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2 YOUNG-HO Kim

1. INTRODUCTION

Stochastic functional differential equations (SFDES) constitute a powerful mathematical frame-
work for modeling dynamic systems influenced by stochastic processes. They find widespread
application across various disciplines, including finance, physics, biology, and engineering. In
recent decades, the study of SFDEs has gained significant attention due to their ability to cap-
ture both deterministic dynamics and stochastic fluctuations, making them invaluable tools for
understanding complex phenomena in uncertain environments. See the references to this [2]-
[7] and [9]-[15].

The fundamental question addressed in this paper is the existence of solutions to stochastic
differential equations. While the existence or uniqueness of solutions to ordinary differential
equations (ODESs) have been extensively studied and established under appropriate conditions,
the analysis of SFDEs presents additional challenges due to the presence of stochastic terms.
The interplay between deterministic and stochastic components in SFDEs necessitates special-
ized techniques for establishing the existence of solutions.

The existence theorem for solutions of SFDEs plays a central role in ensuring the well-
posedness of stochastic models and underpins their applicability in practical contexts. This
theorem provides conditions under which solutions to SFDEs exist, allowing researchers and
practitioners to confidently utilize these models for prediction, control, and optimization tasks.
See the references to this [7], [10], and/[11].

In the 1t6’s classical theory of SFDESs, the condition of Lipsitz continuity was assumed as a
condition for confirming the existence of a solution. The solution is constructed by applying a
continuous approximation method through a given Brownian motion and the uniqueness of the
solution could be seen in this approximate way.

Nowadays, there are many examples where the Lipschitz condition is not satisfied, but we
can prove the existence and uniqueness of the solution. See the references 1o this [2], [6], and
[12]-[15]. However, in these cases, the problem of existence and uniqueness has been dealt with
in different ways in continuous approximation. Until now, it was not known enough whether
the solution could be continuously approximated in these examples.

In this paper, we aim to supply an overview of the existence theorem for solutions of SFDEs,
elucidating the key concepts, mathematical techniques, and theoretical results involved. We
begin by introducing the basic definitions and properties of SFDESs, followed by a discussion
of the challenges inherent in establishing the existence of solutions. Subsequently, we survey
some of the fundamental results and approaches in the literature for proving the existence of
solutions to various classes of SFDEs.

Mao [10] obtained that if two conditions Lipschiz and linear growth condition are satisfied,
then the SDEs

(1.1) dz(t) = f(2(t), t)dt + g(=(t), t)dB(t)

had a unique solution(t), moreoverz(t) € M?([ty, T]; R*>™) which means that we denoted
by M? the set of processds(¢)} in £P such thate j;f |2(¢)]*dt < .

Especially, Wei at al.[15] obtained that if two conditiops {1.2) dnd|(1.3) are satisfied: For all
y1,92 € RYandt € [ty, T, it follows that

(1.2) [f(yr:t) = fly )PV lgyn,t) = g(ya. )* < & (lyr — 92,
where the functiom(-) is a concave non-decreasing. Fortadl [t,, T, it follows that f1(0,¢), f2(0,t) €
R® x [to, T] such that

(13) |f1(0at)|2 v |f2(07t)|2 < K,
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then there exists a unique solutiofY) to stochastic differential equatiop (1.1) on the closed
interval(to, 7.

And, Mao [10] had established the existence and uniqueness theorems and discussed the
properties of the solution for the SFDESs in his book. More specifically, he derived the solution
of equation:

(1.4) dy(t) = f(ye, t)dt + g(ye, t)dB(t),

on the closed intervdlr,, T]. And he obtained that if there exist two positive constaiitand
K such that
(i) (Uniform Lipschiz condition) for ally;, v, € R? andt € [z, T

(1.5) |f(y.t) = Fy2, )P V g (yr, t) — g2, 1) < Klyy — wl
(i) (Linear growth condition) for anyyp, t) € R x [z, T
(1.6) [fle.)]* V g(e, ) < K (L +]]),

then the SFDE$ (1.4) had a unique solutjgf), moreovery(t) € M?([xo—7, T]; R¥*™) which
means that we denoted Byt? the set of processdg(¢)} in £F such thatF fi ly(t)|?dt < oo.
However, the Lipschiz condition and linear growth condition only ensure the existence and
uniqueness of the solution. In general, the solution has no explicit expression except for the
linear case discussed in previous researchers. See the references|tal this [10]. Therefore, in
practice, we often explore new conditions that provide exact solutions or approximate solutions.
In the book [10], by using the Picard iteration procedure, authors established the theorem on
the existence and uniqueness of the solution/fdimensional stochastic differential equation.
As the by-product, authors also obtained the Picard approximate solution for the equation and
following Theorem 1.11 which gives an estimate on the difference, called the error, between the
approximate and the accurate solution.

Theorem 1.1. Assume tha{ (1}5) andl (1.6) hold. Lgt) be the unique solution of equation
(1.4) andy,,(¢) be the Picard iteration. Then

wL.7) E(SM)WAQ—QWF)SVWHNMNT—fd)

zo<t<T

forall n > 1.

In practice, given the errar > 0, one can determine for left-hand side of[(1]7) to be less
thane, and then computey (t), y1(¢), - - - , y.(t) by the Picard iteration. According to Theorem
1.7, we have

B (sup, i) - v(0)P) <
zo<t<T

In the paper([2], by employing non-Lipschitz condition and non-linear growth condition,
authors established the results dedimensional stochastic differential equations. Motivated by
[2], [10], and [15], we will investigate the existence and uniqueness theorem of the solution for
SFDEs at a phase spagé? ([z, — 7, T]; k%) in this paper.

By elucidating the theoretical underpinnings of the existence theorem, this paper seeks to
contribute to the foundational understanding of stochastic differential equations and facilitate
their effective utilization in diverse scientific and engineering applications. Furthermore, we
aim to highlight avenues for future research and development in the field of stochastic analysis,
with a focus on advancing our understanding of the existence and behavior of solutions to SDEs
in complex and high-dimensional settings.
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2. PRELIMINARY

For the smooth development of the main theorems, it is necessary to introduce analytical
inequalities introduced in the following lemmas.

Lemma 2.1. ([1,[10]) (Holder's inequality) If L+ - = 1foranyp,q > 1, fi € L7, andf, € LY,

thenf, f, € £! andff Jifadx < (fab |f1|pd$>; (f: |f2|qu>a-

Lemma 2.2. ([1]) (Willett and Wong, 1965) Let(t), b(t), and k(¢) be nonnegative continuous
functions inJ = [a, (], and letp > 0, p # 1, anda > 0 be constants. Suppose that

o(t) < a+ / b(s)u(s)ds + / k(s)o? (s)ds, t € J.
Then

o(t) < exp (/; b(s)ds) {alp +(1-p) /;k(s) exp ((p ) /a b(T)dT) ds} o

Lemma 2.3. ([1]) (Stachurska’s inequality) Let, a;, as, and k(t) be nonnegative continuous
functions inJ = [a, 3), and letp > 0,p # 1,
t

v(t) < ay(t)+ ag(t)/ k(s)vP(s)ds, t € J,

where ! is nondecreasing functione .J. Then
ar(t)]”" [ ) e
v(t) <ait) [ 1-(p—1) 0 k(s)aj(s)ds |, o<t <py,
a9 @
where, = gif 0 < p < 1, and forp > 1, 3, is the smallest value af > « such that the
expression between brackets vanishes.

Next, we will introduce the symbols and the functions of the stochastic functional differential
equations needed to understand the main theorems introduced in the next chapter.

Throughout this paper unless otherwise specified({letF, P) be a complete probability
space with a filtratio F; },>;, and let the filtration is satisfying the usual conditions (i.e. itis
right continuous and,, contains allP-null events), and3(t) is anm-dimensional Brownian
motion defined o2, F, P), thatisB(t) = (B (t), Ba(t), ..., Bm ().

Let7 > 0 and|- | denote byC'([—, 0]; R?) the family of continuous functiong from [—7, 0]
to R? with the norm||¢|| = sup_,<s<o|¢|. Let|-| denote Euclidean normiR". If A is a vector
or a matrix, its transpose is denoted HY; if A is a matrix, its trace norm is represented by
|A| = /trace(AT A).

Let0 <ty <T < oo, and let
f=C([-, O];Rd) X [to, T] — RY on ¢ := C’([—T,O];Rd) X [to, T] — Rxm

be both Borel measurable. Consider thdimensional stochastic functional differential equa-
tion

(2.1) dx(t) = f(zg, t)dt + g(ay, t)dB(t) on to <t <T,

wherez;, = {z(t + ) : —7 < 6 < 0} is regarded and &([—,0]; R¢)-valued stochastic
process.

The next definition introduced is the definition of the solution of the above equatign (2.1).
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Definition 2.1. ([10]) An R<-valued stochastic process$t) ont, — 7 < t < T is called a
solution of equation (2]1) if it has the following properties:

(i) {=(t)} is continuous ancF;-adapted;

(i) {f(x(t),1)} € L([to, T]; RY) and{g(x(t),£)} € L([to, T]; R*™);

(iil) x4, = £ and, foreveryty <t < T,

t t
(2.2) ot) =€)+ [ Sloas)ds+ [ gl )iB(s),
to to
A solutionz(t) is said to be unique if any other solutie(¢) is indistinguishable from it, that is
Plz(t)=2 for all ty—17<t<T}=1.
The two well-known theorems of moment inequalities, introduced next, are important in-

equalities that dictate the order between It integrals and general integrals. These inequalities
will be used to prove the main theorems.

Lemma 2.4. ([10])(moment inequality) Let > 2. Let f; € M?([0,T]; R¥*™) such that

T
E/O fu(s)Pds < oo.

p - T, T
g(@Lﬁ)T%E/|mww&
2 0
Lemma 2.5. ([10])(moment inequality) Ip > 2, g € M? ([0, T]; R*™) such that

T
E/!WW%<m
0

Ve ) v e

3. MAIN RESULTS

Then

E‘Afo@dB@>

then

AE@M@

E ( sup
0<t<T

Let us now begin to establish the theory of the existence and uniqueness of the solution.
We first show that the partial weighting Lipschitz condition and the weakened linear growth
condition guarantee the existence and unigueness.

Now,we consider thé-dimensional stochastic functional differential equation

(3.2) dz(t) = f(x, t)dt + g(xe, t)dB(t) on to <t <T,

wherex; = {z(t +60) : —7 < 6 < 0} is regarded and &([—, 0]; R?)-valued stochastic
process. Here we have to think about what is the initial value problem for a given equation
(3.1). More specifically, it is necessary to specify the minimum amount of initial data to satisfy
the definition of a stochastic proces§) in the equation[(3]1). In other words, it indicates
that we need to specify the stochastic process displayed in the entire intgrvat, t,]. We
therefore impose the initial data:

(3.2) x, =6 =4£(0): —7 < 0 <0}
is aF;,-measurable(((—7, 0]; R¢)-value random variable such th&t|||? < oo.
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In order to obtain an existence and uniqueness solution to stochastic functional differential
equation|(3.1), It is necessary to check the following lemma.

Lemma 3.1. Let the following two conditions partial weighted Lipschitz condition and weak-
ened linear growth condition hold:
(i) (Partial weighted Lipschitz condition) For alf, v € C'((—,0]; R%) andt € [to, T], we
assume that
(33) ’f(% t) - f(d}? t)|2 \% |g<§07 t) - g(qu)) t)|2 S F(H(ﬂ - w||2>aa
whereK is a positive constant an@l < o < 1 is a constant.
(i) (Weakened linear growth condition) For &l [¢y, T, it follows that f,(0,¢), f2(0,t) €
L? such that
(34) |f1(07t)‘2\/‘f2(07t)’2 SK?
whereK is a positive constant.
If z(t) is the solution of| (3]1) with initial datd (3.2), then
_ 1/(1—a)
(3.5) E< sup |a:(t)|2> < [0}—& (1= @)K (T — to + 4)(T — to) ,
to—T<t<T
whereC; = 4E||¢||? + 6K (T — to + 4)(T — to).
Proof. For each numbet > 1, define the stopping time
N, =T Ninf{t € [to, T] : ||z¢|]| > n}.

Obviously, as1 — oo, n, T T'a.s. Letx™(t) = x(t An,),t € [to —7,T]. Then, fort, <t <T,
x™(t) satisfy the following equation

(0 = €0 + [ Fa2 ) (s + [ gl 5) s, ()AB(S)

to

Using the elementary inequality + » + w)? < 3(y? + 22 + w?) and Holder’s inequality, we
have

mwwﬁsaamﬁ+3u—my/

to

2 t 2
ds—|—3/ 9(x%, 8) 1y 1(s)dBs| .

to

f(l"?, S)I[toﬂln] (3)

Taking the expectation on both sides and applying Doob’s martingale inequality, we get the
following

za( sup rx"<sﬂ2)
to<s<t

< SEIEO + 37~ )5 [

to

2 t 2
f(:v?,s)(s)) ds+12E/ 9(xy, 8) 1y, (5)dBs| .

to

By Lemmd 2.4, partial weighted Lipschitz conditign (3.3) and weakened linear growth con-
dition (3.4), we then show that

E(&mlﬂ@W)
to<s<t

< BE|E(0)? + 6K (T — to + 4)(T — to) +6F(T—t0+4)/ E(||=2]])"ds.

to
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Noting thatsup,, ., [#"(s)[* < [[€]]* + supy, <. |2"(s)|*, we obtain
t
E< sup \x"(s)ﬁ) <Oy +6K(T —to+ 4)/ E( sup |2"(r)])"ds,
to—1<s<t to to—17<r<s

whereCy = 4E||¢||> + 6 K(T — to + 4)(T — to).
Now the Jenserpinequality and Lemma 3.2 yields that

B( sw "6 ) < [Ch 4 6K a)(T ~ to+ )T ~ 1)

to—7<s<t

1/(1-a)

It then follows that

E( sup \w(t)\z) < [Cf‘“+67(1 —a)(T —to+ 4)(T — to)

to —Tﬁtﬁﬂn

] 1/(1—a)

Consequently the required inequality (3.5) follows by letting> co. 1

The next two theorems are the main theorem in this section, which states that if conditions
(3.3) and|(3.4) are satisfied, the unique solution to Stochastic functional differential equation
(3.7) exists. Itis also intended to show that conditidns| (3.3) (3.4) guarantee the existence
of the solution to Stochastic functional differential equation|(3.1).

Theorem 3.2. Suppose that the condition (B.3) annd (3.4) are valid. If there is a solution to
equation[(3.]L), then there is only one solution to the equation.

Proof. Letz(t), z(t) be any two solutions of the equation. By Lemmd 3.1, both(6f andz(t)
belong toM?([ty — 7, T]; R?). Note that

o) = 2() = [ Flones) = Flans)lds + [ lo(os) = gla)dB(s)

to to
By the elementary inequality, we can easily show that sees that

2(t) — 2(1)
/ (e s) — F(70, 5)]ds

to

2
+2

2
<2

/ (920, ) — g(@s, $)|dB(s)| -

to
Taking the expectation on both sides and applying Holder inequality, we get the following

B( sup lols) - 2P )

to<s<t

<2t —to)E t |[f(x(s), 8) — f(z(s), 5)|"ds + 2E sup S\g(xr, s) = g(@r, s)|"dr.

to<s<t to
By Lemmd 2.5 and the conditioph (3.3), one can show that

«

E( sup |x(s)—x(s)|2) < 9R(T —ty +4) /tE< sup (|x(r)—f(r)\2> ds.

to<s<t to to<r<s
By the Jensen inequality, we have
t e
B sup fo(s) ~a(s)PP) < 2K(T ~ 1o+ 4)/ (& s (lo(r) - 2()) ds.
to<s<t to to<r<s
By the Stachurska’s inequality(Lemina]2.3), one deduces that
E( sup |z(s) — :E(s)|2> = 0.
to<s<t

This implies that:(t) = Z(t) for t, <t < T. The uniqueness has been proved.
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Theorem 3.3. Suppose that the condition (B.3) and {3.4) are validCW{ M (¢t —ty) }"] /n! > 1
is satisfied, then there exists a solution to the equation (3.1), where 2K (T — ¢, + 4) and

Cy = 8K(T —tg + 4)(T — to) + 8SK(T — to + 4)E(]|€])>)(T — to). Moreover, the solution
belongs taM? ([ty — 7,T]; RY).

Proof. Definez) = ¢ anda?(t) = £(0) fort, <t < T. Foreachh =1,2,---, setz} = ¢ and
define, by the Picard iterations,

t t
(3.6) (0 =€)+ [ Frs)ds+ [ gal 9Bl
to to
forto <t <T.
It is easy to show that"(-) € M?([t, — 7, T]; R?) (The more detailed verification process is
similar to the proof process in Lemrpa[3.1. The details are left to reader to check).
We claim that for alln > 0,

@) B( sup [o71(s) - a"()?) < 2Lt

to<s<t

n!

onty <t < T,whereM = 2K(T — t, + 4) andC, will defined below. First we compute
E(supy,<s<; |z'(s) — 2%(s)|?). By the Holder inequality and Doob’s martingale inequality, we
have

E( sup |2'(t) - 2"()]?)

to<t<T
2

[ otat 9o

to

T
<AT-0)E [ £ 5)ds + S

to

Using the moment inequality(Lemrha P.4), the conditjon|(3.3) (3.4), one can show that

E( sup |a'(t) - 2"(1)2)

< 2T —to +4)AK(T —to)) + 2(T — to + 4) <4E /TF(ng|,2)ads>
<8K(T —tg+4)(T —to) + 8K(T —to + 4 E(||€||))*(T — to) = Co.

So the inequality[ (3]7) holds fer = 0. Next, assume the inequalify (8.7) holds for some 0.
Then, by the Holder inequality and Doob’s martingale inequality, we have

B( sup [272(s) = 2" (s)]?)

to<s<t
2

/ (9(a™, ) — g™, $))dB(s)| .

to

t
< AT —to)E / F@, s) — f(a, s)Pds + 8E
to

Using the moment inequality(Lemrpa P.4), the conditjon|(3.3) (3.4), one can show that

t
B( sup [272(s) = 2" (s)?) < 2K (T ~ 1o + 4)E/ (|27t — 22| [?)*ds

to<s<t to

t (0%
SM/ (E sup |2"H(r) — 2"(r)?) ds,
to

to<r<s

N———
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whereM = 2K (T —t,+4). Here, the following can be obtained from the induction assumption
(3.7) and the inequality assumpti@®h{ M (t — ty)}"]/n! > 1.

E( sup [2"+2(s) — anrl(S)‘Z) Y t(C'z[M(S — to)]n)o‘ds

to<s<t . oy
< M/f<CQ[M(Z!— to)]")ds _ @[]\ﬁt;f;)]nﬂ

That is, the assumptiof (3.7) holds fer+ 1. Hence, by induction, the inequality (8.7) holds
for all » > 0. From the inequality{ (3]7), we can then show in the same way as in the proof of
the Theorem([10], p.51, Theorem 2.3.1) thaf-) converges ta:(t) in M? ([t, — 7, T]; RY) in
sense of.? as well as probability 1, ang(t) is a solution to equatio.l) satisfying the initial
condition [3.2). The existence has also been proyed.

In the above two theorem we have shown that the Picard Iteratidft$ converge to the
unique solutionz(t) of equation [(3.]l). The following two theorems provide estimates for the
difference between™(¢) andz(t), and clearly show that an approximate solution to the equation
(3.7) can be obtained using the Picard iterative procedure.

Theorem 3.4. Let the assumptions of Theorém|3.3 hold. L&f be the unique solution of
equation [(3.]L) with initial data[ (3]2) and"(¢) be the Picard iterations defined Hy (B.6). Then,
foralln <1,

@8 (s 0 —aF) < (G- -)
to<t<T
Wherng = M(CQ[M(t — to)]n—l/(n — 1)|)O<<t . t(]) andM _ 21+a?(T o+ 4)

Proof. By the Holder inequality and Doob’s martingale inequality, it is easy to derive that
B( sup [2"(s) - o(s)?)
to<s<t
2

T 10)E / F@08) — f(a5)|2ds + SE / (9(z" ", 8) — glaa,$))dB(s)]

Using the moment inequality(Lemrpa P.4), the conditjon](3.3) (3.4), one can show that
E( sup [2"(s) - a(s)])

to<s<t

t
< OR(T —to + 4)E/ (27! — 2 |P)ds

to

< 2K(T —ty+ 4) /tE< sup |2" 7 (r) — x(r)|2>ads

to to<r<s

t (0%

<2K(T —ty+ 4)/ E(Z sup |z"(r) — 2" 1 (r)]? +2 sup |2"(r) — x(r)]2> ds.
to to<r<s to<r<s

Here, applying the meaning that inequalfty (3.7) is established, the following can be obtained

B( sup [2"(s) — a(s))

to<s<t

(3.9 §M<02[]\/([7§t__1t;!)]n_1> (t —to) +M/ Etos<u7£s|a7 r)— x(r)|2>ads,
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whereM = 2'+*K (T — t, + 4). Now, applying the Lemmf 2.2., we can obtain the required
inequality [3.8) as follows.

B( sup [a"(s) — w(9)) < (G0 + (1 - )W~ 1)) .

to<s<t

whereCs = M (Co[M (t — to)]" 1 /(n — 1)!)*(t — t,). The proof is completex

Theorem 3.5. Let the assumptions of Theorem 3.3 hold. k@t be the unique solution of
equation [(3.]1) with initial data (3]2) and"(¢) be the Picard iterations defined Hy (B.6). Then,
foralln <1,

?

(3.10) E( sup |z"(t) — :L'(t)|2> < 03(1 —(a—1)C(t — ty)

to<t<T

)1/(1—(1)

whereC; = M (Co[M(t — to)]" ' /(n — D))" (t — to) and M = 2K (T — to + 4).

Proof. The following inequality that applies Lemma P.3 to the inequality|(3.9) that appears in
the process of proving Theorgm 3.4 can be obtained.

?

E< sup [2"(s) — :U(S)P) < (73(1 —(a—1)C(t - to))l/(l—a)

to<s<t

whereCs = M (Co[M (t — to)]" ! /(n — 1)1)*(t — t,). The proof is completex

4. CONCLUSION

Using the partial weighted Lipschitz condition and weakened linear growth condition, in
the Theoren 3|3, we have shown that the Picard’s approximate soltftiohconverge to the
unique solutionz(¢) of equation|(3.]L) for rational number. In practice, given the errar> 0,
one can determine for the left-hand side[of|3.7) to be lessdligrthe Picard iteratior] (3.6).
According to Theorerp 3|3, we have

(4.1) E( sup |2 (t) —x"(t)|2> <e

to<t<T

On the other hand, one sees fr4.1) that for every}(¢) is Cauchy sequence it¥ as well.

Hence we also have that () is closed enough to the accurate solutigt) in L2. Furthermore,

the two conditions[(3]3) and (3.4) we chose in Theofem 3.3 can be said to be meaningful in
providing some advantages on the concave curve over the two condjtions (1.5) and (1.6) used
in the previous existence theorem study.

In the Theoren 3]4 ard 3.5, using the partial weighted Lipschitz condition and weakened
linear growth condition, we have shown that a dynamic movement relationship between the
approximate solution”(¢) and the unique solution(¢) of equation[(3.]1). In this two theorem
show that one can use the Picard iteration procedure to obtain the approximate solution of
equation[(3.]1), and (3.8) and (3]10) give the estimate for the error of the approximation. We
would like to leave it to the next discussion as to which of the error§ in (3.8)[and (3.10) are
effective.
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