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ON THE OPTIMAL BUCKLING LOADS OF CLAMPED COLUMNS
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ABSTRACT. We consider the problem of determining the optimal shape of a clamped column
of given length and volume, without minimum cross section constraints. We prove that the
necessary condition of optimality derived by Olhoff and Rasmussen [9] is sufficient when0 <
α < 1. The numberα appears in Equation (2.1). For the caseα = 1 it is shown that the value
48 is optimal. We also determine the exact values of the optimal shape at the extremities, and
take advantage of a robust nonlinear ordinary differential equation solver COLSYS to compute
the optimal buckling load with a high accuracy.
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1. I NTRODUCTION

An interesting problem with a long history is to determine the shape of the strongest clamped
column with given length and volume. The problem known as Lagrange’s problem was consid-
ered by Tadjbakhsh and Keller [11] in 1962, analytically without cross section constraints. The
derived optimal shape presented singularities at two interior points, and the largest buckling
load was found to beλ = 16π2/3(≈ 52.6379). In 1977, Olhoff and Rasmussen [9] reconsid-
ered the problem and pointed out that Tadjbakhsh and Keller’s solution based on a single-modal
formulation is not optimal, since it corresponds to a true buckling load much lower than4π2.
They suggested that it is necessary to formulate the problem with a double critical load, such
that there exist two different forms of stability loss of the optimal column. Basing on their
bimodal formulation, Olhoff and Rasmussen obtained a column having a non-vanishing cross
sectional area and with a critical buckling loadλ = 52.3563 < 16π2. However they did not
succeed to prove the validity of their column. Olhoff and Rasmussen’s solution was defended
by many authors, notably by Masur [8], Seiranian [10], and Cox and Overton [4], nevertheless
a proof of existence is still lacking.

2. TECHNICAL RESULTS

Consider a column with circular and identically oriented cross sectionΩ(x), having its cen-
troid on thex-axis with a radiusR(x). The momentI(x) is precisely the second moment of
area of the cross section about thex-axis, perpendicular to the plane of buckling(y, z). Suppose
that the Young’s modulusE is constant and for everyx belonging to the axis of the column, the
surface mass densityρx(y, z) is radial, i.e., depends only on the distance ofx to the point(y, z).
That is for example

ρx(y, z) = k(y2 + z2)γ,

wherek andγ are constants independent ofx and(y, z). In this case we have

I(x) =

∫ ∫
Ω(x)

ρx(y, z)(y2 + z2) dy dz = Cγ A(x)γ+2,

whereA(x) denotes the cross-sectional area andCγ is a constant depending only onγ. We
may also change the geometry ofΩ(x) to collect a number of examples whereI varies as some
power ofA. We proceed then to consider the general case whereEI = σα, andα is an arbitrary
nonzero real number. The equation of equilibrium of a column clamped at both extremities
x = 0 andx = 1 is

(2.1) (σαu′′)′′ + λu′′ = 0, 0 < x < 1,

subject to the boundary conditions

(2.2) u(0) = u′(0) = 0, u(1) = u′(1) = 0.

Lagrange’s problem is equivalent to finding a nonnegative functionσ(x) that maximizes the
first eigenvalueλ1(σ) of problem (2.1)-(2.2), and satisfies the constant-volume condition

(2.3)
∫ 1

0

σ(x) dx = 1.

Let µn denote thenth eigenvalue of the second-order problem

(2.4) (σαv′)′ + µv′ = 0, v(0) = v(1) = 0,

andU the set of allσ in L∞(0, 1) having a positive lower bound. A functionu will be said to
be even [resp. odd] ifu(x) = u(1− x) [resp.u(x) = −u(1− x)] for all x in (0, 1).

In [7], we have proved the following results.
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Proposition 2.1. Letσ be an arbitrary member ofU (σ is not necessarily even). Then we have

λ1(σ) ≤ µ2(σ).

Proposition 2.2. Letσ be an arbitrary member ofU . If λ1(σ) is double, then

λ1(σ) = µ2(σ).

If furthermoreσ is even, thenλ1(σ) admits, up to a scalar multiple, a unique odd and a unique
even eigenfunction.

One can then deduce that the two buckling modesy1 and y2 associated with the optimal
column plotted in Figure 2 [12] are incorrect, because both are even. The main result given in
[7] is the following

Theorem 2.3. There existsσ ∈ U even such thatλ1(σ) does not possess a positive eigenfunc-
tion.

This result contradicts Theorem 2.2 by Cox and Overton [4], in which they claimed that the
symmetric clamped-clamped column possesses a positive first eigenfunction. This claim was
the source of many confusions. It has been implicitly used by many authors, in particular in [3],
[12] and later in [6], and led to erroneous conclusions. It can be easily proved that it also leads
to the optimality of Tadjbakhsh and Keller’s shape [6].

Theorem 2.3 is based on the fact that whenσ is evenλ1(σ) can be represented as

(2.5) λ1(σ) = min{λ(2)(σ), ν(2)(σ)}.
whereλ(2)(σ) andν(2)(σ) are respectively the second eigenvalues of the problems:

(2.6) w′′ + λσ−αw = 0, 0 < x < 1/2,

(2.7) 2w(0) + w′(0) = 0, w(1/2) = 0,

and

(2.8) w′′ + νσ−αw = 0, 0 < x < 1/2,

(2.9) w′(0) = 0, w′(1/2) = 0.

Here and throughout we identifyσ with its restriction to the interval(0, 1/2). We note that
problem (2.6)-(2.7) has a zero first eigenvalue with a corresponding eigenfunctionw = x−1/2.
From (2.5) we may distinguish three cases:
(i) if λ(2)(σ) < ν(2)(σ) thenλ1(σ) is simple andu1(σ) is odd.
(ii) if λ(2)(σ) > ν(2)(σ) thenλ1(σ) is simple andu1(σ) is even; we haveλ1(σ) = µ2(σ).
(iii) if λ(2)(σ) = ν(2)(σ) thenλ1(σ) is double.

3. SUFFICIENT CONDITIONS

We recall that the necessary condition of optimality derived by Olhoff and Rasmussen [9] has
the following form

(3.1) σα−1(δ1|u′′1|
2
+ δ2|u′′2|

2
) = 1,

whereδ1 andδ2 are nonnegative numbers satisfyingδ1 + δ2 = 1, andu1 andu2 are two linearly
independent eigenfunctions corresponding toλ1(σ). Unlike the single-modal formulation, (3.1)
rules out the possibility of optimal columns with vanishing cross sectional area sinceu′′1 andu′′2
do not vanish simultaneously. The aim of this section is to prove that (3.1) is also a sufficient
condition of optimality when0 < α < 1. Let Ū denote the set of allσ ∈ U satisfying (2.3), and
assume that (3.1) holds for some even functionσ̃ ∈ Ū . We may assume that the corresponding
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eigenfunctions̃u1 and ũ2 are respectively even and odd. Letσ be an arbitrary member ofU .
According to ([4], Theorem 2.4) there exists an even functionσ̄ such thatλ1(σ) ≤ λ1(σ̄). We
notice that this result can be proved independent of Theorem 2.2. Letp = 1/(1 − α) and
ũ =

√
δ1ũ1 +

√
δ2ũ2. Putξ =

∫ 1

0
(ũ′)2 dx. Then we have

λ1(σ̄) ≤ ξ−1

∫ 1

0

σ̄α|ũ′′|2

= ξ−1

∫ 1

0

σ̄α(δ1|ũ′′1|2 + δ2|ũ′′2|2) dx.

By Hölder’s inequality, we get

λ1(σ̄) ≤ ξ−1

(∫ 1

0

(δ1|ũ′′1|2 + δ2|ũ′′2|2)p dx

)1/p

= ξ−1

∫ 1

0

σ̃α(δ1|ũ′′1|2 + δ2|ũ′′2|2) dx

= λ1(σ̃).

It is easily verified that̃σ is also a maximizer ofλ1(σ) over the setV of all nonnegative functions
σ ∈ L∞(0, 1) satisfying (2.3) and such that problem (2.1)-(2.2) has a discrete spectrum. In fact,
we have for anyσ ∈ V

λ1(σ) ≤ λ1(σ + ε) ≤ λ1(σ̃)

(∫ 1

0

(σ + ε) dx

)α

,

whereε is a positive number. Lettingε → 0 yieldsλ1(σ) ≤ λ1(σ̃).

4. OPTIMAL SOLUTION

In this section, we derive an algorithm for determining the optimal buckling load. We first
recall the proof of Theorem 4.4 in [4] showing that the optimal solutionσ̃ is infinitely differen-
tiable over(0, 1). Multiplying by σ̃α+1 the necessary condition (3.1) written forσ̃, ũ1 andũ2,
we get

(4.1) δ1(σ̃
α|ũ′′1|)2 + δ2(σ̃

α|ũ′′2|)2 = σ̃α+1.

On the other hand, we have
σ̃αũ′′1 = l1 − λ1(σ̃) ũ1,

σ̃αũ′′2 = l2 − λ1(σ̃) ũ2,

wherel1 andl2 are affine function ofx. >From these latter relations we find, on recalling the
inclusionH2

0 ⊂ C1, that(σ̃αũ′′1)
2 and(σ̃αũ′′2)

2 areC1 and hence from (4.1) that̃σ is C1 since it
is positive. We then conclude thatũ′′ is C1, that isũ is C3. Repeating this exact argument we
find thatσ̃ ∈ C5, and continued repetitions leads toσ̃ ∈ C∞(0, 1).

In view of the symmetry, the eigenfunctionsũ1 andũ2 satisfy the differential equations

(σ̃αũ′′1)
′ + λ1ũ

′
1 = 0,

and
(σ̃αũ′′2)

′ + λ1ũ
′
2 = C0,

whereC0 is a nonzero constant. Now a differentiation of both sides of (4.1) yields

−(α + 1)σ̃′ − 2λ1[δ1ũ
′′
1ũ
′
1 + δ2ũ

′′
2ũ
′
2] + 2C0δ2ũ

′′
2 = 0.
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Hence,

σ̃(x) = − λ1

α + 1
(δ1|ũ′1|2 + δ2|ũ′2|2) +

2C0δ2

α + 1
ũ′2 + C1,

whereC1 is a constant. Integrating this equation over(0, 1) and taking into account (3.1) brings

C1 = (α + 2)/(α + 1),

and therefore

(4.2) σ̃(0) = (α + 2)/(α + 1) = σ̃(1).

Condition (4.2) provides important informations to numerical computations. We shall use the
ODE solver COLSYS [1]-[2] to solve our problem. Before this we must find an equivalent
formulation which will be accepted by COLSYS. That is, we must convert our optimization
problem into an equivalent standard nonlinear ODE problem, see [12] for a similar approach.
To reduce the computation efforts, the symmetry can be exploited in a subtle way. Putting
wi =

√
δiσ̃

αũ′′i , i = 1, 2, we get

w′′
i + λσ−αwi = 0, i = 1, 2,

(4.3) σα+1 = w2
1 + w2

2, 0 < x < 1/2,

andw1 andw2 satisfy respectively (2.9) and (2.7). Let

W1(x) =

∫ x

0

σ̃−α(t)w1(t) dt,

W2(x) =

∫ x

0

σ̃−α(t)(t− 1/2)w2(t) dt.

The fact thatλ1 is not zero is assured by one of the following conditions:

W1(1/2) = 0 or W2(1/2) = 0.

Our optimization problem is now replaced by the system of nonlinear equations summarized
below:

ODE’s: 0 < x < 1/2,
λ′ = 0,

W ′
1 = (w2

1 + w2
2)

γw1,

w′′
i = −λ(w2

1 + w2
2)

γwi, i = 1, 2,

whereγ = −α/(α + 1), with the six boundary conditions:

w′
1(0) = 0, W1(1/2)− 0,

2w2(0) + w′
2(0) = 0, w′

1(1/2) = 0,
w2

1(0) + w2
2(0) = σ̃(0)α+1, w2(1/2) = 0,

whereσ(0) is given by (4.2). Since the bimodal formulation does not suffer from singularity, the
system is now ready to be input to COLSYS for direct solution, without any special treatment.
COLSYS requires to be provided with the following parameters:
NCOLP = number of collocation points per sub-intervals;
NSUBI = number of sub-intervals in the initial mesh;
TOLER = error tolerance on each solution component.

The cases below were computed with the parameters

NCOLP = 4, NSUBI = 4, TOLER = 10−7.

The following initial guess is provided for nonlinear iterations
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λ = 50,

W1(x) = x(1− x),

w1 = x− 1/2,

w2 = −6x2 + 5x− 1.

Table 4.1: Numerical results withα = 2 andα = 3, and comparison with the results of Olhoff and Rasmussen[9]
and Masur[8].

α 2 [9] [8] 3
λopt 52.35625 52.3563 52.3565 54.82542
σmax 1.33394 - 1.33392 1.25167
σmin 0.22582 0.226 0.22583 0.37107
x∗ 0.2466 - 0.2467 0.2430

Table 4.1 shows the results of the computations forα = 2 andα = 3. The third and the
fourth columns of the table list the numerical results obtained in [9] and [8], respectively, for
α = 2. The numberx = x∗ is the location where the minimum value ofσ is attained. It can be
seen from the comparison in the table that the results produced by the present approach are in
good agreement with those of [9] and [8]. In particular we obtained the same optimal buckling
load as that in [9]. For completeness, we plotted in Figure 4.1 the optimal shapeσ obtained in
both cases.

Figure 4.1: The optimal shapes obtained using COLSYS forα = 2 andα = 3 in the interval[0, 1
2 ].
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5. THE CASE α = 1

This case has received considerable attention. A number of workers have considered this
case as a critical case, where the optimal buckling load changes multiplicity, and claimed that

|ũ′′(x)| = Const.

is a necessary condition of optimality. The following theorem shows that this case turns out to
be singular.

Theorem 5.1. If α = 1 thenλ1(σ) ≤ 48 for all σ ∈ V . Moreover, equality is attained by the
function

σ̃ =


3/2(1− 16x2) if 0 ≤ x ≤ 1/4,

3/2[1− 16(x− 1/2)2] if 1/4 < x < 3/4,

3/2[1− 16(1− x)2] if 3/4 < x < 1.

Its corresponding first eigenmode is

ũ =


x2 if 0 ≤ x ≤ 1/4,

1/8− (x− 1/2)2 if 1/4 < x < 3/4,

(x− 1/2)2 if 3/4 < x < 1.

Proof. We have for everyσ ∈ V ,

inf
u∈H2

0

∫ 1

0
σu′′2 dx∫ 1

0
u′2 dx

≤
∫ 1

0
σũ′′2 dx∫ 1

0
ũ′2 dx

=
2
∫ 1

0
σ(x) dx∫ 1

0
ũ′2 dx

= 48.

Henceλ1(σ) ≤ 48. Moreover, it is easily checked that the differential equation

(σ̃ũ′′)′′ + λũ′′ = 0

holds everywhere on(0, 1) for λ = 48. To prove the theorem, it suffices to show that the
spectrum of the problem

(5.1) (σ̃u′′)′′ + λu′′ = 0, 0 < x < 1,

(5.2) u(0) = u′(0) = 0, u(1) = u′(1) = 0,

is discrete and thatλ1(σ̃) = 48. Note that an eigenfunction of (5.1)-(5.2) satisfies in particular∫ 1

0

σ̃u′′
2
dx < ∞.

Put v̄ = u′. Thenv̄ satisfies

(σ̃v̄′)′ + λv̄ = C, C = Const.

If λ = 0 then there exists a constantD such that

σ̃v̄′ = Cx + D

everywhere on(0, 1). The integral
∫ 1/4

0
σ̃v̄′2 dx is finite only if

4D + C = 0.
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In this case
∫ 1

3/4
σ̃v̄′2 dx = +∞ so long asC andD are not both zero. IfC = D = 0 then the

conditionsv̄(0) = v̄(1) = 0 and
∫ 1

0
v̄ dx = 0 imply that v̄ is identically zero on(0, 1). As a

result,λ = 0 cannot be an eigenvalue.
Let nowv0 = v̄ − C/λ so that

(5.3) (σ̃v′0)
′ + λv0 = 0,

everywhere on(0, 1). We shall look at this equation only on the half interval(1/4, 3/4). The
only solutionsv of (5.3) defined on(1/4, 3/4) and such that

∫ 3/4

1/4
(1 − 16x2)v′2 dx < ∞ are

polynomial functions, calledLegendrepolynomials, see [5]. Indeed, the spectrum of (5.3)
restricted to(1/4, 3/4) consists of the sequenceλn = 24n(n + 1), n ∈ N. Each eigenvalue is
simple and its corresponding eigenfunction is a polynomial of degreen. We have for example,
λ0 = 0, v = Const., λ0 = 48, v = (x − 1/2), etc. Hence, the spectrum of (5.1)-(5.2) is a
subset of

S = {24n(n + 1), n ∈ N∗}.
It follows thatλ1(σ̃) = 48 and thatσ̃ is optimal. It is finally clear from the analysis that the
optimal buckling 48 is simple.

The solutioñσ was classified by some authors as non-optimal, since, in their opinion, substi-
tution of the test functionu(x) = x2 for 0 ≤ x ≤ 1/4, u(x) = 1/8(1− 2x) for 1/4 < x < 3/4,
andu(x) = −(1 − x)2 for 3/4 ≤ x ≤ 1, into a Rayleigh quotient involving̃σ leads to the
value 27.43. However, as it was pointed out by Seiranian [10], this assertion is not valid since
it neglects the order of the singularity ofσ̃ at points1/4 and3/4.
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