∂v
(v − v′) +

∂K1(v
′, ζ2)

∂w
(w − w′)|

≤ l1 |v − v′|+ β |w − w′|
≤ Max{l1, β}(|v − v′|+ |w − w′|)
≤ l1(|v − v′|+ |w − w′|),

then we have

‖A1(U)− A1(U
′)‖ ≤ mes(Γ)l1 ‖U − U ′‖0 .

In the same manner, it can be shown that
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‖A2(U)− A2(U
′)‖ ≤ mes(Γ)l2 ‖U − U ′‖0 ,

then we get

‖A(U)− A(U ′)‖0 ≤ mes(Γ)(l1 + l2) ‖U − U ′‖0 ,

which proves that the operatorA is Lipschitz continuous forU = (v, w), U ′ = (v′, w′) ∈
L2(Γ)× L2(Γ).

Based on this property we can consider the solvability of (2.5).

Theorem 2.2.Let assumptions(H1) and(H2) hold. Then, for everyF = (g, f) ∈ H− 3
2 (Γ)×

H− 1
2 (Γ) there exists a uniqueU = (v, w) ∈ H

3
2 (Γ)×H

1
2 (Γ) such that

L(U) + V (A(U)) = V (F ) onΓ.

Proof. The proof follows from the well-known theorem by Browder and Minty on monotone
operators (see [2] and [6]).
Since the simple layer potential operator onΓ

V : H− 3
2 (Γ)×H− 1

2 (Γ) → H
3
2 (Γ)×H

1
2 (Γ)

is an isomorphism it is sufficient to consider the unique solvability of equation

(2.6) TU := V −1LU + AU = F onΓ.

We shall prove that the operator

T : H
3
2 (Γ)×H

1
2 (Γ) → H− 3

2 (Γ)×H− 1
2 (Γ)

is continuous and strongly monotonous.
i- in the first we show thatT is continuous:
It is clear from the continuity of the mapping properties of the simple layer operatorV andL
by the Lemma 2.1 , that

V −1L : H
3
2 (Γ)×H

1
2 (Γ) → H− 3

2 (Γ)×H− 1
2 (Γ)

is continuous. And from (H2)

A : H
3
2 (Γ)×H

1
2 (Γ) → H− 3

2 (Γ)×H− 1
2 (Γ)

is continuous. Hence the boundary integral operator

T : H
3
2 (Γ)×H

1
2 (Γ) → H− 3

2 (Γ)×H− 1
2 (Γ)

is continuous.

ii- In the second we show thatT is strongly monotonous operator.
Let µ = (µ1, µ2) ∈ H− 3

2 (Γ)×H− 1
2 (Γ) defined by

µ(x) := V −1LU(x),

for all U(x) = (v, w) ∈ H
3
2 (Γ)×H

1
2 (Γ) , is the(∆ϕ,−∂n∆ϕ) of the biharmonic function

ϕ(x) = V(∆ϕ(x),−∂n∆ϕ(x))−W(ϕ(x),
∂ϕ

∂n
)

= Vµ(x)−WU(x)
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for x ∈ Ω, this means thatϕ(x) satisfies the problem
∆2ϕ(x) = 0 , x ∈ Ω
ϕ(x) = v , x ∈ Γ
∂ϕ
∂n

= w , x ∈ Γ
.

Then Green’s theorem yields

(V −1LU, U) =
∫
Γ

µ1vds +
∫
Γ

µ2wds

= −
∫
Γ

∂n∆ϕϕds +
∫
Γ

∆ϕ∂ϕ
∂n

ds

= a(ϕ, ϕ).

Hence, the linearity ofV −1L implies that for allU,U ′ ∈ H
3
2 (Γ)×H

1
2 (Γ)

(V −1L(U − U ′), U − U ′) = a(ϕ− ϕ′, ϕ− ϕ′)

=

∫
Ω

(∆(ϕ− ϕ′))2dx.

In an other hand, we have

‖ϕ− ϕ′‖H2(Ω) ≤ c ‖U − U ′‖
H− 3

2 (Γ)×H− 1
2 (Γ)

≤ c ‖U − U ′‖0 .

Hence,

(TU − TU ′, U − U ′) = (AU − AU ′, U − U ′) + (V −1L(U − U ′), U − U ′)

≥ mes(Γ)(α− β) ‖U − U ′‖2
0 + a(ϕ− ϕ′, ϕ− ϕ′)

≥ mes(Γ)(α− β) ‖U − U ′‖2
0

≥ mes(Γ)

c2
(α− β) ‖ϕ− ϕ′‖2

H2(Ω)

≥ mes(Γ)

c2
(α− β) ‖U − U ′‖2

H
3
2 (Γ)×H

1
2 (Γ)

by the trace theorem (see [3] and [5] ). Which completes the proof.

Conclusion 1. Finding weak solutionu ∈ H2(Ω) of problem ( 1.1 , 1.2, and 1.3 ) is composed
in three steps.
- Firstly, a system of nonlinear boundary integral equations 2.5 is solved for(u, ∂u

∂n
) on the

boundaryΓ .
- In the next step, boundary differential operators(∆u,−∂n∆u) are deduced from formula (
1.1and 1.2 ).
- The last step consists on determiningu(x) at any pointx ∈ Ω by formula 2.1.
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