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ABSTRACT. We consider the problem of determining the optimal shape of a clamped column
of given length and volume, without minimum cross section constraints. We prove that the
necessary condition of optimality derived by Olhoff and Rasmussgen [9] is sufficient @vken

a < 1. The number appears in Equatiof (3.1). For the case- 1 it is shown that the value

48 is optimal. We also determine the exact values of the optimal shape at the extremities, and
take advantage of a robust nonlinear ordinary differential equation solver COLSYS to compute
the optimal buckling load with a high accuracy.
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1. INTRODUCTION

An interesting problem with a long history is to determine the shape of the strongest clamped
column with given length and volume. The problem known as Lagrange’s problem was consid-
ered by Tadjbakhsh and Keller [11] in 1962, analytically without cross section constraints. The
derived optimal shape presented singularities at two interior points, and the largest buckling
load was found to be = 1672/3(~ 52.6379). In 1977, Olhoff and Rasmussen [9] reconsid-
ered the problem and pointed out that Tadjbakhsh and Keller’s solution based on a single-modal
formulation is not optimal, since it corresponds to a true buckling load much lowerttan
They suggested that it is necessary to formulate the problem with a double critical load, such
that there exist two different forms of stability loss of the optimal column. Basing on their
bimodal formulation, Olhoff and Rasmussen obtained a column having a non-vanishing cross
sectional area and with a critical buckling load= 52.3563 < 1672. However they did not
succeed to prove the validity of their column. Olhoff and Rasmussen’s solution was defended
by many authors, notably by Masur [8], Seiranianl [10], and Cox and Overton [4], nevertheless
a proof of existence is still lacking.

2. TECHNICAL RESULTS

Consider a column with circular and identically oriented cross se€tiar), having its cen-
troid on thez-axis with a radiusk(z). The moment/(x) is precisely the second moment of
area of the cross section about thaxis, perpendicular to the plane of bucklifig z). Suppose
that the Young’s modulug’ is constant and for everybelonging to the axis of the column, the
surface mass densipy,(y, z) is radial, i.e., depends only on the distance &6 the point(y, z).
That is for example

oy, 2) = k(y* + 2%)7,
wherek and~ are constants independent:oénd(y, z). In this case we have

I(z) = //Q(m) p.(y, 2) (Y + 2°) dy dz = C,, A(x)"™?,

where A(z) denotes the cross-sectional area &hdis a constant depending only on We

may also change the geometry(afr) to collect a number of examples whdregaries as some
power of A. We proceed then to consider the general case whiére ¢%, anda is an arbitrary
nonzero real number. The equation of equilibrium of a column clamped at both extremities
x=0andx =1Iis

(2.1) (c*u")" + X" =0, 0<z<l,
subject to the boundary conditions
(2.2) u(0) = 4'(0) =0, u(l) =4'(1) = 0.

Lagrange’s problem is equivalent to finding a nonnegative funecti@n that maximizes the
first eigenvalue\, (o) of problem [(2.1){(2.2), and satisfies the constant-volume condition

1
(2.3) / o(x)dr =1.
0
Let x4, denote theuth eigenvalue of the second-order problem
(2.4) (") + " =0, v(0) = v(1) =0,

andU the set of allv in L>°(0, 1) having a positive lower bound. A functianwill be said to
be even [resp. odd] if(z) = u(1 — z) [resp.u(z) = —u(1 — x)] for all z in (0, 1).
In [7], we have proved the following results.
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Proposition 2.1. Let o be an arbitrary member di’ (¢ is not necessarily even). Then we have
Mi(0) < ia(0).
Proposition 2.2. Leto be an arbitrary member df. If A\,(o) is double, then

Ai(o) = py(0).
If furthermoreo is even, then\; (o) admits, up to a scalar multiple, a unique odd and a unique
even eigenfunction.

One can then deduce that the two buckling mogeand y, associated with the optimal
column plotted in Figure 2 [12] are incorrect, because both are even. The main result given in
[7] is the following

Theorem 2.3. There existg € U even such thak, (o) does not possess a positive eigenfunc-
tion.

This result contradicts Theorem 2.2 by Cox and Overiton [4], in which they claimed that the
symmetric clamped-clamped column possesses a positive first eigenfunction. This claim was
the source of many confusions. It has been implicitly used by many authors, in particular in [3],
[12] and later in[[6], and led to erroneous conclusions. It can be easily proved that it also leads
to the optimality of Tadjbakhsh and Keller’s shape [6].

Theorenj 2. is based on the fact that wheis even\, (o) can be represented as

(2.5) A(0) = min{A)(0), v(2)(0)}.

where,) (o) andv,) (o) are respectively the second eigenvalues of the problems:
(2.6) w” + Ao w = 0, 0<z<1/2

(2.7) 2w(0) +w'(0) = 0, w(1/2) =0,

and

(2.8) w” +vo “w =0, 0<x<1/2,

(2.9) w'(0) =0, w'(1/2) = 0.

Here and throughout we identify with its restriction to the interva0, 1/2). We note that
problem {(2.6){(2]7) has a zero first eigenvalue with a corresponding eigenfunction—1/2.
From (2.%) we may distinguish three cases:

(i) if A2)(0) < v(2)(0) thenA, (o) is simple and:, (o) is odd.

(ii) if A2y(0) > v9)(0) then); (o) is simple and:; (o) is even; we have, (o) = j,(0).

(iii) if A2)(0) = v(2)(0) then), (o) is double.

3. SUFFICIENT CONDITIONS

We recall that the necessary condition of optimality derived by Olhoff and Rasmussen [9] has
the following form

(3.1) o (O |uf|* + daful|?) = 1,

whered; andd, are nonnegative numbers satisfyig+ 6, = 1, andu; andu, are two linearly
independent eigenfunctions corresponding;t@). Unlike the single-modal formulatiorj, (3.1)
rules out the possibility of optimal columns with vanishing cross sectional areaugfrared v,

do not vanish simultaneously. The aim of this section is to prove that (3.1) is also a sufficient

condition of optimality wher) < o < 1. LetU denote the set of alt € U satisfying ), and
assume thaf (3.1) holds for some even functioa U. We may assume that the corresponding
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eigenfunctionsi; and, are respectively even and odd. Lebe an arbitrary member d@f.
According to ([4], Theorem 2.4) there exists an even functicuch that\; () < \(7). We
notice that this result can be proved independent of Theorem 2.2p ketl/(1 — «) and

U = /0111 + /Oate. PUté = fo )2 dz. Then we have
M) < & /\
= & [+ s do

By Hdlder’s inequality, we get

M) < € (/( P + 6,2 )pd:c)l/p

— § / 61|~//|2+62|~// )

It is easily verified tha# is also a maximizer of, (o) over the set” of all nonnegative functions
o € L>=(0, 1) satisfying [(2.8) and such that problem (2.[1)-[2.2) has a discrete spectrum. In fact,
we have for any € VV

M(0) < M(o+2) < M (5) (/01(0 o) dx)a,

wheree is a positive number. Letting — 0 yields\; (o) < A\(a).

4. OPTIMAL SOLUTION

In this section, we derive an algorithm for determining the optimal buckling load. We first
recall the proof of Theorem 4.4 ihl[4] showing that the optimal solu#ias infinitely differen-
tiable over(0, 1). Multiplying by 5! the necessary conditio.l) written @y u; ands,
we get

(41) 51( a|~//|) +(52( a|~// )2 — 5_@—1—1'

On the other hand, we have
&O‘u'{ = ll — )\1(6‘) ﬂl,

60“1/2’ = lQ — )\1(5') 112,
wherel; and/, are affine function ofc. >From these latter relations we find, on recalling the
inclusionHZ C C*, that(5°%)? and(6*u4)? areC" and hence fron{ (4]1) thatis C"* since it
is positive. We then conclude that is C!, that is is C3. Repeating this exact argument we
find thats € C®, and continued repetitions leadsaee C>(0, 1).

In view of the symmetry, the eigenfunctiofis andu, satisfy the differential equations

( g //) _|_ )\1U1 — 0
and

( o~ //) + )\1U2 CO,
whereC), is a nonzero constant. Now a differentiation of both side§ of (4.1) yields

(o4 1)6" — 2\ [, 8T + 6501 i1h) + 2C08od = 0.
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Hence,

)\1 ~ ~ 20052~
O'(l‘) = —a i 1(51]u1|2 + (52|U/2 2) + &—HUIQ + Ol,

whereC is a constant. Integrating this equation of@r1) and taking into account (3.1) brings
Cy = (a+2)/(a+1),

and therefore
4.2) 7(0)=(a+2)/(a+1)=0(1).

Condition [4.2) provides important informations to numerical computations. We shall use the
ODE solver COLSYSI[[1]4[2] to solve our problem. Before this we must find an equivalent
formulation which will be accepted by COLSYS. That is, we must convert our optimization
problem into an equivalent standard nonlinear ODE problem,[sée [12] for a similar approach.
To reduce the computation efforts, the symmetry can be exploited in a subtle way. Putting
w; = \0;6%0, 1= 1,2, we get

w! + No%w; = 0, 1=1,2,
(4.3) ot = w? + w3, 0<x<1/2,

andw, andw, satisfy respectively (2]9) and (2.7). Let
Wi(x) = / 50 (un (t) dt,
0

Wy(z) = /x () (t — 1/2)ws(t) dt.
The fact that\, is not zero is assured0 by one of the following conditions:
Wi(1/2) =0 or Wy(1/2) =0.
Our optimization problem is now replaced by the system of nonlinear equations summarized
below:

ODE's: 0 <z < 1/2,

N'=0,
Wi = (w} + w3)w,
w! = —Nw? +w3)w;, i=1,2,
wherey = —a/(a + 1), with the six boundary conditions:
wi(0) =0, Wi(1/2) — 0,

2un(0) +wh(0) =0, wi(1/2) =0,
wH(0) + w3(0) = 50+, wy(1/2) =0,

wheres(0) is given by[4.2). Since the bimodal formulation does not suffer from singularity, the
system is now ready to be input to COLSYS for direct solution, without any special treatment.
COLSYS requires to be provided with the following parameters:
NCOLP = number of collocation points per sub-intervals;
NSUBI = number of sub-intervals in the initial mesh;
TOLER = error tolerance on each solution component.

The cases below were computed with the parameters

NCOLP = 4, NSUBI = 4, TOLER =107,
The following initial guess is provided for nonlinear iterations
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Wi(z) = z(1 — z),
wy =x—1/2,

wy = —62% 4+ 5 — 1.

Table 4.1: Numerical results with = 2 and« = 3, and comparison with the results of Olhoff and Rasmuf&En
and Masur8].

a 2 O] El 3
Nopi | 52.35625 52.3563| 52.3565| 54.82542
omar | 1.33394| - | 1.33392 1.25167
Trin | 0.22582| 0.226 | 0.22583 0.37107
v. | 02466 | - | 0.2467| 0.2430

Table[4.1 shows the results of the computationsdfor 2 anda = 3. The third and the
fourth columns of the table list the numerical results obtainedlin [9] @and [8], respectively, for
a = 2. The number: = z, is the location where the minimum value ®@fs attained. It can be
seen from the comparison in the table that the results produced by the present approach are in
good agreement with those o1 [9] and [8]. In particular we obtained the same optimal buckling
load as that in'[9]. For completeness, we plotted in Figure 4.1 the optimal shalpiined in
both cases.
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Figure 4.1: The optimal shapes obtained using COLSY& fer2 and« = 3 in the interval[0, %].
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5 THECASEa =1

This case has received considerable attention. A number of workers have considered this
case as a critical case, where the optimal buckling load changes multiplicity, and claimed that

|a"(z)| = Const.

is a necessary condition of optimality. The following theorem shows that this case turns out to
be singular.

Theorem 5.1.1f & = 1 then)\;(0) < 48 for all o € V. Moreover, equality is attained by the
function

3/2(1 — 1622) if0<az<1/4,
&=1< 3/2[1—16(x —1/2)?] if 1/4 <z < 3/4,

3/2[1 —16(1 —z)?] if3/4<x<1.
Its corresponding first eigenmode is

x? if 0 <z <1/4,
a=1{ 1/8—(x—1/2)* if1/4 <z < 3/4,
(x —1/2)2 if 3/4 <z < 1.

Proof. We have for every € V,

¢ f ou' dx fo " dx 2]01 o(zx)dx 18

n = = .

ueH? f w?de fo 0’2 dx fol '? dx

Hence), (o) < 48. Moreover, it is easily checked that the differential equation
(~ l/)// + /\11” — 0

holds everywhere o1f0, 1) for A = 48. To prove the theorem, it suffices to show that the
spectrum of the problem

(5.1) (gu")" + 2" =0, 0<z<l,

(5.2) u(0) = 4/(0) = 0, uw(l) =4'(1) =0,
is discrete and thay; (5) = 48. Note that an eigenfunction df ($.1)-(b.2) satisfies in particular

/1 u" dr < .
0
Puto = «'. Thenuv satisfies
(67") + Mo = C, C = Const.

If A\ = 0 then there exists a constabtsuch that

o' =Cx+ D
everywhere orf0, 1). The integral], /4 52 dz is finite only if

4D+ C =0.
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In this casef?)l/4 60" dz = +o0 so long ag” and D are not both zero. I€ = D = 0 then the

conditionsv(0) = v(1) = 0 and folf;dx = 0 imply thatv is identically zero on0,1). As a
result,\ = 0 cannot be an eigenvalue.
Let nowvy = v — C'/ A so that

(5.3) (vg) + Mg =0,

everywhere or{0, 1). We shall look at this equation only on the half interyaf4,3/4). The

only solutionsv of ) defined or(1/4,3/4) and such thay”f’/f(l — 162?)v? dr < oo are
polynomial functions, called.egendrepolynomials, seel[5]. Indeed, the spectrum [0f](5.3)
restricted to(1/4, 3/4) consists of the sequenge = 24n(n + 1), n € N. Each eigenvalue is
simple and its corresponding eigenfunction is a polynomial of degré®e have for example,
Ao =0, v =Const., \g = 48, v = (x — 1/2), etc. Hence, the spectrum ¢f (5.[)-(5.2) is a
subset of

S ={24n(n+1), n e N*}.

It follows that A\, () = 48 and thatz is optimal. It is finally clear from the analysis that the
optimal buckling 48 is simpleg

The solutions was classified by some authors as non-optimal, since, in their opinion, substi-
tution of the test function(z) = 2% for 0 < x < 1/4, u(z) = 1/8(1 — 2x) for 1/4 < z < 3/4,
andu(z) = —(1 — x)? for 3/4 < x < 1, into a Rayleigh quotient involving leads to the

value 27.43. However, as it was pointed out by Seiraniah [10], this assertion is not valid since

it neglects the order of the singularity &fat pointsl /4 and3/4.

REFERENCES

[1] U. ASCHER and J. CHRISTIANSEN and R. D. RUSSEL, Collocation software for boundary value
ODEs,ACM Transactions on Mathematical Softwarg1981) , no. 2, 209-222.

[2] U. ASCHER and J. CHRISTIANSEN and R. D. RUSSEL, Algorithm 596, COLSYS: Collocation
software for boundary value ODEACM Transactions on Mathematical Software(1981) , no.
2,223-229.

[3] D. C. BARNES, Buckling of columns and rearrangement of functigpgart. Appl. Math, XLI
(1983), 169-180.

[4] S.J. COX and M. L. OVERTON, On the optimal design of columns against buckBigyM J.
Math. Anal, 23(1992), 287-325.

[5] R. DAUTRAY and J. L. LIONS,Spectres des OpérateurSollection Analyse Mathématiques et
Calcul Numérique, Masson, 1998.

[6] Y.V. EGOROV and S. KARAA, Sur la forme optimale d’une colonne en compres§loR,. Acad.
Sci. Paris 322(1996), 519-524.

[7] S. KARAA, Properties of the first eigenfunctions of the clamped column equalivegret. Appl.
Mech, 30(2003) no. 4, 265-276.

[8] E. F. MASUR, Optimal structural design under multiple eigenvalue constraimts), Solids Struc-
tures 19(1984), 100-111.

[9] N. OLHOFF and S. RASMUSSEN, On single and bimodal optimum buckling loads of clamped
columns,Int. J. Solids Struct13(1977), 605-614.

[10] A. P. SEIRANIAN, On a problem of Lagrangé&zh. Zh. Mechanika Tverdogo Tel26 (1984),
100-111Mech. Solid€9(1986), 100-111.

AJMAA Vol. 3, No. 1, Art. 7, pp. 1-9, 2006 AJMAA


http://ajmaa.org

TITLE 9

[11] 1. TADJBAKHSH and J. B. KELLER, Strongest columns and isoperimetric inequalities for eigen-
values,J. Appl. Mech.29(1962), 159-164.

[12] S. YUAN, Application of ODE techniques and software to determination of optimum buckling
loads of clamped column§omputers and Structure39 (1991), 391-398.

AIJMAA Vol. 3, No. 1, Art. 7, pp. 1-9, 2006 AJMAA


http://ajmaa.org

	1. Introduction
	2. Technical Results
	3. Sufficient Conditions
	4. Optimal Solution 
	5. The case 0=x"010B=1 
	References

