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1. INTRODUCTION
Let £ be a real normed space with dual spate A map.J : £ — 2F" defined by
Jr:={a" € B*: (z,a") = |lz|.|="]], ||zl = =]}

is called thenormalized duality mapn E. If E* is strictly convex,J/ is single-valued. If in
addition, E is reflexive, the inverse df J~! : E* — E exists.

AmapA : E — 2F is calledmonotonéf for eachz,y € E, the following inequality holds:
(1.1) <n—u,x—y>20Vn€Az,V€Ag/.

It is calledmaximal monotond, in addition, the graph ofd is not properly contained in the
graph of any other monotone map. Alsbjs maximal monotone if and only if it is monotone
andR(J + XA) = E*, A > 0.

Monotone maps were first studied in Hilbert spaces by Zarantonello [51], Minty [32]ridaskii

[23] and a host of other authors. Interest in such maps stems mainly from their usefulness in
applications. In particular, monotone maps appear in convex optimization theory. Consider, for
example, the following.

Let H be a real Hilbert space and: H — R U {oo} be a proper convex function. The
subdifferentialof h, Oh : H — 2%, is defined for each € H by

Oh(z) ={a* € H : h(y) — h(z) > (y —z,2")Vy € H}.

It is easy to check thath is amonotone operatoon H, and thal) € Oh(u) if and only ifu is

a minimizer ofh. Settingoh = A, it follows that solving the inclusiof € Au, in this case, is
solving for a minimizer ofh.

We now take a brief look at the following class of maps which are closely related to monotone
maps.

AmapA : E — 2F is calledaccretiveif for eachz,y € E, there existg(z — y) € J(z — y)

such that

1.2) (n—v,jlx—y)) >0, ne Az, v e Ay.

A is calledm-accretivef, in addition, the graph of is not properly contained in the graph of
any other accretive operator. Itig-accretive if and only ifA is accretive and?(I + tA) = E
forallt > 0.

In a real Hilbert space, the normalized duality map is the identity map, and so, in this case, in-
equality [1.2) and inequality (1.1) coincide. HeniceHilbert spaces, accretivity and monotonic-
ity coincide

Accretive operators have been studied extensively by numerous mathematicians (see e.g., the
following monographs: Berinde][8], Browderi [9], Chidumel[14], Reich [37], and the references
contained in them).

Accretive mapsvere introduced independently in 1967 by Browder [9] and Kato [25]. Interest

in such maps stems mainly from their firm connection with the existence theory for nonlinear
equations of evolution in real Banach spaces. Furthermore, it is known (see e.g., Zeidler [53])
that many physically significant problems can be modeled in terms of an initial-value problem
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of the form

du
dt
where A is a multi-valued accretive map on an appropriate real Banach space. Typical exam-
ples of such evolution equations are found in models involving the heat, wave or Schrédinger
equations (see e.g., Browder [10], Zeidler|[53]). Observe that in the modgl (1.3), if the solution
u is independent of time (i.e., at the equilibrium state of the system),%eﬁ: 0 and [1.B)
reduces to

(1.3) 0€ — + Au, u(0) = up,

(1.4) 0€ Au

whose solutions then correspond to the equilibrium state of the system descrihed by (1.3). So-
lutions of equation[(1]4) wheH is accretive can also represent solutions of partial differential
equations (see e.g., Benilan, Crandall and Pazy [7], Khatibzadeh and MoroA&anu [27], Khati-
bzadeh and Shokri[26], Showalter [43], Volpert|[48], and so on).

In studying the equatiof € Au, where A is a multi-valued accretive operator on a Hilbert
spaceH, Browder introduced an operatdrdefined byl" := I — A wherel is the identity map
on H. He called such an operatpseudo-contractivelt is clear that solutions di € Au, if
they exist, correspond to fixed points’Bf

Examples of pseudocontractive maps include nonexpansive maps. i.e.Jmdps— F such
that||Tz—Ty| < ||z —y| V,z,y € K, whereK inanonempty subset of a real normed space,
E.

Within the past 40 years or so, methods for approximating solutions of equgtion (1.4) when
A'is an accretive-type operator have become a flourishing area of research for numerous math-
ematicians. Several convergence theorems have been published in various Banach spaces and
under various continuity assumptions. Many important theorems have been proved, thanks to
geometric properties of Banach spaces developed from the mid 1980s to the early 1990s. The
theory of approximation of solutions of the equation whéis of the accretive-type reached

a level of maturity appropriate for an examination of its central themes. This resulted in the
publication of monographs which presented in-depth coverage of the main ideas, concepts and
most of the important results on iterative algorithms for approximation of fixed points of non-
expansive and pseudocontractive maps and their generalisations; approximation of zeros of
accretive-type operators; iterative algorithms for solutions of Hammerstein integral equations
involving accretive-type maps; iterative approximation of common fixed points (and common
zeros) of families of these maps; solutions of equilibrium problems; and so on (see e.g., Agarwal
et al. [1]; Berinde [8]; Chidumel[14]; Reich [38]; Censor and Reich/[13]; William and Shahzad
[49], and the references contained in them). Typical of such theorems recently published is the
following theorem.

Theorem 1.1(Chidume, [[15]) Let £ be a uniformly smooth real Banach space with modulus
of smoothnesg;;, and let4 : E — 2¥ be a multi-valued bounded —accretive operator with
D(A) = E such that the inclusiod € Au has a solution. For arbitraryz;, € E, define a
sequencédz, } by,

Tn41 = Tp — )\nun - )\nen(mn - .Tl), Uy € Al'n, n > 17
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where{\,} and{#,,} are sequences i, 1) satisfying the following conditions:
(1) limy,—0 0, = 0, {0, } is decreasing(ii) >  A\,0, = 00; > pp(A,M;) < oo, for some con-
stantM; > 0;

On—1 -1

On

(270) limy, oo An—e} = 0. There exists a constan > 0 such that%:") < v,0,. Then, the

sequencéz, } converges strongly to a zero df

For nonexpansive maps, methods for approximagéimpmmon fixed poirfor a finite, infinite
or countable family of nonexpansive maps, assuming existence, have been of interest to mathe-
maticians. Some of the important theorems proved include the following.

Theorem BSK 1. [Bauschke,[5], Theorem 3.1] Let K be a nonempty closed convex subset
of a Hilbert spaceH and i, T, ..., T, be a finite family of nonexpansive mapsrofinto it-

self with ' := n!_,Fiz(T;) # 0 and F = Fiz(T,T,_,..Tv) = Fiz(TWT,..Tz) = ... =
F(T,4T,-5..T\T,). Let {\,} be a real sequence i, 1] which satisfie”; : lim A, = 0;

Cy: > Ay =o00candCs : ) |\, — A\pir| < 00. Given pointsy, z, € K, let{x,} be generated

by

(15) Tpt+1 = )\n+1u + (1 - )\n+1)Tn+1xn> n Z 07
whereT,, = T}, moa »- Then{z,} converges strongly t&ru, wherePr : H — F is the metric

projection.

A complementary result to this theorem of Bauschke, still in a Hilbert space was proved by

n

O’Haraet al [36], where the conditiod'; was replaced by’ : lim

n—00 Apip
lim An = At

n—oo )\n-i-r

Theorem OPH 1 (O’Haraet al, [36] Theorem 3.3)Let {)\,} C (0,1) satisfylim\, = 0
and>_ )\, = co. Let K be a nonempty closed and convex subset of a Hilbert sHaard let
T,: K — K, n=1,2,... be nonexpansive maps such tiiat= N, Fiz(T;) # 0. Assume
thatVy, Vs, ..., V, : K — K are nonexpansive maps with the property: foriak= 1,2,.... N
and for any bounded subsg@tof K, there holdslim sup || 7,2 — Vi (T,z)|| = 0. For zp,u € K

n—oo CEEC

= 1 or equivalently,

= 0. They proved the following theorem.

define
(16) Tnt1 = )\n+1u + (]_ - )\n+1)Tn+1In7 n Z 0.
Then,z,, — Pu, whereP is the projection from.

Theorem OPH 2. (O’Hara et al., [36], Theorem 3.3) Lef be a nonempty closed convex

subset of a Hilbert spacé andT;,T5,--- ,Ty be nonexpansive self-maps @fwith F' :=
NY_, Fiz(T;) # 0. Assume that
F=Fix(Ty--T)) = Fie(TN'Ty - Ty) = - = Fia(Ty_1Tn_o- - Ty). Let{\,} € (0,1)

satisfy the following conditions(i) lim A, = 0 (i) Z/\" = oo and (4i7) lim

=00 Apn+N

= 1.
n=1

Given pointsey, u € K, the sequencér, }°°, C K is defined by

(17) Tpt1 = )\n+1u + (1 — )\n+1)Tn+1$n, n 2 0.

Then,z,, — Pru, wherePr is the projection of. onto F'.
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Theorem S 1(Suzuki [46]) Let C' be a convex compact subset of a Banach spacd_ et
{T,, : n € N} be an infinite family of commuting nonexpansive map&'ofix A € (0,1). Let
{o,} be a sequence if), 3] satisfying

liminf o, = 0, limsupa, > 0,andlim(a,+1 — a,) = 0.

Define a sequencgr, } in C by, € C and

(1.8) Tpi1 = /\<1 — Z aﬁ) Tix, + X Z osz_lTkxn + (1= MNax,
n=2

n=1

forn € N. Then{z, } converges strongly to a common fixed poin{ 6f : n € N}.

In all the results involvingccretive-typenaps, or nonexpansive-type mapgseudo-contractive-
typemaps, fixed point techniques are applicable because these operafasspace into itself

Unfortunately, developing algorithms for approximating solutions of the very important case of
equation[(14) whent : E — 2F" is of monotone-typéfor example, the case of the subdiffer-
ential,0f : £ — 2F7) has not been very fruitful. Part of the difficulty seems to be that fixed
point techniques are not directly applicable because the operators involved map & spdise

dual spaceF*. Futhermore, the geometric properties of Banach spaces developed from the mid
1980s to the early 1990s which played a central role with accretive-type maps are not directly
applicable when monotone-type maps fréno £* are involved.

Fortunately, a new concept of fixed points for maps from a real normed dpdcats dual,

E*, has now been introduced. Furthermore, Albér [2] (see also, Alber and Ryazaniseva [4]) re-
cently introduced a Lyapunov functional: £ x E — R which signalled the beginning of the
development of new geometric properties of Banach spaces which are appropriate for studying
iterative methods for approximating solutionsl.4) whenE — 2" is of monotone-type.
Geometric properties so far obtained have rekindled enormous research interest on iterative
methods for approximating solutions of equatipn(1.4) whétis of the monotone-type, and
other related problems (see e.g., Alber [2]; Alber and Guerre-Delabriere [3]; Chidume [15];
Chidumeet. al. [17]; Diop et. al. [21]; Moudafi [34], Moudafi and Tera [35]; Reiclf]|f Sow

et. al. [45]; Takahashill47]; Zegeyé [52] and the references contained in them).

The following lemma will be needed in the sequel.

Lemma 1.2(Alber, [4], p.45) Let X be a uniformly convex Banach space. Then, for&ny 0
and anyz, y € X such that|z|| < R, |ly|| < R, the following inequality holds:

(Jo = Jy,z —y) > (2L) " ox(cy ' lz — yl),
wherec, = 2maz{l, R}, 1 < L < 1.7.

In other to develop techniques analogous to the ones studied for accretive operators, the notion
ofJ—fixed pointof a mapT : £ — E* has been introduced and studied (this notion has also
been calledemi-fixed poinfZegeye[[52]) duality fixed poin{Liu [30]).

A pointz* € E is called aJ—fixed point ofl" if Tx* = J*x and we denote by';(T'), the set
of J—fixed points ofT, i.e.,

(1.9 FyT):={x € E:Tx = Jx}.

This is an analogue of the definition of a fixed point for a riidpom a normed spack to itself.
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Chidume and Idu in [19], studied a new class of maps callegseudocontractions

AmapT : EF — E*is calledJ—pseudo contractive
(1.10) (Te —Ty,x—y) <(Jr—Jy,z—y)Va,y€e L.
This notion had been calletliality pseudocontractive Liu, [30].

Remark 1.1. In theoren] 1.B below{ ), } and{6,,} are sequences ifd, 1) satisfying the fol-
lowing conditions.

(1) 350, Ao = o0
(i1) MMy < Yo0n; 05 (MaMZ) < Yobn,
o5 (L= in
) ( )

—1{0p—1—0n
O, — 0 _5E*( - On K)
)\nen ’ )\nen

(13i — 0, asn — oo,

y 1 enf *en
(iv) 5 (el—nK> € (0,1),

for some constantd/; > 0, K > 0 and~y, > 0; wheredg : (0,00) — (0, 00) is the modulus
of convexity of E.

Real sequences that satisfy the conditiohs — (iv)* are the following:

(1.11) M=m+1D%andf, = (n+1)7° n>1,
1
O<b<-—-a, a+b<1/p.
p

1 - 1
For example, one can choose= D andb := TSR
Verification that these choices satisfy conditigfisto (ii) above can be found in Chidume and
Idu, [19].

With these conditions, Chidume and Idu proved the following theorem.

Theorem 1.3(Chidume and Idu[[19])Let £’ be a uniformly convex and uniformly smooth real
Banach space and |ét* be its dual. Lefl : £ — 2F be a.J-pseudocontractive and bounded
map such thatJ — T') is maximal monotone. SuppoBg(T) := {v € E : Jv € Tv} # (). For
arbitrary x1, u € F, define a sequende:,, } iteratively by:

(L.12) 2y = J (1 — M) Jzn + Aty — Ml (J2p — Ju)], 1, € Ty, 0> 1,
Then, the sequende,, } converges strongly to d-fixed point off".

Theorenm 1.3 is an analogue of theorenj 1.1 for bourmdaximal monotoneaps which is also

a complement of thproximal point algorithnof Martinet [31] and Rockafellar [42] which has

also been studied by numerous authors (see e.g., Bruck [12]; Chidume [16]; Chidume [15];
Chidume and Djittel[18]; Kamimura and Takahashi [24]; Lehdili and Moudafi [28]; Réich [39];
Reich and Sabach [40,41]; Solodov and Svaliter [44]; XU [50] and the references contained in
them). Furthermore, the authors applied this analogue to approximate solutions of Hammer-
stein integral equations and to convex optimization problems.

It is our purpose in this paper to first introduce the notion/eionexpansive maagnd then
prove that if7" : E — E* is J-nonexpansive, then it ig-pseudocontractive. Furthermore, in
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the case thak' is a uniformly convex and uniformly smooth real Banach space{@hng?, is an
infinite family of J-nonexpansive maps with a commasfixed point, we construct an iterative
sequence ity which converges strongly to somé € N2, F;(7;). Finally, this result is applied

in the case that is a real Hilbert space to obtain a convergence theorem for approximating a
common fixed point for an infinite family of nonexpansive maps. Our theorem is then compared
with some important results in the literature.

2. PRELIMINARIES

Let £ be a real normed space of dimensidr2. Themodulus of smoothnes$ £,
pp :10,00) — [0, 00), is defined by:

2+ yll + [l =y
pp(T) = Sup{ 5 —1:lzl=1ly|l=7, 7>07p.
A normed spacé is calleduniformly smoothf
lim 227 _
T—0 T

It is well known (seee.g, Chidume[[14] p. 16, also Lindenstrauss and Tzalfriri [29]) thats
nondecreasing. If there exist a constant 0 and a real numbey > 1 such thap,(7) < 79,
thenE is said to bej-uniformly smooth Typical examples of such spaces are fthe/, and
W, spaces foil < p < co where,

2 — uniformly smooth if 2 < p < oc;

Ly (orLp) or W™ is { p — uniformly smooth if 1 < p < 2.

A normed spacé’ is said to bestrictly convexf
Vey e ol =yl =1, oty = |22 <1
A consequence of this is thaf, is strictly convexf for any R > 0, we have
vy el ol =yl =R sty = [ <R
Themodulus of convexityf E is the function g : (0,2] — [0, 1] defined by
5p(e) =t {1 = | 22| el =l = 15 ¢ = o — )}

The spacer is uniformly convesxf and only if 6z(¢) > 0 for everye € (0,2]. It is also well
known (seee.g, Chidume([14] p. 34, Lindenstrauss and Tzaffiri|[29]) thats nondecreasing.
If there exist a constant > 0 and a real numbes > 1 such that z(e) > ce?, thenE' is said
to bep-uniformly convex Typical examples of such spaces are thet, andW;" spaces for
1 < p < oo Where,

p — uniformly convex if 2 < p < oc;

Ly (or 1) or W is { 2 — uniformly convex if 1 <p < 2.

Forq > 1, let J, denote theyeneralized duality mafsom E to 2" defined by:
x) = {f € E":(x, f) = ||l=[|"and]|| f[| = [|=[|*""},

where(., .) denotes the generalized duality pairing.is called thenormalized duality mapnd
is denoted by/. It is well known that if £ is smooth, thery, is single-valued.

We now present the following definitions and lemmas which will be used in the sequel.
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Definition 2.1. AmapT : £ — E*is calledJ-pseudo contractivé
(2.1) (Te —Ty,x—y) <(Jr—Jy,x —y)Vo,y € E.
Definition 2.2. AmapT : £ — E*is calledJ-nonexpansivé

(2.2) [Tz —Tylllz =yl < (Jo - Jy,x —y)Va,y € E.

Remark 2.1. We observe thatifamdp : £ — E*is.J—nonexpansive thefiis J—pseudocon-
tractive. For,

(Tz —Ty,z —y) < || Tz —Ty|lllz —y|| < (Jz — Jy,z —y) Vr,y € E,
and satisfies the inequality
(2.3) [Te =Tyl < |[Jz = Jy||Vz,y € E.

Remark 2.2. If amapT : £ — E* is J-pseudocontractive, then the map:= (J — 7)) is
monotone. For

(Ar — Ay,z —y) = (Jex — Jy,x —y) — (Te — Ty, x —y) >0V zx,y € E.
In the sequel, we shall use the following important lemmas.

Lemma 2.1 (Cioranescul[20], corrollary 2.7 pg 156)et A : £ — E* be monotone and
semicontinuous witlh(A) = E; then A is maximal monotone.

Lemma 2.2 (Bruck, Jr., [11]) SupposeV is strictly convex and7,,} is a sequence of nonex-
pansive mapsl,, : C' — FE, whereC'is a subset of2. Then, there exists a nonexpansive map
T :C — EsuchthatF(T') = N2, F(T,).

3. MAIN RESULTS

Using the technique of Bruck [11], we prove the following lemma which will be central in
the proof of our main theorem.

Lemma 3.1. Let K be a closed convex nonempty subset of a uniformly smooth real Banach
spaceF, andT, : K — E* n = 1,2,... be a family ofJ—nonexpansive maps such that

N Fy(T,) # 0. Define amaf : K — E* byTx := Y 3,T,z, where{3,} € (0,1) and

n=1
[e's)

> B, =1.Then,

n=1
(@) T is J—nonexpansive;
(b) The set of/—fixed points of" is equal to the set of commoh-fixed points of 7, }°° ,
Le.,

Fy(T) = Fy(T,).
(c) (J —T) is maximal montone.
Proof. The mapl is well defined since

[Twoll < I Tov = Juoll + [[Juoll < [[Jv = Juol| + | Juol;

yielding thatz G, T,v converges absolutely if.

n=1
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(a) Using theJ-nonexpansiveness of thé s we obtain that

lo = ull

ITv=Tullfo —ull = || 328,50 =30 6,
n=1 n=1
— |32 8T = T o~ wl
n=1

< > BullTwv = Tullllo —ull < ) 8, (Jv = Ju,0 —u)
n=1 n=1
= (Jv—Ju,v—u).
SoT is J-nonexpansive.

(b) The inclusionn> , F;(T,,) C F,(T) is obvious. We prove the reverse. Let €
N> F;(T,) andv € F;(T). Then,

(3.1) v — Juo|| = ||Tv — Jug|| = H S BT - JUOH
n=1
(3.2) - H S B (T - JuD)H <3 B,ITww = Jug.
n=1 n=1

But T,,ug = Jug andT,, is J—nonexpansive. Thus by inequalify (2.3), we have that

| T — Thugl| < ||Jv — Juo||. Sincez B, =1, equationsl) and (3.2) imply that,
n=1
(3.3) H S B, (T — JuO)H = ||lJv — Juy|, and
n=1
(3.4) (Thv — Jug)|| = |[Jv— Jug||Vn > 1.

Now, the fact that~* is strictly convex, eacl¥, > 0 andZﬂn = 1, equations| (3/3)

n=1
and [3.4) imply thafl,,v — Juy = T)v — Jug, Vn,k > 1,sothatl,v = Tyv Vn, k > 1.
Hence,

Jv:Tv:ZﬁnTnv:ZﬂnTkv:Tkka21.

This implies that € N, F;(T,,).

(c) We observe that sinc€ is .J-nonexpansive, it follows from Remafk .1 that it.Js
pseudocontractive and hence, by Renjark /2~ T') is monotone. Clearly,.J — T)
is continuous and is defined on the wholefaf Therefore, by Lemma 2.1 — T') is
maximal monotone.

|
We now prove the following Theorem.

Theorem 3.2. Let £ be a uniformly convex and uniformly smooth real Banach space and let
E* be its dual. Le{T;},, T; : E — 2% be a family of/-nonexpansive maps. Suppose
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N, Fy(T;) # 0. For arbitrary =, u € E, define a sequende:,, } iteratively by:
(3.5) Tpi1 = J (1= N) T2, + MTxy — Mbn(Jy — Ju)], n > 1,

whereT := Y B,T;, {8,} € (0,1), > B, = 1; {\,} and{6,} are sequences if0, 1)

=1 =1
satisfying the same conditions as in theofenj 1.3. Then, the seq{tenceonverges strongly
to somer* € N2, F(T;).

Proof. From Lemmg 317" is J-nonexpansive and is hence bounded. Furthermore, from Re-
mark [2.1),T is J-pseudocontractive. Moreover, from) of Lemma[3.1,(J — T) is maxi-

mal monotone. Therefore, it follows from Theorem|1.3 that} converges strongly to some

z* € F;(T). But we know from conditiond) of Lemma[3.1 thatt;(T") = N>, F,(T;),
completing the proofa

Corollary 3.3. Let H be a real Hilbert space. LefT;},, T; : H — 21 be a family of
nonexpansive maps. Suppose, F(T;) # 0. For arbitrary 21, u € H, define a sequende:,, }
iteratively by:

(3.6) Topr1 = (1 = A)xn + NTxy, — Nl (z, —u), n > 1,

whereT := Y B,T;, {8,} € (0,1), > B, = 1; {\,} and{6,} are sequences 0, 1)

i=1 =1
satisfying the same conditions as in theofenj 1.3. Then, the seqgfienceonverges strongly
to somer* € NY2, F(T;).

Remark 3.1. We compare Corollaty 3.3 with Theorem BEK 1, Theorem QPH 1, Theorem OPH
@ and Theorem 5 1.

(¢) In Theorem BSK L, the recursion formular (1.5) will certainly require less computing
time than the recursion formuldr (3.6) of Corollary|3.3. However, Theorem BSK 1 is
proved for a finite family{7;}!_, of nonexpansive maps and also under the condition
that the family{7;}._, satisfies the following additional condition.

ﬂ:lew:(Tl) = FZ‘I(TTTrfl...Tl) = FZZU(TlTrTg) = ... = F(TrflTer-“TlTr)

(¢¢) In Theorem OPHi[L, an infinite familyT;}3°, of nonexpansive maps is studied. While
the recursion formulaf (1.6) may require less computation time than the recursion for-
mular (3.6) of Corollary 3]3, the theorem is proved under the additional condition that
Vi, Va, ..., V,, : K — K are nonexpansive maps with the property: foka# 1,2,..., N
and for any bounded subsét of &, the following condition holdslim sup |7,z —

=00 zel
Vi(Tx)|| = 0.

(4¢¢) In Theorem OPHIJ2, while the recursion formular {1.7) studied may require less compu-
tation time than the recursion formular (3.6) of Corollary] 3.3, the theorem is proved for
a finite family of nonexpansive map§r;} Y ,, and under the additional assumption that
NN Fix(T;) = Fiz(Ty -+ Th) = Fiz(T)\/Ty -+ Ty) = -+ = Fiz(Tn 1Tn_2- - Tn).

(4v) In Theorem §11, an infinite family of nonexpansive maps is studied. The recursion
formular (1.8) studied may require more computation time than the recursion formular
(3.6) of Corollary 3.B. Furthermore, even though the theorem is proved in an arbitrary
Banach space, the domain of the méps = 1,2, ... is required to becompactand
convex, and the family7; }2°, is alsocommuting
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Finally, given the fact that the parameteks,andé,, in Corollary[3.3 can easily be chosen as in
(1.13), it is obvious that Corollafy 3.3 is a welcome complement to Theoremg BSK 1[ DPH 1,
OPH[2 and $]1 for providing algorithms for approximating common fixed points of families of
nonexpansive maps defined on real Hilbert space.
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