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1. I NTRODUCTION

Stochastic functional differential equations (SFDEs) constitute a powerful mathematical frame-
work for modeling dynamic systems influenced by stochastic processes. They find widespread
application across various disciplines, including finance, physics, biology, and engineering. In
recent decades, the study of SFDEs has gained significant attention due to their ability to cap-
ture both deterministic dynamics and stochastic fluctuations, making them invaluable tools for
understanding complex phenomena in uncertain environments. See the references to this [2]-
[7] and [9]-[15].

The fundamental question addressed in this paper is the existence of solutions to stochastic
differential equations. While the existence or uniqueness of solutions to ordinary differential
equations (ODEs) have been extensively studied and established under appropriate conditions,
the analysis of SFDEs presents additional challenges due to the presence of stochastic terms.
The interplay between deterministic and stochastic components in SFDEs necessitates special-
ized techniques for establishing the existence of solutions.

The existence theorem for solutions of SFDEs plays a central role in ensuring the well-
posedness of stochastic models and underpins their applicability in practical contexts. This
theorem provides conditions under which solutions to SFDEs exist, allowing researchers and
practitioners to confidently utilize these models for prediction, control, and optimization tasks.
See the references to this [7], [10], and [11].

In the Itô’s classical theory of SFDEs, the condition of Lipsitz continuity was assumed as a
condition for confirming the existence of a solution. The solution is constructed by applying a
continuous approximation method through a given Brownian motion and the uniqueness of the
solution could be seen in this approximate way.

Nowadays, there are many examples where the Lipschitz condition is not satisfied, but we
can prove the existence and uniqueness of the solution. See the references to this [2], [6], and
[12]-[15]. However, in these cases, the problem of existence and uniqueness has been dealt with
in different ways in continuous approximation. Until now, it was not known enough whether
the solution could be continuously approximated in these examples.

In this paper, we aim to supply an overview of the existence theorem for solutions of SFDEs,
elucidating the key concepts, mathematical techniques, and theoretical results involved. We
begin by introducing the basic definitions and properties of SFDEs, followed by a discussion
of the challenges inherent in establishing the existence of solutions. Subsequently, we survey
some of the fundamental results and approaches in the literature for proving the existence of
solutions to various classes of SFDEs.

Mao [10] obtained that if two conditions Lipschiz and linear growth condition are satisfied,
then the SDEs

dz(t) = f(z(t), t)dt+ g(z(t), t)dB(t)(1.1)

had a unique solutionz(t), moreover,z(t) ∈ M2([t0, T ];Rd×m) which means that we denoted
byM2 the set of processes{z(t)} in Lp such thatE

∫ T

t0
|z(t)|2dt <∞.

Especially, Wei at al.[15] obtained that if two conditions (1.2) and (1.3) are satisfied: For all
y1, y2 ∈ Rd andt ∈ [t0, T ], it follows that

|f(y1, t)− f(y2, t)|2 ∨ |g(y1, t)− g(y2, t)|2 ≤ κ (|y1 − y2|2),(1.2)

where the functionκ(·) is a concave non-decreasing. For allt ∈ [t0, T ], it follows thatf1(0, t), f2(0, t) ∈
Rd × [t0, T ] such that

|f1(0, t)|2 ∨ |f2(0, t)|2 ≤ K,(1.3)
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then there exists a unique solutionz(t) to stochastic differential equation (1.1) on the closed
interval[t0, T ].

And, Mao [10] had established the existence and uniqueness theorems and discussed the
properties of the solution for the SFDEs in his book. More specifically, he derived the solution
of equation:

dy(t) = f(yt, t)dt+ g(yt, t)dB(t),(1.4)

on the closed interval[x0, T ]. And he obtained that if there exist two positive constantsK and
K such that

(i) (Uniform Lipschiz condition) for ally1, y2 ∈ Rd andt ∈ [x0, T ]

|f(y1, t)− f(y2, t)|2 ∨ |g(y1, t)− g(y2, t)|2 ≤ K||y1 − y2||2;(1.5)

(ii) (Linear growth condition) for any(ϕ, t) ∈ Rd × [x0, T ]

|f(ϕ, t)|2 ∨ |g(ϕ, t)|2 ≤ K(1 + ||ϕ||2),(1.6)

then the SFDEs (1.4) had a unique solutiony(t), moreover,y(t) ∈M2([x0−τ , T ];Rd×m) which
means that we denoted byM2 the set of processes{y(t)} in Lp such thatE

∫ T

x0
|y(t)|2dt <∞.

However, the Lipschiz condition and linear growth condition only ensure the existence and
uniqueness of the solution. In general, the solution has no explicit expression except for the
linear case discussed in previous researchers. See the references to this [10]. Therefore, in
practice, we often explore new conditions that provide exact solutions or approximate solutions.
In the book [10], by using the Picard iteration procedure, authors established the theorem on
the existence and uniqueness of the solution ford-dimensional stochastic differential equation.
As the by-product, authors also obtained the Picard approximate solution for the equation and
following Theorem 1.1 which gives an estimate on the difference, called the error, between the
approximate and the accurate solution.

Theorem 1.1. Assume that (1.5) and (1.6) hold. Lety(t) be the unique solution of equation
(1.4) andyn(t) be the Picard iteration. Then

E

(
sup

x0≤t≤T
|yn(t)− y(t)|2

)
≤ γ1 exp (2M(T − x0))(1.7)

for all n ≥ 1.

In practice, given the errorε > 0, one can determinen for left-hand side of (1.7) to be less
thanε, and then computey0(t), y1(t), · · · , yn(t) by the Picard iteration. According to Theorem
1.1, we have

E

(
sup

x0≤t≤T
|yn(t)− y(t)|2

)
≤ ε.

In the paper [2], by employing non-Lipschitz condition and non-linear growth condition,
authors established the results ford-dimensional stochastic differential equations. Motivated by
[2], [10], and [15], we will investigate the existence and uniqueness theorem of the solution for
SFDEs at a phase spaceM2

(
[x0 − τ , T ];Rd

)
in this paper.

By elucidating the theoretical underpinnings of the existence theorem, this paper seeks to
contribute to the foundational understanding of stochastic differential equations and facilitate
their effective utilization in diverse scientific and engineering applications. Furthermore, we
aim to highlight avenues for future research and development in the field of stochastic analysis,
with a focus on advancing our understanding of the existence and behavior of solutions to SDEs
in complex and high-dimensional settings.
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2. PRELIMINARY

For the smooth development of the main theorems, it is necessary to introduce analytical
inequalities introduced in the following lemmas.

Lemma 2.1. ([1, 10]) (Hölder’s inequality) If1
p
+ 1

q
= 1 for anyp, q > 1, f1 ∈ Lp, andf2 ∈ Lq,

thenf1f2 ∈ L1 and
∫ b

a
f1f2dx ≤

(∫ b

a
|f1|pdx

) 1
p
(∫ b

a
|f2|qdx

) 1
q
.

Lemma 2.2. ([1]) (Willett and Wong, 1965) Letv(t), b(t), andk(t) be nonnegative continuous
functions inJ = [α, β], and letp ≥ 0, p 6= 1, anda > 0 be constants. Suppose that

v(t) ≤ a+

∫ t

α

b(s)v(s)ds+

∫ t

α

k(s)vp(s)ds, t ∈ J.

Then

v(t) ≤ exp

(∫ t

α

b(s)ds

)[
a1−p + (1− p)

∫ t

α

k(s) exp

(
(p− 1)

∫ s

α

b(τ)dτ

)
ds

] 1
p−1

.

Lemma 2.3. ([1]) (Stachurska’s inequality) Letv, a1, a2, andk(t) be nonnegative continuous
functions inJ = [α, β), and letp > 0, p 6= 1,

v(t) ≤ a1(t) + a2(t)

∫ t

α

k(s)vp(s)ds, t ∈ J,

wherea1

a2
is nondecreasing functiont ∈ J . Then

v(t) ≤ a1(t)

(
1− (p− 1)

[
a1(t)

a2(t)

]p−1 ∫ t

α

k(s)ap
2(s)ds

) 1
1−p

, α ≤ t < β1,

whereβ1 = β if 0 < p < 1, and for p > 1, β1 is the smallest value oft ≥ α such that the
expression between brackets vanishes.

Next, we will introduce the symbols and the functions of the stochastic functional differential
equations needed to understand the main theorems introduced in the next chapter.

Throughout this paper unless otherwise specified, let(Ω,F , P ) be a complete probability
space with a filtration{Ft}t≥t0 and let the filtration is satisfying the usual conditions (i.e. it is
right continuous andFt0 contains allP -null events), andB(t) is anm-dimensional Brownian
motion defined on(Ω,F , P ), that isB(t) = (B1(t), B2(t), ..., Bm(t))T .

Let τ > 0 and| · | denote byC([−τ , 0];Rd) the family of continuous functionsϕ from [−τ , 0]
toRd with the norm||ϕ|| = sup−τ≤θ≤0|ϕ|. Let |·| denote Euclidean norm inRn. If A is a vector
or a matrix, its transpose is denoted byAT ; if A is a matrix, its trace norm is represented by
|A| =

√
trace(ATA).

Let 0 ≤ t0 ≤ T <∞, and let

f := C([−τ , 0];Rd)× [t0, T ] → Rd on g := C([−τ , 0];Rd)× [t0, T ] → Rd×m

be both Borel measurable. Consider thed-dimensional stochastic functional differential equa-
tion

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T,(2.1)

wherext = {x(t + θ) : −τ ≤ θ ≤ 0} is regarded and aC([−τ , 0];Rd)-valued stochastic
process.

The next definition introduced is the definition of the solution of the above equation (2.1).
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Definition 2.1. ([10]) An Rd-valued stochastic processx(t) on t0 − τ ≤ t ≤ T is called a
solution of equation (2.1) if it has the following properties:
(i) {x(t)} is continuous andFt-adapted;
(ii) {f(x(t), t)} ∈ L1([t0, T ];Rd) and{g(x(t), t)} ∈ L2([t0, T ];Rd×m);
(iii) xt0 = ξ and, for everyt0 ≤ t ≤ T,

x(t) = ξ(0) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

g(xs, s)dB(s).(2.2)

A solutionx(t) is said to be unique if any other solutionx̄(t) is indistinguishable from it, that is

P{x(t) = x̄ for all t0 − τ ≤ t ≤ T} = 1.

The two well-known theorems of moment inequalities, introduced next, are important in-
equalities that dictate the order between Itô integrals and general integrals. These inequalities
will be used to prove the main theorems.

Lemma 2.4. ([10])(moment inequality) Letp ≥ 2. Letf1 ∈M2([0, T ];Rd×m) such that

E

∫ T

0

|f1(s)|pds <∞.

Then

E

∣∣∣∣∫ T

0

f1(s)dB(s)

∣∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|f1(s)|pds.

Lemma 2.5. ([10])(moment inequality) Ifp ≥ 2, g ∈M2
(
[0, T ];Rd×m

)
such that

E

∫ T

0

|g(s)|pds <∞,

then

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

g(s)dB(s)

∣∣∣∣p) ≤ ( p3

2(p− 1)

) p
2

T
p−2

p E

∫ T

0

|g(s)|pds.

3. M AIN RESULTS

Let us now begin to establish the theory of the existence and uniqueness of the solution.
We first show that the partial weighting Lipschitz condition and the weakened linear growth
condition guarantee the existence and uniqueness.

Now,we consider thed-dimensional stochastic functional differential equation

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T,(3.1)

wherext = {x(t + θ) : −τ ≤ θ ≤ 0} is regarded and aC([−τ , 0];Rd)-valued stochastic
process. Here we have to think about what is the initial value problem for a given equation
(3.1). More specifically, it is necessary to specify the minimum amount of initial data to satisfy
the definition of a stochastic processx(t) in the equation (3.1). In other words, it indicates
that we need to specify the stochastic process displayed in the entire interval[t0 − τ , t0]. We
therefore impose the initial data:

xt0 = ξ = {ξ(θ) : −τ < θ ≤ 0}(3.2)

is aFt0-measurable,C((−τ , 0];Rd)-value random variable such thatE||ξ||2 <∞.
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In order to obtain an existence and uniqueness solution to stochastic functional differential
equation (3.1), It is necessary to check the following lemma.

Lemma 3.1. Let the following two conditions partial weighted Lipschitz condition and weak-
ened linear growth condition hold:

(i) (Partial weighted Lipschitz condition) For allϕ, ψ ∈ C((−τ , 0];Rd) andt ∈ [t0, T ], we
assume that

(3.3) |f(ϕ, t)− f(ψ, t)|2 ∨ |g(ϕ, t)− g(ψ, t)|2 ≤ K(||ϕ− ψ||2)α,

whereK is a positive constant and0 < α < 1 is a constant.

(ii) (Weakened linear growth condition) For allt ∈ [t0, T ], it follows thatf1(0, t), f2(0, t) ∈
L2 such that

(3.4) |f1(0, t)|2 ∨ |f2(0, t)|2 ≤ K,

whereK is a positive constant.

If x(t) is the solution of (3.1) with initial data (3.2), then

E
(

sup
t0−τ≤t≤T

|x(t)|2
)
≤
[
C1−α

1 + (1− α)6K(T − t0 + 4)(T − t0)
]1/(1−α)

,(3.5)

whereC1 = 4E||ξ||2 + 6K(T − t0 + 4)(T − t0).

Proof. For each numbern ≥ 1, define the stopping time

ηn = T ∧ inf{t ∈ [t0, T ] : ||xt|| ≥ n}.

Obviously, asn→∞, ηn ↑ T a.s. Letxn(t) = x(t∧ ηn), t ∈ [t0− τ , T ]. Then, fort0 ≤ t ≤ T,
xn(t) satisfy the following equation

xn(t) = ξ(0) +

∫ t

t0

f(xn
s , s)I[t0,ηn](s)ds+

∫ t

t0

g(xn
s , s)I[t0,ηn](s)dB(s).

Using the elementary inequality(y + z + w)2 ≤ 3(y2 + z2 + w2) and Hölder’s inequality, we
have

|xn(t)|2 ≤ 3|ξ(0)|2 + 3(t− t0)

∫ t

t0

∣∣∣f(xn
s , s)I[t0,ηn](s)

∣∣∣2ds+ 3
∣∣∣∫ t

t0

g(xn
s , s)I[t0,ηn](s)dBs

∣∣∣2.
Taking the expectation on both sides and applying Doob’s martingale inequality, we get the
following

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3E|ξ(0)|2 + 3(T − t0)E

∫ t

t0

∣∣∣f(xn
s , s)(s)

∣∣∣2ds+ 12E
∣∣∣∫ t

t0

g(xn
s , s)I[t0,ηn](s)dBs

∣∣∣2.
By Lemma 2.4, partial weighted Lipschitz condition (3.3) and weakened linear growth con-

dition (3.4), we then show that

E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 3E|ξ(0)|2 + 6K(T − t0 + 4)(T − t0) + 6K(T − t0 + 4)

∫ t

t0

E
(
||xn

s ||
)α
ds.
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Noting thatsupt0−τ≤s≤t |xn(s)|2 ≤ ||ξ||2 + supt0≤s≤t |xn(s)|2, we obtain

E

(
sup

t0−τ≤s≤t
|xn(s)|2

)
≤ C1 + 6K(T − t0 + 4)

∫ t

t0

E
(

sup
t0−τ≤r≤s

|xn(r)|
)α
ds,

whereC1 = 4E||ξ||2 + 6K(T − t0 + 4)(T − t0).
Now the Jensenpś inequality and Lemma 2.2 yields that

E

(
sup

t0−τ≤s≤t
|xn(s)|2

)
≤
[
C1−α

1 + 6K(1− α)(T − t0 + 4)(T − t0)
]1/(1−α)

.

It then follows that

E

(
sup

t0−τ≤t≤ηn

|x(t)|2
)
≤
[
C1−α

1 + 6K(1− α)(T − t0 + 4)(T − t0)
]1/(1−α)

.

Consequently the required inequality (3.5) follows by lettingn→∞.

The next two theorems are the main theorem in this section, which states that if conditions
(3.3) and (3.4) are satisfied, the unique solution to Stochastic functional differential equation
(3.1) exists. It is also intended to show that conditions (3.3) and (3.4) guarantee the existence
of the solution to Stochastic functional differential equation (3.1).

Theorem 3.2. Suppose that the condition (3.3) and (3.4) are valid. If there is a solution to
equation (3.1), then there is only one solution to the equation.

Proof. Letx(t), x̄(t) be any two solutions of the equation. By Lemma 3.1, both ofx(t) andx̄(t)
belong toM2([t0 − τ , T ];Rd). Note that

x(t)− x̄(t) =

∫ t

t0

[f(xs, s)− f(x̄s, s)]ds+

∫ t

t0

[g(xs, s)− g(x̄s, s)]dB(s).

By the elementary inequality, we can easily show that sees that

|x(t)− x̄(t)|2

≤ 2

∣∣∣∣∫ t

t0

[f(xs, s)− f(x̄s, s)]ds

∣∣∣∣2 + 2

∣∣∣∣∫ t

t0

[g(xs, s)− g(x̄s, s)]dB(s)

∣∣∣∣2.
Taking the expectation on both sides and applying Hölder inequality, we get the following

E

(
sup

t0≤s≤t
|x(s)− x̄(s)|2

)
≤ 2(t− t0)E

∫ t

t0

|f(x(s), s)− f(x̄(s), s)|2ds+ 2E sup
t0≤s≤t

∫ s

t0

|g(xr, s)− g(x̄r, s)|2dr.

By Lemma 2.5 and the condition (3.3), one can show that

E

(
sup

t0≤s≤t
|x(s)− x̄(s)|2

)
≤ 2K(T − t0 + 4)

∫ t

t0

E
(

sup
t0≤r≤s

(|x(r)− x̄(r)|2
)α

ds.

By the Jensen inequality, we have

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)

≤ 2K(T − t0 + 4)

∫ t

t0

(
E sup

t0≤r≤s
(|x(r)− x̄(r)|2

)α

ds.

By the Stachurska’s inequality(Lemma 2.3), one deduces that

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)

= 0.

This implies thatx(t) = x(t) for t0 ≤ t ≤ T . The uniqueness has been proved.
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Theorem 3.3.Suppose that the condition (3.3) and (3.4) are valid. If[C2{M(t− t0)}n]/n! ≥ 1
is satisfied, then there exists a solution to the equation (3.1), whereM = 2K(T − t0 + 4) and
C2 = 8K(T − t0 + 4)(T − t0) + 8K(T − t0 + 4)E(||ξ||2)α(T − t0). Moreover, the solution
belongs toM2

(
[t0 − τ , T ];Rd

)
.

Proof. Definex0
t0

= ξ andx0(t) = ξ(0) for t0 ≤ t ≤ T. For eachn = 1, 2, · · · , setxn
t0

= ξ and
define, by the Picard iterations,

xn(t) = ξ(0) +

∫ t

t0

f(xn−1
s , s)ds+

∫ t

t0

g(xn−1
s , s)dB(s)(3.6)

for t0 ≤ t ≤ T.
It is easy to show thatxn(·) ∈M2([t0− τ , T ];Rd) (The more detailed verification process is

similar to the proof process in Lemma 3.1. The details are left to reader to check).
We claim that for alln ≥ 0,

E
(

sup
t0≤s≤t

|xn+1(s)− xn(s)|2
)
≤ C2[M(t− t0)]

n

n!
(3.7)

on t0 ≤ t ≤ T, whereM = 2K(T − t0 + 4) andC2 will defined below. First we compute
E(supt0≤s≤t |x1(s) − x0(s)|2). By the Hölder inequality and Doob’s martingale inequality, we
have

E
(

sup
t0≤t≤T

|x1(t)− x0(t)|2
)

≤ 2(T − t0)E

∫ T

t0

|f(x0
s, s)|2ds+ 8E

∣∣∣ ∫ T

t0

g(x0
s, s)dB(s)

∣∣∣2.
Using the moment inequality(Lemma 2.4), the condition (3.3) and (3.4), one can show that

E
(

sup
t0≤t≤T

|x1(t)− x0(t)|2
)

≤ 2(T − t0 + 4)(4K(T − t0)) + 2(T − t0 + 4)
(
4E

∫ T

t0

K(||x0
s||2)αds

)
≤ 8K(T − t0 + 4)(T − t0) + 8K(T − t0 + 4)E(||ξ||2)α(T − t0) ≡ C2.

So the inequality (3.7) holds forn = 0. Next, assume the inequality (3.7) holds for somen ≥ 0.
Then, by the Hölder inequality and Doob’s martingale inequality, we have

E
(

sup
t0≤s≤t

|xn+2(s)− xn+1(s)|2
)

≤ 2(T − t0)E

∫ t

t0

|f(xn+1
s , s)− f(xn

s , s)|2ds+ 8E
∣∣∣ ∫ t

t0

(g(xn+1
s , s)− g(xn

s , s))dB(s)
∣∣∣2.

Using the moment inequality(Lemma 2.4), the condition (3.3) and (3.4), one can show that

E
(

sup
t0≤s≤t

|xn+2(s)− xn+1(s)|2
)
≤ 2K(T − t0 + 4)E

∫ t

t0

(||xn+1
s − xn

s ||2)αds

≤M

∫ t

t0

(
E sup

t0≤r≤s
|xn+1(r)− xn(r)|2

)α

ds,
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whereM = 2K(T−t0+4).Here, the following can be obtained from the induction assumption
(3.7) and the inequality assumption[C2{M(t− t0)}n]/n! ≥ 1.

E
(

sup
t0≤s≤t

|xn+2(s)− xn+1(s)|2
)
≤M

∫ t

t0

(C2[M(s− t0)]
n

n!

)α

ds

≤M

∫ t

t0

(C2[M(s− t0)]
n

n!

)
ds =

C2[M(t− t0)]
n+1

(n+ 1)!
.

That is, the assumption (3.7) holds forn + 1. Hence, by induction, the inequality (3.7) holds
for all n ≥ 0. From the inequality (3.7), we can then show in the same way as in the proof of
the Theorem([10], p.51, Theorem 2.3.1) thatxn(·) converges tox(t) inM2

(
[t0 − τ , T ];Rd

)
in

sense ofL2 as well as probability 1, andx(t) is a solution to equation (3.1) satisfying the initial
condition (3.2). The existence has also been proved.

In the above two theorem we have shown that the Picard Iterationsxn(t) converge to the
unique solutionx(t) of equation (3.1). The following two theorems provide estimates for the
difference betweenxn(t) andx(t), and clearly show that an approximate solution to the equation
(3.1) can be obtained using the Picard iterative procedure.

Theorem 3.4. Let the assumptions of Theorem 3.3 hold. Letx(t) be the unique solution of
equation (3.1) with initial data (3.2) andxn(t) be the Picard iterations defined by (3.6). Then,
for all n ≤ 1,

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
≤
(
C1−α

3 + (1− α)M(t− t0)
)1/(1−α)

,(3.8)

whereC3 = M
(
C2[M(t− t0)]

n−1/(n− 1)!
)α

(t− t0) andM = 21+αK(T − t0 + 4).

Proof. By the Hölder inequality and Doob’s martingale inequality, it is easy to derive that

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)

≤ 2(T − t0)E

∫ t

t0

|f(xn−1
s , s)− f(xs, s)|2ds+ 8E

∣∣∣ ∫ t

t0

(g(xn−1
s , s)− g(xs, s))dB(s)

∣∣∣2.
Using the moment inequality(Lemma 2.4), the condition (3.3) and (3.4), one can show that

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)

≤ 2K(T − t0 + 4)E

∫ t

t0

(||xn−1
s − xs||2)αds

≤ 2K(T − t0 + 4)

∫ t

t0

E
(

sup
t0≤r≤s

|xn−1(r)− x(r)|2
)α

ds

≤ 2K(T − t0 + 4)

∫ t

t0

E
(
2 sup

t0≤r≤s
|xn(r)− xn−1(r)|2 + 2 sup

t0≤r≤s
|xn(r)− x(r)|2

)α

ds.

Here, applying the meaning that inequality (3.7) is established, the following can be obtained

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)

≤M
(C2[M(t− t0)]

n−1

(n− 1)!

)α

(t− t0) +M

∫ t

t0

(
E sup

t0≤r≤s
|xn(r)− x(r)|2

)α

ds,(3.9)
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whereM = 21+αK(T − t0 + 4). Now, applying the Lemma 2.2., we can obtain the required
inequality (3.8) as follows.

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)
≤
(
C1−α

3 + (1− α)M(t− t0)
)1/(1−α)

,

whereC3 = M
(
C2[M(t− t0)]

n−1/(n− 1)!
)α

(t− t0). The proof is complete.

Theorem 3.5. Let the assumptions of Theorem 3.3 hold. Letx(t) be the unique solution of
equation (3.1) with initial data (3.2) andxn(t) be the Picard iterations defined by (3.6). Then,
for all n ≤ 1,

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
≤ C3

(
1− (α− 1)C1−α

3 (t− t0)
)1/(1−α)

,(3.10)

whereC3 = M
(
C2[M(t− t0)]

n−1/(n− 1)!
)α

(t− t0) andM = 21+αK(T − t0 + 4).

Proof. The following inequality that applies Lemma 2.3 to the inequality (3.9) that appears in
the process of proving Theorem 3.4 can be obtained.

E
(

sup
t0≤s≤t

|xn(s)− x(s)|2
)
≤ C3

(
1− (α− 1)C1−α

3 (t− t0)
)1/(1−α)

,

whereC3 = M
(
C2[M(t− t0)]

n−1/(n− 1)!
)α

(t− t0). The proof is complete.

4. CONCLUSION

Using the partial weighted Lipschitz condition and weakened linear growth condition, in
the Theorem 3.3, we have shown that the Picard’s approximate solutionxn(t) converge to the
unique solutionx(t) of equation (3.1) for rational numberα. In practice, given the errorε > 0,
one can determine for the left-hand side of (3.7) to be less thanε by the Picard iteration (3.6).
According to Theorem 3.3, we have

E
(

sup
t0≤t≤T

|xn+1(t)− xn(t)|2
)
< ε.(4.1)

On the other hand, one sees from (4.1) that for everyt, xn(t) is Cauchy sequence inL2 as well.
Hence we also have thatxn(t) is closed enough to the accurate solutionx(t) in L2. Furthermore,
the two conditions (3.3) and (3.4) we chose in Theorem 3.3 can be said to be meaningful in
providing some advantages on the concave curve over the two conditions (1.5) and (1.6) used
in the previous existence theorem study.

In the Theorem 3.4 and 3.5, using the partial weighted Lipschitz condition and weakened
linear growth condition, we have shown that a dynamic movement relationship between the
approximate solutionxn(t) and the unique solutionx(t) of equation (3.1). In this two theorem
show that one can use the Picard iteration procedure to obtain the approximate solution of
equation (3.1), and (3.8) and (3.10) give the estimate for the error of the approximation. We
would like to leave it to the next discussion as to which of the errors in (3.8) and (3.10) are
effective.
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