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1. I NTRODUCTION

The inverse conductivity problem can be mathematically expressed as the Dirichlet problem

(P1)

 5 ·
(
γ(z)5 u(z)

)
= 0 in Ω

u = f on∂Ω

whereγ ∈ L∞(Ω) is the electrical admittivity,u(z) ∈ H1(Ω) represents the electrical potential,
andΩ is an open smooth and bounded domain inR2.
The Dirichlet-to-Neumann map

Λγ : H
1
2 (∂Ω) → H− 1

2 (∂Ω)

Λγf = γ ∂u
∂ν
|∂Ω

represents the current flux on the boundary∂Ω, where
∂u

∂ν
is the normal derivative, andν is the

outer unit vector. For complex values, the admittivityγ(z) can be written asγ(z) = σ(z)+iε(z),
whereσ(z) represents the conductivity andε(z) the admittivity.
An important application of the inverse admittivity problem, is the electrical impedance tomog-
raphy (EIT). This technology allows us to determine the location of the tumors inside a body
(cancer tissues). Experimentally, the cancer cells appear to be four times more conductive than
the normal tissues. Also the (EIT) technology is considered to be less harmful for patients and
more time consumable.
In 1980, Calderon introduced the inverse conductivity problem. He solved the problem by con-
sidering small perturbations of constant conductivity (see[4]).
Later, in 1996, Nachman solved the Calderon’s problem using the D-Bar method. In this method
he found the scattering transformt(k) from the boundary valuesΛγ, then he reconstructed the
real-valued functionγ from the scattering transformt(k). The method was of high regularity,
whereγ ∈C2(Ω), (see [18]).
Brown and Uhlmann, in 1997, transformed the problem into a first-order system. In this method,
the problem was solved for weaker regularity, namelyγ ∈C1(Ω) (see[2]). This method was
reformulated as a reconstructive procedure by K. Knudsen and A. Tamasan in [14].
Later, the problem was solved for smooth conductivityγ, i.e. γ ∈ L∞(Ω). This was done by
Astala and Paivarinta in 2006 in [1].
In 2003, an approximation for the scattering transformt(k) was introduced by S. Siltanen, J.
Mueller and D. Isaacson. The approximation was denoted bytexp, where, in the scattering trans-
form t(k), the (CGO) solutions are replaced by the asymptotic behavior of the CGO solutions
(for more details see [19]).
Another approximation fort(k) was introduced by S. Siltanen and J. Mueller in [17]. This
approximation is denoted bytB, where an approximation for the CGO solutions is determined
by solving a boundary integral equation. These approximations can be seen as regularization
techniques.
In 2014, El Arwadi studied the stability of the reconstruction method viatB approximation in
[5], while Siltanen and Mueller in [10], studied the stability of the method viatexp approxima-
tion.
The uniqueness of the solutions for the inverse conductivity problem for complex conductivity
was proved by Francini in [7]. She used the CGO solutions withγ = σ+ iωε, whereγ, ω andε
are respectively the electrical conductivity, frequency and electrical permittivity. Her work can
be considered as an extension of the real-valued conductivity results to complex-valued in-
cluding the electrical permittivityε. Francini’s work included the proof of the existence and
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uniqueness of admittivityγ, in addition to introduce an approach to solve the problem using the
D-Bar method.
Later in 2012, S. Hamilton and A. Von Herrmann introduced a six-step D-Bar reconstruc-
tion algorithm based on the D-Bar method, (see[8]), which is considered as a reformulation
of Francini’s work. The considered reconstruction problem is an ill-posed inverse problem,
since small differences in the boundary measurements will cause changing in the internal con-
ductivity.
In studying the stability of the reconstruction method, the boundary values are no moreΛγ.
Since due to the noiseε, the boundary data is denoted byΛε

γ. Thus, as the noiseε tends to zero,
thenγε tends toγ. Hence the problem is said to be stable.
In this paper, we present the six-step reconstruction method in section 2, then the stability of
this method is studied in section 3, by considering the approximationtexp. In section 4, we
study the stability via thetB approximation and we end with a concluding section.

2. DIRECT RECONSTRUCTION ALGORITHM

In this section, we present the direct reconstruction algorithm as mentioned in Hamilton’s
work in [9]. The algorithm consists of six steps, it starts with Dirichlet-to-Neumann mapΛγ,
which represents the current flux on the boundary and ending with the values of the admittivity
γ. The six steps are as follows

Λγ → u1(z, k), u2(z, k) → ψ12(z, k), ψ12(z, k) → S(k) →M(z, k) → Q(z) → γ(z)

Throughout the whole algorithm,σ0 andE are assumed to be positive such that

(2.1) σ(z) > σ0, z ∈ Ω ⊂ R2

and

(2.2) ‖σ‖W 1,∞ , ‖ε‖W 1,∞ ≤ E,

whereΩ is a bounded smooth domain inR2.
The following two theorems relate the current fluxΛγ on the boundary with the exponentially

growing solutionsu1 andu2.

Theorem 1. [22]. Letγ(z) = σ(z) + iwε(z) ∈ W 2,p(Ω), with p > 1 such thatσ andε satisfy
(2.1)and (2.2), and letγ(z)− 1 have a compact support inW 2,p(Ω). Suppose thatγ = 1 in a
neighborhood of∂Ω. Then for any non-exceptionalk ∈ C\{0}, the trace of the exponentially
growing solutionu1(., k) on∂Ω is the unique solution to the boundary integral equation

(2.3) u1(z, k) =
eikz

ik
−

∫
∂Ω

Gk(z − ζ)(Λγ − Λ1)u1(ζ, k)dS(ζ)

Theorem 2. [8] Let γ(z) = σ(z) + iwε(z) ∈ W 2,p(Ω), with p > 1 such thatσ andε satisfy
(2.1)and (2.2), and letγ(z)− 1 have a compact support inW 2,p(Ω). Suppose thatγ = 1 in a
neighborhood of∂Ω. Then for any non-exceptionalk ∈ C\{0}, the trace of the exponentially
growing solutionu2(., k) on∂Ω is the unique solution to the boundary integral equation

(2.4) u2(z, k) =
e−ikz̄

−ik
−

∫
∂Ω

Gk(−z̄ + ζ̄)(Λγ − Λ1)u2(ζ, k)dS(ζ)

These theorems result from the relationship between the exponentially growing solutions
ψs(z, k) to the Schrödinger equation

(−∆ + q(z))ψs(z, k) = 0
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and the CGO solutionsu1(z, k) andu2(z, k), whereq =
∆γ

1
2

γ
1
2

.

In the case of a real-valued functionγ, the trace of the functionψs(z, k) on ∂Ω satisfies the
integral equation

(2.5) ψs(z, k) = eikz −
∫

∂Ω

Gk(z − ζ)(Λγ − Λ1)ψs(z, k)dS(ζ)

wherez ∈ ∂Ω andk ∈ C\{0}.
The functionGk(z) is the Faddeev’s Green’s function, and is defined by

Gk(z) = eikzgk(z), −∆Gk = δ

where

gk(z) =
1

(2π)2

∫
R2

eizξ

ξ(ξ̄ + 2k)
dξ, (−∆− 4ik∂̄z)gk = δ.

Equation (2.5) is a Fredholm equation of the second kind and is uniquely solvable inH
1
2 (∂Ω)

for anyk ∈ C\{0}.
The following lemmas state the relation betweenψs(z, k) and the CGO solutionsu1(z, k) and
u2(z, k)

Lemma 1. [22]. Let γ(z) = σ(z) + iwε(z) ∈ W 2,p(Ω), with p > 2 such thatσ and ε
satisfy (2.1) and (2.2), and letγ(z) − 1 have a compact support inW 1,p(Ω). Let u1(z, k)
be the exponentially growing solution to the admittivity equation in (P1), andψs(z, k) be the
exponentially growing solution to the Schrödinger equation(2), when it exists, then

iku1(z, k) = γ−
1
2 (z)ψs(z, k)

Lemma 2. [8]. Letγ(z) = σ(z)+iwε(z) ∈ W 2,p(Ω), withp > 2 such thatσ andε satisfy(2.1)
and(2.2), and letγ(z)−1 have a compact support inW 1,p(Ω). Letu2(z, k) be the exponentially
growing solution to the admittivity equation in (P1), andψs(z, k) be the exponentially growing
solution to the Schrödinger equation(2), when it exists, then

−iku2(z, k) = γ−
1
2 (−z̄)ψs(−z̄, k)

If u(z) is the solution of the Dirichlet problem (P1), andf is the electrical potential applied on
the boundary, then the problem (P1) can be transformed into a system of first order as follows,

(2.6) D

(
u
v

)
−Q

(
u
v

)
= 0

where

D =

(
∂̄z 0
0 ∂z

)
The potential matrixQ is given by

(2.7) Q =

(
0 −1

2
∂z log γ(z)

−1
2
∂̄z log γ(z) 0

)
The operators∂z and∂̄z are the Cauchy-Riemann operators given by the formulas

∂z =
1

2

(
∂

∂x
− i

∂

∂y

)
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and

∂̄z =
1

2

(
∂

∂x
+ i

∂

∂y

)
.

Let (
v
w

)
= γ(z)

1
2

(
∂zu
∂̄zu

)
be a particular solution to the system in (2.6).R2 is represented withC so thatz = x + iy
,wherex, y ∈ R.

The second step of the algorithm is to relate the geometrical optics solutionsΨ(z, k) with the
exponentially growing solutionsu1 andu2, such that(

Ψ11

Ψ21

)
= γ

1
2

(
∂zu1

∂̄zu1

)
and (

Ψ12

Ψ22

)
= γ

1
2

(
∂zu2

∂̄zu2

)
.

Then system (2.6) takes the form

(D −Q) Ψ(z, k) = 0

wherek is a complex parameter.
The solutionsΨ(z, k) of the above system can be written in the form

(2.8) Ψ(z, k) = M(z, k)

(
eikz 0
0 e−ikz̄

)
=

(
M11e

ikz M12e
ikz

M21e
−ikz̄ M22e

−ikz̄

)
whereM(z, k) is a complex-valued matrix function such that

(2.9) ‖M(z, k)− I‖Lp(R2) <∞
for somep > 2. I is the2× 2 identity matrix.
In Theorem 4.1 in [7], Francini solves a D-Bar equation, which determines the complex matrix
M . The theorem states the following:

Theorem 3. Let σ andε satisfy the conditions(2.1) and (2.2) andM be as in(2.9). The map
k −→M(., k) is differentiable as a map intoLr

−β and satisfies the equation

∂̄kM(z, k) = M(z, k̄)

(
ek̄(z) 0

0 e−k(z)

)
S(k)

where

S(k) =
i

π

∫
R2

(
e−k̄(z) 0

0 −ek(z)

)
(QM)offdµ(z)

Moreover, for everyp > 2, sup‖M(z, .) − I‖Lp(R2) ≤ k2 wherek2 depends onE, σ0 , Ω and
p.

The matrix S is called the scattering matrix associated to the admittivityγ.
Using (2.8) in System (2.6), allows us to find a relation between the complex matrixM and the
potential matrixQ as follows

(2.10) ∂̄zM11(z, k)−Q12(z)M21(z, k) = 0

(2.11) (∂̄z − ik)M12(z, k)−Q12(z)M22(z, k) = 0

(2.12) (∂z + ik)M21(z, k)−Q21(z)M11(z, k) = 0
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(2.13) ∂zM22(z, k)−Q21(z)M12(z, k) = 0

and in matrix form
DkM(z, k)−Q(z)M(z, k) = 0

where

DkM = DM − ik

(
1 0
0 −1

)
Moff

andMoff is the off-diagonal part of the matrixM .
The determination ofΨ12(z, k) and Ψ21(z, k) in terms of the CGO solutionsu1(z, k) and
u2(z, k) can be seen in the following theorem.

Theorem 4. [8] The traces of the exponentially growing solutionsΨ12(z, k) andΨ21(z, k) for
k ∈ C\{0} can be determined by

(2.14) Ψ12(z, k) =

∫
∂Ω

eik̄(z−ζ)

4π(z − ζ)
(Λγ − Λ1)u2(ζ, k)dS(ζ)

(2.15) Ψ21(z, k) =

∫
∂Ω

[
eik(z−ζ)

4π(z − ζ)

]
(Λγ − Λ1)u1(ζ, k)dS(ζ)

whereu1(z, k) andu2(z, k) are determined using equations(2.3)and (2.4).

The third step of the algorithm is to determine the scattering transformS(k) from the ex-
ponentially growing solutionsΨ12(z, k) andΨ21(z, k). In theorem 3, the scattering transform
matrices take the form

S(k) =
i

π

∫
R2

(
e−k̄(z) 0

0 −ek(z)

)
(QM)offdµ(z)

=
i

π

∫
R2

(
e−k̄(z) 0

0 −ek(z)

) (
0 Q12(z)M22(z, k)

Q21(z)M11(z, k) 0

)
dµ(z)

The entriesS12 andS21 are

(2.16) S12(k) =
i

2π

∫
∂Ω

e−ik̄zψ12(z, k)νdS(z)

(2.17) S21(k) =
−i
2π

∫
∂Ω

eik̄ψ21(z, k)νdS(z)

whereν represents the outer unit vector to the boundary∂Ω.
The complex matrixM is related to the scattering transform matrixS in the D-Bar equation

stated in theorem 3. Thus the D-Bar equation takes the form

(2.18) ∂̄kM(z, k) = M(z, k̄)

(
ek̄(z) 0

0 e−k(z)

)
S(k)

This equation is solved inside the domainΩ.
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The entries of the potential matrixQ can be determined in terms of the complex matrixM using
equations (2.10), (2.11), (2.12) and (2.13) as follows

(2.19) Q12(z) =
∂̄zM+(Q, z, 0)

M−(Q, z, 0)

(2.20) Q21(z) =
∂̄zM−(Q, z, 0)

M+(Q, z, 0)

where

(2.21) M+(Q, z, k) = M11(Q, z, k) + e(z,−k)M12(Q, z, k)

(2.22) M−(Q, z, k) = M22(Q, z, k) + e(z, k)M21(Q, z, k).

The potential matrixQ is defined in terms of the admittivityγ mentioned in (2.7). Thus,

(2.23) Q =

(
0 −1

2
∂z log(γ(z))

−1
2
∂̄z log(γ(z)) 0

)
=

(
0 Q12

Q21 0

)
then

(2.24) Q12 = −1

2
∂z log γ(z)

(2.25) Q21 = −1

2
∂̄z log γ(z).

Therefore, the admittivity distributionγ is determined from the above relations, and we write

(2.26) log γ(z) = − 2

π

∫
C

Q12

z̄ − ζ
dµ(ζ) = − 2

π

∫
C

Q21

z − ζ
dµ(ζ).

3. STABILITY OF THE D-BAR EQUATION VIA texp APPROXIMATION

The texp regularization can be obtained by replacing the trace of the exponentially growing

solutionsu1(z, k) andu2(z, k) with
eikz

ik
and

e−ikz̄

−ik
respectively.

In this section we study the stability of the D-Bar reconstruction method withtexp regularization
for complex values of the admittivityγ(z). For real conductivities, the stability was studied in
[10]. In this section we follow a similar strategy. We start by reformulating each step of the
reconstruction method as an operator. Thus we define,

uexp
1 =

eikz

ik
anduexp

2 =
e−ikz̄

−ik
which represents the approximation of step 1 in the reconstruction method.

Our target is to construct an operatorTexp such thatγexp = T exp(Λγ − Λ1). If δ represents the
noise level due to external effects, thenγexp

δ = T exp(Λδ
γ−Λ1). The stability of the reconstruction

method can be established by studying the difference

‖γexp − γexp
δ ‖ =

∥∥T exp(Λγ − Λ1)− T exp(Λδ
γ − Λ1)

∥∥
AJMAA, Vol. 13, No. 1, Art. 21, pp. 1-14, 2016 AJMAA
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Thus, asδ tends to zero,γexp
δ must tend toγ. This result can be established by proving the

continuity of the operatorTexp.
We denote byM ⊂ L(H

1
2 (∂Ω), H− 1

2 (∂Ω)), the set of operatorsL ∈ L(H
1
2 (∂Ω), H− 1

2 (∂Ω)),
such thatΛγ1 = Λ11 = 0 and

∫
∂Ω
Lfdσ = 0.

We introduce the following linear operatorsT exp
1 andT̃ exp

1 from M toH
1
2 (∂Ω) by

(T exp
1 L)(z, k) =

−1

ik

∫
∂Ω

eik̄(z−ζ)

4π(z − ζ)
L(e−ikζ̄ − 1)dS(ζ)

and

(T̃ exp
1 L)(z, k) =

1

ik

∫
∂Ω

[
eik(z−ζ)

4π(z − ζ)

]
L(eikζ − 1)dS(ζ)

Lemma 3. The operatorsT exp
1 andT̃ exp

1 are continuous fromM → H
1
2 (∂Ω)

Proof. Consider the operator

(T exp
1 L)(z, k) =

−1

ik

∫
∂Ω

eik̄(z−ζ)

4π(z − ζ)
L(eikζ̄ − 1)dS(ζ)

from M → H
1
2 (∂Ω). Then

|(T exp
1 L)(z, k)| =

1

|k|

∣∣∣∣∣
∫

∂Ω

eik̄(z−ζ)

4π(z − ζ)
L(eikζ̄ − 1)dS(ζ)

∣∣∣∣∣
≤ 1

|k|

∥∥∥∥∥ eik̄(z−ζ)

4π(z − ζ)

∥∥∥∥∥
H

1
2 (∂Ω)

‖L‖ 1
2
,− 1

2

∥∥∥(eikζ̄ − 1)
∥∥∥

H
1
2 (∂Ω)

We recall some estimates from [6] and [16] for some terms appearing in (3.1)

(3.1)
∥∥eikz − 1

∥∥
H

1
2 (∂Ω)

≤ |k|e|k|.

and

(3.2)

∥∥∥∥∥eik̄(z−ζ)

z − ξ

∥∥∥∥∥
H

1
2 (∂Ω)

≤ e|k|

then|(T exp
1 L)(z, k)| could be bounded as follows

|(T exp
1 L)(z, k)| ≤ 1

|k|
e|k|. ‖L‖ 1

2
,− 1

2
.|k|.e|k|

≤ C1 ‖L‖ 1
2
,− 1

2

whereC1 is a constant depending on the parameterk. Then the operatorT exp
1 is continuous.

Similarly, we prove the continuity of the operatorT̃ exp
1 . Thus Lemma 3 is proved. �

The scattering transformSexp(k) blows up ask tends to infinity. This allows us to use its
truncation

Sexp
R (k) =

{
Sexp(k) if |k| < R,

0 otherwise.

Define the operatorsT exp
2 andT̃ exp

2 from M toLp
c(R2) by

AJMAA, Vol. 13, No. 1, Art. 21, pp. 1-14, 2016 AJMAA
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(3.3) (T exp
R,2L)(z, k) =

1

2π

∫
∂Ω

e−ik̄z(T exp
1 L)(z, k)~νdS(ζ)

and

(T̃ exp
R,2L)(z, k) =

−1

2π

∫
∂Ω

eikz(T̃ exp
1 L)(z, k)~νdS(ζ)

Lemma 4. The operatorsT exp
R,2 andT̃ exp

R,2 are continuous fromM → Lp
c(R2)

Proof. Using (3.3) we write,

∣∣(T exp
R,2L)(k)

∣∣ =

∣∣∣∣ 1

2π

∫
∂Ω

e−ik̄z(T exp
1 L)(ζ, k)~νdS(ζ)

∣∣∣∣
then, ∣∣(T exp

R,2L)(k)
∣∣ ≤

∥∥∥e−ik̄z
∥∥∥

H
1
2 (∂Ω)

‖T exp
1 L‖L∞(R2)

≤ C2 ‖L‖ 1
2
,− 1

2

where we used (3.1) and (3.1), andC2 is a constant depending onk.
This shows that the operatorT exp

R,2 is continuous. Similarly, we prove that the operatorT̃ exp
R,2 is

continuous, and this proves Lemma 4. �

The study of the stability of the D-Bar equation viatexp approximation depends on the oper-
atorSas shown in [10]. The operatorS : Lp

c(R2) → C∞(Ω̄), relates the scattering dataΦ to the
matrixM(z, k) by

(3.4) S(Φ(z)) = M(z, 0)

whereLp
c(R2) is the space of functions inLp(R2) with compact support. The continuity ofS is

proved in [10].
From theorem (6.2) of [7], the potential matrix Q can take the form,

(3.5) Q(z) = lim
k0→∞

µ
(
Bρ(0)

)−1
∫

k:|k−k0|<ρ

DkM(z, k)dµ(k)

Since the regionR2 is truncated for|k| < R, and a disc of radiusρ < 1 is considered, then the
matrixQ takes the form

(3.6) QR(z) =

∫
k:|k−k0|<ρ

DkM(z, k)dµ(k)

Define the operatorT exp
R,3 fromC∞(Ω̄) toC∞(Ω) by

(3.7) T exp
R,3M(z, k) = QR(z)

Lemma 5. The operatorT exp
R,3 fromC∞(Ω̄) toC∞(Ω) is continuous.
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http://ajmaa.org


10 S. EL KONTAR1 , T. EL ARWADI1 , H. CHRAYTEH1 , J.-M. SAC-ÉPÉE2

Proof. The matrixM ∈ C∞(Ω̄), thenMij are bounded fori, j = 1, 2. The operatorDk is a
continuous operator (see [9]). Using (3.6) we write∥∥T exp

R,3M
∥∥

L∞(Ω)
=

∥∥∥∥∫
k:|k−k0|<ρ

DkM(z, k)dµ(k)

∥∥∥∥
L∞(Ω)

≤ ‖DkM‖L∞(Ω)

∫
k:|k−k0|<ρ

dµ(k)

≤ C(R) ‖DkM‖L∞(Ω)

≤ C3 ‖M‖L∞(Ω) .

This proves Lemma 5, whereC3 is a constant depending onk andR. �
The admittivityγexp

R is related to the potential matrixQR by the following relations

(3.8) log γexp
R (z) = ∂̄−1

k QR,12(z)

The operator̄∂−1
k is bounded, see [7]. Then it is continuous.

The admittivityγ can be written as a composite of continuous linear operators as follows

log γexp
R (z) = ∂̄−1 (T exp

3 oSoT exp
2 oT exp

1 L) (z)

= (T expL)(z)

whereT exp = ∂̄−1 (T exp
3 oSoT exp

2 oT exp
1 ). If we letL = Λγ − Λ1 then the reconstructed conduc-

tivity can be written in the form∥∥log γexp
R − log γexp

R,ε

∥∥
L∞(Ω)

=
∥∥T exp(Λγ − Λ1)− T exp(Λε

γ − Λ1)
∥∥

L∞(Ω)

=
∥∥T exp(Λγ − Λε

γ)
∥∥

L∞(Ω)

≤ |T exp|
∥∥Λγ − Λε

γ

∥∥
1
2
,− 1

2

Since the operatorT exp is continuous as shown above, then asδ tends to zero,log γexp
R,δ tends to

log γexp
R . The logarithmic function is bijective, thenγexp

R,δ tends toγexp
R and this shows that the

reconstruction method is stable viatexp regularization.

4. STABILITY OF THE D-BAR EQUATION VIA tB APPROXIMATION

In [5], the stability of the D-Bar method was studied via thetB approximation. The study was
done for real values of the admittivity. In this section, we study the stability for complex values
of the admittivity, following similar idea. ThetB approximation can be applied by replacing the
Faddeev’s Green’s functionGk(z) with the standard Green’s functionsG0 = − 1

2π
log(z), in the

boundary integral equations (2.3) and (2.4). Then

uB
1 (z, k) =

eikz

ik
−

∫
∂Ω

G0(z − ζ)(Λγ − Λ1)u
B
1 (ζ, k)dS(ζ)

=
eikz

ik
− S0(Λγ − Λ1)u

B
1 (z, k)

whereS0 is the single-layer operator with kernelG0, see [16]. AsΛγ1 = Λ1 = 0, and adding
the term−1

ik
on both sides of (4.1), we write

uB
1 (z, k)− 1

ik
=
eikz

ik
− S0(Λγ − Λ1)

(
uB

1 (z, k)− 1

ik

)
− 1

ik

then

(I + S0(Λγ − Λ1))

(
uB

1 (z, k)− 1

ik

)
=

1

ik

(
eikz − 1

)
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thenuB
1 (z, k) can be written as

uB
1 (z, k) =

1

ik

[
(I + S0(Λγ − Λ1))

−1 (
eikz − 1

)
+ 1

]
where the operatorI + S0(Λγ − Λ1) is invertible, (see [19]).

Applying the change of variable−ζ̄ = ξ and replacing−z̄ by z in equation (2.4) we write

uB
2 (z, k) = − 1

ik

[
(I + S0(Λγ − Λ1))

−1 (e−ikz̄ − 1) + 1
]

LetL ∈M , define the linear operatorsTB
1 andT̃B

1 from M toH
1
2 (∂Ω) as

(TB
1 L)(z, k) =

1

ik

[
(I + S0L)−1 (eikz − 1) + 1

]
and

(T̃B
1 L)(z, k) = − 1

ik

[
(I + S0L)−1 (e−ikz̄ − 1) + 1

]
Lemma 6. The operatorsTB

1 andT̃B
1 are continuous fromM → H

1
2 (∂Ω)

Proof. ForL, L̃ ∈M , letA0,L = (I + S0L), then

(TB
1 L)(z, k) =

1

ik

[
A−1

0,L(eikz − 1) + 1
]

In Theorem (3.1) in [5], the operatorA0,L = (I+S0L) was studied in details. From this theorem
we can write ∥∥∥A−1

0,L − A−1

0,L̃

∥∥∥
1
2
,− 1

2

≤ C4

∥∥∥L− L̃
∥∥∥

1
2
,− 1

2

whereC4 is a constant. Then,∣∣∣(TB
1 L− TB

1 L̃)(k)
∣∣∣ =

∣∣∣(A−1
0,L − A−1

0,L̃

)
(eikz − 1)

∣∣∣
≤

∥∥∥A−1
0,L − A−1

0,L̃

∥∥∥
1
2
,− 1

2

∥∥eikz − 1
∥∥

H
1
2 (∂Ω)

≤ C5

∥∥∥L− L̃
∥∥∥

1
2
,− 1

2

Thus the operatorTB
1 is continuous. Similarly, we prove the continuity of the operatorT̃B

1 .
Thus the result of Lemma 6 is proved. �

Moreover, another two operatorsTB
2 andT̃B

2 can be defined fromM toH
1
2 (∂Ω) by

(TB
2 L)(z, k) =

∫
∂Ω

eik̄(z−ζ)

4π(z − ζ)
L(T̃B

1 L)(k)dS(ζ)

and

(T̃B
2 L)(z, k) =

∫
∂Ω

[
eik(z−ζ)

4π(z − ζ)

]
L(TB

1 L)(k)dS(ζ)

The above operators are non linear operators due to the existence of the termsL(T̃B
1 L) and

L(TB
1 L)(k).

Lemma 7. The operatorsTB
2 andT̃B

2 are continuous fromM toH
1
2 (∂Ω)
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Proof. LetL, L̃ ∈M , then

(4.1)
∣∣∣TB

2 L(z, k)− TB
2 L̃(z, k)

∣∣∣ =

∣∣∣∣∣
∫

∂Ω

eik̄(z−ζ)

4π(z − ζ)

[
(LT̃B

1 L)(z, k)− (L̃T̃B
1 L̃)(z, k)

]
dS(ζ)

∣∣∣∣∣
Consider the term(LT̃B

1 L)(z, k)− (L̃T̃B
1 L̃)(z, k), then we write

(LT̃B
1 L)(z, k)− (L̃T̃B

1 L̃)(z, k) = (L− L̃)(T̃B
1 L)(z, k) + (L̃T̃B

1 L)(z, k)− (L̃T̃B
1 L̃)(z, k)

= (L− L̃)̃(TB
1 L)(z, k) + L̃((T̃B

1 L)(z, k)− (T̃B
1 L̃)(z, k))

then∣∣∣(LT̃B
1 L)(z, k)− (L̃T̃B

1 L̃)(z, k)
∣∣∣ =

∣∣∣(L− L̃)(T̃B
1 L)(z, k) + L̃((T̃B

1 L)(z, k)− (T̃B
1 L̃)(z, k))

∣∣∣
≤

∣∣∣(L− L̃)T̃B
1 L(z, k)

∣∣∣ +
∣∣∣L̃((T̃B

1 L)(z, k)− (T̃B
1 L̃)(z, k))

∣∣∣
Using the facts that the operatorT̃B

1 is continuous as proved in Lemma 6, and the operators
L andL̃ are linear, then they are bounded. Hence we write

(4.2)
∣∣∣L(T̃B

1 L)(k)− L̃(T̃B
1 L̃)(k)

∣∣∣ ≤ C7

∥∥∥L− L̃
∥∥∥

1
2
,− 1

2

Using (3.2) and (4.2) in (4.1) we get the proof of Lemma 7. �
The scattering transformSB(k) is truncated fork < R, then we write

SB
R (k) =

{
SB(k) if |k| < R,

0 otherwise.

If we define the operatorsTB
R,3 andT̃B

R,3 from M toLp
c(R2) by

(TB
R,3L)(k) =

1

2π

∫
∂Ω

e−ik̄z(TB
2 L)(z, k)~νdS(ζ)

and

(T̃B
R,3L)(k) =

−1

2π

∫
∂Ω

eikz(T̃B
2 L)(z, k)~νdS(ζ)

The continuity of the operatorsTB
R,3 andT̃B

R,3 can be proved similar to that done in Lemma 4.
The stability of the D-Bar method via thetB approximation, is studied in a similar way to that
in the texp approximation. Thus an operatorS is introduced, which transforms the scattering
dataΦ to the matrixM as in (3.4). The continuity of this operator is studied in details in [10]
The relation between the potential matrixQ to the matrixM is given in (3.6). Define the
operatorTB

R,4 fromC∞(Ω̄) toC∞(Ω) by

TB
R,4M(z, k) = Q(z)

The continuity of the operatorTB
R,4 can be proved in a similar way to that in Lemma 5.

The last step in constructing the operators, is to writeγB as a composite of the operatorsTB
1 ,

TB
2 , TB

3 , S andTB
4 . The relation betweenγ and the potential matrixQ exists in (3.8), then

log γB(z) = ∂̄−1
(
TB

4 oSoT
B
3 oT

B
2 oT

B
1 L

)
(z) = TBL(z)

whereTB = ∂̄−1(TB
4 oSoT

B
3 oT

B
2 oT

B
1 ).

The operatorTB is a composite of continuous operators, thus it is continuous. Ifδ represents
the noise level, thenlog γB

δ (z) = TB(Λδ
γ − Λ1)(z) and
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∥∥log γB − log γB
δ

∥∥ =
∥∥TB(Λγ − Λ1)− TB(Λδ

γ − Λ1)
∥∥. Thus asδ tends to zero,log γB

δ tends
to log γB. Since the logarithmic function is a bijective function, then iflog γB

δ tends tolog γB,
then this leads to the result thatγB

δ tends toγB and this shows that the reconstruction method
via tB is stable.

5. CONCLUSION

In this paper, we presented the six-step D-Bar reconstruction algorithm. Then we studied
the stability of the method by considering two approximationstB andtexp. The main step in
studying the stability in both approximations, was to write the admittivityγexp or B in the form
of an operator acting on the termΛγ −Λ1, i.e. γexp or B = T (Λγ −Λ1). If a noiseδ appears due
to any external effects, then the admittivtyγexp or B can be written asγexp or B

δ = T (Λδ
γ − Λ1).

We showed that as the noiseδ goes to zero, the admittivityγexp or B
δ tends toγexp or B. This result

can be achieved by proving the continuity of the operatorT . It appeared in both approximations
that the operatorT is a composite of continuous operators, and thus it is continuous. This allows
us to deduce that the method is stable in both approximationstB andtexp.
An open problem appears after this study: What would happen if the admittivityσ is not com-
pactly supported i.eσ is different from 1 near the boundary∂Ω? And another question is what
would happen if we considerΩ not to be a unit disc?
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