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1. INTRODUCTION

The inverse conductivity problem can be mathematically expressed as the Dirichlet problem
V- (1) vuz)) =0inQ

(P1)
u = fonosl
wherey € L>() is the electrical admittivityu(2) € H'(Q) represents the electrical potential,
and(2 is an open smooth and bounded domaiikn
The Dirichlet-to-Neumann map

A, - H2(89Q) — H2(59)
A'yf = 7%’8()

ou . o .
represents the current flux on the boundagy whereZ" is the normal derivative, andis the
14

outer unit vector. For complex values, the admittivjty) can be written as(z) = o(z)+ie(z),
whereo (z) represents the conductivity aatk) the admittivity.

An important application of the inverse admittivity problem, is the electrical impedance tomog-
raphy (EIT). This technology allows us to determine the location of the tumors inside a body
(cancer tissues). Experimentally, the cancer cells appear to be four times more conductive than
the normal tissues. Also the (EIT) technology is considered to be less harmful for patients and
more time consumable.

In 1980, Calderon introduced the inverse conductivity problem. He solved the problem by con-
sidering small perturbations of constant conductivity (See[4]).

Later, in 1996, Nachman solved the Calderon’s problem using the D-Bar method. In this method
he found the scattering transfortk) from the boundary values,, then he reconstructed the
real-valued functiorny from the scattering transformik). The method was of high regularity,
wherey € C?(Q2), (see[[18)).

Brown and Uhlmann, in 1997, transformed the problem into a first-order system. In this method,
the problem was solved for weaker regularity, namelg C*(2) (se€[2]). This method was
reformulated as a reconstructive procedure by K. Knudsen and A. Tamas$an in [14].

Later, the problem was solved for smooth conductivify.e. v € L>(2). This was done by
Astala and Paivarinta in 2006 in/[1].

In 2003, an approximation for the scattering transfa(#) was introduced by S. Siltanen, J.
Mueller and D. Isaacson. The approximation was denoteébywhere, in the scattering trans-
form ¢(k), the (CGO) solutions are replaced by the asymptotic behavior of the CGO solutions
(for more details seé [19]).

Another approximation fot(k) was introduced by S. Siltanen and J. Mueller(in/[17]. This
approximation is denoted hy?, where an approximation for the CGO solutions is determined
by solving a boundary integral equation. These approximations can be seen as regularization
techniques.

In 2014, El Arwadi studied the stability of the reconstruction method¥iapproximation in

[5], while Siltanen and Mueller in [10], studied the stability of the method:¢i&approxima-

tion.

The uniqueness of the solutions for the inverse conductivity problem for complex conductivity
was proved by Francini in [7]. She used the CGO solutions witho + iwe, wherey, w ands

are respectively the electrical conductivity, frequency and electrical permittivity. Her work can
be considered as an extension of the real-valued conductivity results to complex-valued in-
cluding the electrical permittivity. Francini’'s work included the proof of the existence and
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uniqueness of admittivity, in addition to introduce an approach to solve the problem using the
D-Bar method.

Later in 2012, S. Hamilton and A. Von Herrmann introduced a six-step D-Bar reconstruc-
tion algorithm based on the D-Bar method, (5ee[8]), which is considered as a reformulation
of Francini's work. The considered reconstruction problem is an ill-posed inverse problem,
since small differences in the boundary measurements will cause changing in the internal con-
ductivity.

In studying the stability of the reconstruction method, the boundary values are noAmore
Since due to the noisg the boundary data is denoted hy. Thus, as the noisetends to zero,
then~© tends toy. Hence the problem is said to be stable.

In this paper, we present the six-step reconstruction method in section 2, then the stability of
this method is studied in section 3, by considering the approximatién In section 4, we

study the stability via the® approximation and we end with a concluding section.

2. DIRECT RECONSTRUCTION ALGORITHM

In this section, we present the direct reconstruction algorithm as mentioned in Hamilton’s
work in [9]. The algorithm consists of six steps, it starts with Dirichlet-to-Neumann map
which represents the current flux on the boundary and ending with the values of the admittivity
~. The six steps are as follows

Ay = ui(z, k), ua(z, k) — ra(2, k), 1a(z, k) — S(k) — M(z, k) — Q(2) — v(2)
Throughout the whole algorithma, and E are assumed to be positive such that

(2.1) o(z) > 09, z€QCR?
and
(2-2) HUHWI’”? H‘S”Wl’“’ < E>

where) is a bounded smooth domainlit.
The following two theorems relate the current flxxon the boundary with the exponentially
growing solutions:; andus.

Theorem 1. [22]. Lety(z) = o(z) + iwe(z) € W*P(Q), with p > 1 such thatr ande satisfy
(23)and (2.2), and lety(z) — 1 have a compact support iV2?(2). Suppose that = 1in a
neighborhood ob2. Then for any non-exceptionale C\{0}, the trace of the exponentially
growing solutionu, (., k) on 02 is the unique solution to the boundary integral equation

ezkz

ik - /8(2 Gk(z - C)(A'y - A1>u1(§7 k)dS(C)

Theorem 2. [8] Lety(z) = o(z) + iwe(z) € W*P(Q2), with p > 1 such thats ande satisfy
(2-1)and (2.2), and lety(z) — 1 have a compact support i 2?(2). Suppose that = 1in a
neighborhood 0b2. Then for any non-exceptionale C\{0}, the trace of the exponentially
growing solutionuy(., k) on 0f2 is the unique solution to the boundary integral equation

(23) ul(zak) =

e—iki

G O~ A RS C)

These theorems result from the relationship between the exponentially growing solutions
1s(z, k) to the Schrédinger equation

(2.4) us(z, k) =
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N

: A
and the CGO solutiong, (z, k) andus(z, k), whereq = F{ .

vz
In the case of a real-valued function the trace of the functiom,(z, k) on 02 satisfies the
integral equation

(2.5) balz, k) = e — / Gulz = ) = M) (= BS(O

wherez € 9Q2 andk € C\{0}.
The functionGy(z) is the Faddeev’s Green’s function, and is defined by

Gr(z) = eikzgk(z), —AGL =9
where

1 ez’zﬁ o
ge(2) = 27)? /R? T Qk)dg’ (—A — 4ik0,) gy = 9.

Equation[(2.b) is a Fredholm equation of the second kind and is uniquely solvaHIé(@Q)
foranyk € C\{0}.

The following lemmas state the relation betweerz, k) and the CGO solutions, (z, k) and
u2(27 k)

Lemma 1. [22]. Letv(z) = o(z) + iwe(z) € W?P(Q), with p > 2 such thate and e
satisfy (2.1) and (2.2), and lety(z) — 1 have a compact support i/ 1*(Q2). Letwu;(z,k)
be the exponentially growing solution to the admittivity equation in (P1),&sid, k) be the
exponentially growing solution to the Schrodinger equaf@nwhen it exists, then

ik’ul (Z, k‘) = 7_%(2’)%(2’7 k)

Lemma 2. [8]. Lety(z) = o(z)+iwe(z) € WP(Q), withp > 2 such that ande satisfy(2-1)
and(2:2), and lety(z) —1 have a compact support ifr '*(Q2). Letu,(z, k) be the exponentially
growing solution to the admittivity equation in (P1), and z, k) be the exponentially growing
solution to the Schrédinger equati@®), when it exists, then

—ikuy(z, k) =772 (=2)(—Z, k)

If u(z) is the solution of the Dirichlet probleni?(), andf is the electrical potential applied on
the boundary, then the problem) can be transformed into a system of first order as follows,

o(2)-o(2)

where

The potential matrix) is given by

B 0 —30.log(2)
(2.7) Q= ( —30.1ogv(2) 0 )

The operatorg, ando, are the Cauchy-Riemann operators given by the formulas
170 .0
=3 (7 m)
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and

* 2\ 0x Zf)y '
v 1 ( Ou
()= (o)

be a particular solution to the system n (2.®? is represented witlT so that: = z + iy
.wherez,y € R.

Let

The second step of the algorithm is to relate the geometrical optics soldtians) with the
exponentially growing solutiong, andu,, such that

Ui _ A3 Qzul

Wy ) 7 0.y

Uip | i QZUQ

Uy ) =7 By )
Then systent (2]6) takes the form

(D—=Q)¥(zk) =0

and

wherek is a complex parameter.
The solutionsl(z, k) of the above system can be written in the form

eikz 0 Mll eikz M12eikz
(28) ‘P(Z, k) - M(Za k) ( 0 efik,% - M21€fik2 M2267ik2
whereM (z, k) is a complex-valued matrix function such that
(2.9) 1M (2, k) = I||Lo(rz) < 00

for somep > 2. I is the2 x 2 identity matrix.
In Theorem 4.1 in[[7], Francini solves a D-Bar equation, which determines the complex matrix
M. The theorem states the following:

Theorem 3. Leto ande satisfy the condition§2.1) and (2.2) and M be as in(2.9). The map
k — M(., k) is differentiable as a map intd” ;, and satisfies the equation

5kM(Za k) = M(z7 l_f) ( 6k(()Z) 6_k0(z) > S(k)
where

? e_i(z 0 o
S(k) = = /R2 ( ko< ) —en(2) ) QM) dp(z)
Moreover, for every > 2, sup||M(z,.) — I||1»(r2) < k2 Wherek, depends orF, o, , {2 and
p-

The matrix S is called the scattering matrix associated to the admitiivity

Using [2.8) in Systenj (2/6), allows us to find a relation between the complex métard the
potential matrix() as follows

(210) 52M11<Z, k?) — Q12(2>M21 (Z, k) =0
(211) (5,3 — ik>M12(27 ]{3) - Q12(2>M22(27 k?) =0
(2.12) (0: + ik) Ma1 (2, k) — Qa1(2)Mi1(2, k) = 0
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(213) azMQQ(Z, ]{3) — le(Z)Mlg(Z, k’) = O
and in matrix form
DM (z, k) — Q(2)M(z,k) =0
where
DkM:DM—z'k:< - )MOﬁ

and /O™ is the off-diagonal part of the matrix/.
The determination ofl'15(z, k) and Wy (z, k) in terms of the CGO solutions, (z, k) and
us(z, k) can be seen in the following theorem.

Theorem 4. [8] The traces of the exponentially growing solutiohs (z, k) and Wy, (z, k) for
k € C\{0} can be determined by

SiF(—)

(2.14) Uio(z, k) = /an m(/\v — Ay)ua(C, k)dS(C)
eik(z—é)

(2.15) Ui (2, k) = /{m {m} (Ay = Ay)ua (¢, k)dS(C)

whereu,(z, k) anduy(z, k) are determined using equatio(.3) and (2.4).

The third step of the algorithm is to determine the scattering transfiim from the ex-
ponentially growing solutiond1,(z, k) and W5, (2, k). In theorenj B, the scattering transform
matrices take the form

st = = [ (HF 0L ) @

T —ex(2)

- 2L ) Conammern 22025 Jane

The entriesS;, andS,; are
B 1
o

(2.16) S (k) /8 ) e 1h(z, k)rdS(z)

(2.17) So1 (k) - /a ) e® iy (2, k)vdS(2)

:27r

wherev represents the outer unit vector to the bound#ey
The complex matrix\/ is related to the scattering transform matfixn the D-Bar equation
stated in theorein 3. Thus the D-Bar equation takes the form

(2.18) DM (2, k) = M(2, k) ( ‘%éz) HO(Z) )S(k:)

This equation is solved inside the domé&in
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The entries of the potential matriX can be determined in terms of the complex matrixusing

equations[(2.70)[ (2.11], (2]12) and (3.13) as follows

~ 0.M4(Q, 2,0)
(2.19) Qu2(z) = M0, 2.0)

B 0.M_(Q, 2,0)
(220 @1 = 0Q.2.0)
where
(221) M+(Q7 2, k) - MII(Q7 <, k) + 6<Z7 _k)M12<Q7 <, k)
(222) M*(Q> <, k) = MQZ(Qa 2y k) + 6(2’, k)Mﬂ (Qa <, k)

The potential matrix) is defined in terms of the admittivity mentioned in[(2]7). Thus,
0 —30.log(7(2)) ) ( 0 Q2 )
2.23 = _ 2 _
(2:23) “ ( ~10.log(r(2) 0 Qu 0
then
1
(2.24) Q12 = —5(92 logv(2)
1._
(2.25) Q2 = _iaz log(2).
Therefore, the admittivity distributiof is determined from the above relations, and we write
2 2
(2.26) tog1(2) = —= [ 22 gy = -2 [ L0
T JoZ—C T Joz—C

3. STABILITY OF THE D-BAR EQUATION VIA t*P APPROXIMATION

The t*? regularization can be obtained by replacing the trace of the exponentially growing
ikz —ikZz

and

solutionsu; (z, k) andusy(z, k) with respectively.

In this section we study the stability of the D-Bar reconstruction methodi#itliegularization

for complex values of the admittivity(z). For real conductivities, the stability was studied in
[10]. In this section we follow a similar strategy. We start by reformulating each step of the
reconstruction method as an operator. Thus we define,

6ikz —ikZz
exrp — and exrp —
T T
which represents the approximation of step 1 in the reconstruction method.
Our target is to construct an operalsr? such thaty*” = T*?(A, — A;). If 6 represents the
noise level due to external effects, thgf¥’ = 7"?(A? —A,). The stability of the reconstruction

method can be established by studying the difference
7 =257 = T (A = Ag) = T7(A] = Ay
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Thus, as tends to zero;; ™ must tend toy. This result can be established by proving the
continuity of the operatof“?.

We denote byM C L(Hz(09), H~2(92)), the set of operators € L(Hz (%), H~2(5%)),
such that\,1 = A;1 =0 and [, Lfdo = 0.

We introduce the following linear operatdf™ and7:*” from M to H2 (92) by

_ giF(z—0) -
(TEPD)(z b = = /a g = Das(

and
~ 1 etk(z—¢)
T{™L)(z, k ——— | L(e™ —1)d
Fneh = [ ] pe - as)
Lemma 3. The operatorg’®” and7:** are continuous fronM — 2 (99)

Proof. Consider the operator

giF(z—0)
Tk = 5 | S e s

fromM — Hz(09). Then

T DER = | [ e e - a0
Z, = — _
! |kl [Joq 47 (2 — )
1 eiE(Z_C) -
< sl 1 |e -,
K4 (2 = O] 13 o 2 (09)
We recall some estimates from [6] and[[16] for some terms appearing |n (3.1)
ikz k
(3.1) €™ = 1| ;3 oy < [Klel.
and
ik(z=()
(3.2) ‘ < el#
z=¢ HE(59)
then|(77""L)(z, k)| could be bounded as follows
ex 1
(TY7L) (2, k)] < e L IIL]y s Jkl€
< GillLfly s
27 2

where( is a constant depending on the paraméteFhen the operatdf;™ is continuous.
Similarly, we prove the continuity of the operafBf*”. Thus LemmﬂS is proved. O

The scattering transforr“*?(k) blows up ask tends to infinity. This allows us to use its

truncation
SeP(k) if |k| <R,

0 otherwise

SHCR

Define the operators:™ and7%5™ from M to L?(R?) by
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(33) TRADEE) = 5 [ R Rs(C)

™

and

dﬁfoak>=—Jiéﬂé“@T“ankﬁMSK>

™
Lemma 4. The operatord "y andf;;ff are continuous fronM — L?(R?)

Proof. Using (3.3) we write,

ex 1 —ikz (rex -
(TREL) (k)| = 7 / e~ (TEP L) (¢, k)id S (C)
o2
then,
}(T]%?ka)l = Heiikz H2(09) HTFWL“L""(RQ)
< GolLfls s

where we used (3.1) and (8.1), afiglis a constant depending én N
This shows that the operat@y;’; is continuous. Similarly, we prove that the operdtgf,’ is
continuous, and this proves Lemirja 4. O

The study of the stability of the D-Bar equation vi&” approximation depends on the oper-
atorSas shown in[10]. The operat&r: LP(R?) — C*°(Q), relates the scattering dafeto the
matrix M (z, k) by

(3.4) S(®(2)) = M(z,0)

whereL2(RR?) is the space of functions ih?(R?) with compact support. The continuity &fis
proved in [10].
From theorem (6.2) of [7], the potential matrix Q can take the form,

(3.5) Q(z) = lim M(Bp(o))_l /k~|k—k: ; Dy M(z, k)du(k)

ko—o00

Since the regiofR? is truncated fotk| < R, and a disc of radiug < 1 is considered, then the
matrix () takes the form

(3.6) o) = [ DM b

Define the operatdfy,’y from C>(Q2) to C*>(£2) by
(3.7) TRy M(z, k) = Qr(2)

Lemma 5. The operatorT;’y from C>(€2) to C>*(Q2) is continuous.
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Proof. The matrixM € C*((2), then),; are bounded foi, j = 1, 2. The operatoD;, is a
continuous operator (see [9]). Using (3.6) we write

HTE?MHLOO(Q) - ‘fkﬂk@kakM(Z,k)du(k)

L>=(9Q)
< DMy [ duth)
k:|k—ko|<p

< C(R) | DMl ()

< Gy [[M|lpoo(qy -
This proves Lemmf]5, wher@,; is a constant depending érand R. O
The admittivity” is related to the potential matri@x by the following relations
(3.8) log 7" (2) = 0y 'Qraa(2)

The operatot), ! is bounded, se¢[[7]. Then it is continuous.
The admittivity~y can be written as a composite of continuous linear operators as follows
log3?(2) = 07" (T5™0SoT5™oT{™ L) (=)
(TP L)(2)
whereTer = 91 (T5"0SoTy"PoT;""). If we let L = A., — A, then the reconstructed conduc-
tivity can be written in the form

erp

[log 7" —log V2l iy = TPy = A1) = TP(A5 = )| e g
- ”Tewp(Av - Af/)”LOO(Q)
< [T HAW—/@”%%

Since the operatdf” is continuous as shown above, therjaends to zerolog 73’5 tends to
exp

log v ". The logarithmic function is bijective, theyf;y tends toy;™ and this shows that the
reconstruction method is stable v&? regularization.

4. STABILITY OF THE D-BAR EQUATION VIA tB? APPROXIMATION

In [5], the stability of the D-Bar method was studied via tHeapproximation. The study was
done for real values of the admittivity. In this section, we study the stability for complex values
of the admittivity, following similar idea. Th&” approximation can be applied by replacing the

Faddeev's Green'’s functiafi,(z) with the standard Green’s functiofi = —5- log(z), in the
boundary integral equatioris (2.3) afd {2.4). Then
eikz
k) = S [ Gole = O, — Au (SO

eik’z
= TE So(Ay — Ay)ut (2, k)
wheres, is the single-layer operator with kern@}, see[[16]. As\,1 = A1 = 0, and adding
the term=! on both sides of(4]1), we write

1 eth* 1 1

ofeoh) = i = G =l = (e - ) -

then . .
([ -+ SO<A’Y — A1>> (UlB(Z, k’) — %) = E (eikZ . 1)
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thenu®(z, k) can be written as
1 L
ub(z, k) = o [(I + So(Ay — Ay)) ! (e”“ - 1) + 1}
where the operataf + Sy(A, — A;) is invertible, (see[19]).

Applying the change of variable( = ¢ and replacing-z by = in equation[(2.4) we write

uy (2, k) = _% [(1+ So(Ay = Ar) ™ (e = 1) + 1]

1

Let L € M, define the linear operatof® andT? from M to Hz (9S2) as

(TPL) = k) = = [T+ S0)™ (% — 1)+ 1]

and

(TELY k) = == [+ S0) ™ (7 1) 1]

Lemma 6. The operatord’? and T} are continuous fronM — Hz (9S2)

Proof. ForL,L € M,letAy; = (I + SyL), then
1 .
(TPL)(2,k) = = [Agp(e™ = 1) +1]

In Theorem (3.1) in[5], the operatey, ;, = (/+S,L) was studied in details. From this theorem
we can write

HA(ﬁ_A(;,li L 4 S C4HL_E 11
where()} is a constant. Then,
‘(TlBL - TlBE)(k)) - ](A;L - A;li) (et — 1)‘
-1 -1 ikz
< G HL iy
1_1
27 2

Thus the operatdf’? is continuous. Similarly, we prove the continuity of the operﬁNfﬁr
Thus the result of Lemn{g 6 is proved. O
Moreover, another two operatdf§ andT can be defined fromv to Hz (99) by

(iR(z—0)
(TPL)(z. k) = /

., m“ﬂ L)(k)dS(¢)

and
eik(Z*C)

@Deh = [ g [rarnwase

The above operators are non linear operators due to the existence of thel{gFfhs) and
L(TEL) (k).

Lemma 7. The operatord’? andT:2 are continuous fronM to Hz (92)
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Proof. LetL,L € M, then
B  TB7F _
@.1) |TPL(z k) — TPL(=, k)’ =D
Consider the termiLTPL)(z, k) — (LTEL)(z, k), then we write
(LTPL)(2,k) = (LTPL) (2, k) = (L= L)(TPL) (2, k) + (LTPL)(2,k) = (LT L) (2, k)

= (L= LJ(TPL)(=. k) + L(TPL)(2, k) — (TPL)(2, k)

eZk(z_C) ~ B 5
/ L [( LTEL) (2, k) — (LTPL)(z, k)} dS(C)|
1o}

then
(LTPL) (k) = (LTPL) k)| = (0= DYTEL) (= 0) + LUTE L) (=, k) — (TEL)(2, 8)|

< (L= DIPLER)| + [LEPL) R~ (TPL) )

Using the facts that the operatﬁf is continuous as proved in Lemlﬁa 6, and the operators
L andL are linear, then they are bounded. Hence we write

(4.2) TP L)) - LTFLYK)| < Co ||~

1_1
2772

Using (3.2) and[(412) irf (4}1) we get the proof of Lemima 7. O
The scattering transforisi”® (k) is truncated fok < R, then we write

Sg<k):{53(k) if |k <R,

0 otherwise
If we define the operatorB} andfﬁ3 from M to L?(R?) by

THD0) = 5 [ @D RS(C)
and
TEDW) = 57 [ FEPL)E 7S

The continuity of the operatofEFE{3 andfjg”3 can be proved similar to that done in Lem@ua 4.

The stability of the D-Bar method via th€ approximation, is studied in a similar way to that
in the t**? approximation. Thus an operat8ris introduced, which transforms the scattering
data® to the matrix)/ as in [3.4). The continuity of this operator is studied in detail§ in [10]
The relation between the potential mattxto the matrix M/ is given in [3.6). Define the
operatorl’5, from C>(Q2) to C> () by

TpaM(z k) = Q(2)

The continuity of the operatdi’ﬁ4 can be proved in a similar way to that in Lemma 5.

The last step in constructing the operators, is to wyiteas a composite of the operatdrg,
T3, TP, SandT?. The relation betweef and the potential matrig) exists in [3.8), then

logy”?(z) = 07" (TP 0SoTy 0Ty oT L) () = TP L(2)
whereT? = 0~Y(TPoSoTEoTfoTP).
The operatofl'® is a composite of continuous operators, thus it is continuous répresents
the noise level, thetvg 7§ (z) = T#(AS — A;)(z) and
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[logv® —log~2|| = [|[TP(A, — A1) — TB(A) — Ay)||. Thus asi tends to zerolog vF tends

to logv”. Since the logarithmic function is a bijective function, theivif v tends tolog 7/,
then this leads to the result thgf tends toy? and this shows that the reconstruction method
viat? is stable.

5. CONCLUSION

In this paper, we presented the six-step D-Bar reconstruction algorithm. Then we studied
the stability of the method by considering two approximatiofsind¢“*?. The main step in
studying the stability in both approximations, was to write the admittivit§ " Z in the form
of an operator acting on the terfn, — Ay, i.e.y**" B = T(A, — A;). If a noises appears due
to any external effects, then the admittivt§?” " © can be written as;™” % = T(AS — A,).

We showed that as the noiégoes to zero, the admittivity:” " ” tends toy**»*" 5. This result

can be achieved by proving the continuity of the operatolt appeared in both approximations
that the operatdf’ is a composite of continuous operators, and thus it is continuous. This allows
us to deduce that the method is stable in both approximatibasd¢c*».

An open problem appears after this study: What would happen if the admittiviéiynot com-
pactly supported i.e is different from 1 near the boundaf}2? And another question is what
would happen if we considét not to be a unit disc?
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