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1. I NTRODUCTION

Let E be a real normed space with dual spaceE∗. A mapJ : E → 2E∗
defined by

Jx :=
{
x∗ ∈ E∗ :

〈
x, x∗

〉
= ‖x‖.‖x∗‖, ‖x‖ = ‖x∗‖

}
is called thenormalized duality mapon E. If E∗ is strictly convex,J is single-valued. If in
addition, E is reflexive, the inverse ofJ, J−1 : E∗ → E exists.

A mapA : E → 2E∗
is calledmonotoneif for eachx, y ∈ E, the following inequality holds:〈

η − ν, x− y
〉
≥ 0 ∀ η ∈ Ax, ν ∈ Ay.(1.1)

It is calledmaximal monotoneif, in addition, the graph ofA is not properly contained in the
graph of any other monotone map. Also,A is maximal monotone if and only if it is monotone
andR(J + λA) = E∗, λ > 0.

Monotone maps were first studied in Hilbert spaces by Zarantonello [51], Minty [32], Kačurovskii
[23] and a host of other authors. Interest in such maps stems mainly from their usefulness in
applications. In particular, monotone maps appear in convex optimization theory. Consider, for
example, the following.

Let H be a real Hilbert space andh : H → R ∪ {∞} be a proper convex function. The
subdifferentialof h, ∂h : H → 2H , is defined for eachx ∈ H by

∂h(x) =
{
x∗ ∈ H : h(y)− h(x) ≥

〈
y − x, x∗

〉
∀ y ∈ H

}
.

It is easy to check that∂h is amonotone operatoron H, and that0 ∈ ∂h(u) if and only ifu is
a minimizer ofh. Setting∂h ≡ A, it follows that solving the inclusion0 ∈ Au, in this case, is
solving for a minimizer ofh.
We now take a brief look at the following class of maps which are closely related to monotone
maps.
A mapA : E → 2E is calledaccretiveif for eachx, y ∈ E, there existsj(x − y) ∈ J(x − y)
such that 〈

η − ν, j(x− y)
〉
≥ 0, η ∈ Ax, ν ∈ Ay.(1.2)

A is calledm-accretiveif, in addition, the graph ofA is not properly contained in the graph of
any other accretive operator. It ism-accretive if and only ifA is accretive andR(I + tA) = E
for all t > 0.

In a real Hilbert space, the normalized duality map is the identity map, and so, in this case, in-
equality (1.2) and inequality (1.1) coincide. Hence,in Hilbert spaces, accretivity and monotonic-
ity coincide.

Accretive operators have been studied extensively by numerous mathematicians (see e.g., the
following monographs: Berinde [8], Browder [9], Chidume [14], Reich [37], and the references
contained in them).

Accretive mapswere introduced independently in 1967 by Browder [9] and Kato [25]. Interest
in such maps stems mainly from their firm connection with the existence theory for nonlinear
equations of evolution in real Banach spaces. Furthermore, it is known (see e.g., Zeidler [53])
that many physically significant problems can be modeled in terms of an initial-value problem
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of the form

(1.3) 0 ∈ du

dt
+ Au, u(0) = u0,

whereA is a multi-valued accretive map on an appropriate real Banach space. Typical exam-
ples of such evolution equations are found in models involving the heat, wave or Schrödinger
equations (see e.g., Browder [10], Zeidler [53]). Observe that in the model (1.3), if the solution

u is independent of time (i.e., at the equilibrium state of the system), then
du

dt
= 0 and (1.3)

reduces to

(1.4) 0 ∈ Au

whose solutions then correspond to the equilibrium state of the system described by (1.3). So-
lutions of equation (1.4) whenA is accretive can also represent solutions of partial differential
equations (see e.g., Benilan, Crandall and Pazy [7], Khatibzadeh and MoroÅ§anu [27], Khati-
bzadeh and Shokri [26], Showalter [43], Volpert [48], and so on).

In studying the equation0 ∈ Au, whereA is a multi-valued accretive operator on a Hilbert
spaceH, Browder introduced an operatorT defined byT := I −A whereI is the identity map
on H. He called such an operatorpseudo-contractive. It is clear that solutions of0 ∈ Au, if
they exist, correspond to fixed points ofT .

Examples of pseudocontractive maps include nonexpansive maps. i.e., mapsT : K → E such
that‖Tx−Ty‖ ≤ ‖x−y‖ ∀ , x, y ∈ K, whereK in a nonempty subset of a real normed space,
E.

Within the past 40 years or so, methods for approximating solutions of equation (1.4) when
A is an accretive-type operator have become a flourishing area of research for numerous math-
ematicians. Several convergence theorems have been published in various Banach spaces and
under various continuity assumptions. Many important theorems have been proved, thanks to
geometric properties of Banach spaces developed from the mid 1980s to the early 1990s. The
theory of approximation of solutions of the equation whenA is of the accretive-type reached
a level of maturity appropriate for an examination of its central themes. This resulted in the
publication of monographs which presented in-depth coverage of the main ideas, concepts and
most of the important results on iterative algorithms for approximation of fixed points of non-
expansive and pseudocontractive maps and their generalisations; approximation of zeros of
accretive-type operators; iterative algorithms for solutions of Hammerstein integral equations
involving accretive-type maps; iterative approximation of common fixed points (and common
zeros) of families of these maps; solutions of equilibrium problems; and so on (see e.g., Agarwal
et al. [1]; Berinde [8]; Chidume [14]; Reich [38]; Censor and Reich [13]; William and Shahzad
[49], and the references contained in them). Typical of such theorems recently published is the
following theorem.

Theorem 1.1(Chidume, [15]). Let E be a uniformly smooth real Banach space with modulus
of smoothnessρE, and letA : E → 2E be a multi-valued boundedm−accretive operator with
D(A) = E such that the inclusion0 ∈ Au has a solution. For arbitraryx1 ∈ E, define a
sequence{xn} by,

xn+1 = xn − λnun − λnθn(xn − x1), un ∈ Axn, n ≥ 1,
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where{λn} and{θn} are sequences in(0, 1) satisfying the following conditions:
(i) limn→∞ θn = 0, {θn} is decreasing;(ii)

∑
λnθn = ∞;

∑
ρE(λnM1) < ∞, for some con-

stantM1 > 0;

(iii) limn→∞

[
θn−1

θn
−1

]
λnθn

= 0. There exists a constantγ0 > 0 such thatρE(λn)
λn

≤ γ0θn. Then, the
sequence{xn} converges strongly to a zero ofA.

For nonexpansive maps, methods for approximatinga common fixed pointfor a finite, infinite
or countable family of nonexpansive maps, assuming existence, have been of interest to mathe-
maticians. Some of the important theorems proved include the following.

Theorem BSK 1. [Bauschke,[5], Theorem 3.1] Let K be a nonempty closed convex subset
of a Hilbert spaceH and T1, T2, ..., Tr be a finite family of nonexpansive maps ofK into it-
self with F := ∩r

i=1Fix(Ti) 6= ∅ and F = Fix(TrTr−1...T1) = Fix(T1Tr...T2) = ... =
F (Tr−1Tr−2...T1Tr). Let {λn} be a real sequence in[0, 1] which satisfiesC1 : lim λn = 0;
C2 :

∑
λn = ∞ andC3 :

∑
n |λn−λn+r| < ∞. Given pointsu, x0 ∈ K, let {xn} be generated

by

xn+1 = λn+1u + (1− λn+1)Tn+1xn, n ≥ 0,(1.5)

whereTn = Tn mod r. Then,{xn} converges strongly toPF u, wherePF : H → F is the metric
projection.

A complementary result to this theorem of Bauschke, still in a Hilbert space was proved by

O’Haraet al [36], where the conditionC3 was replaced byC4 : lim
n→∞

λn

λn+r

= 1 or equivalently,

lim
n→∞

λn − λn+r

λn+r

= 0. They proved the following theorem.

Theorem OPH 1 (O’Hara et al., [36] Theorem 3.3). Let {λn} ⊂ (0, 1) satisfylim λn = 0
and

∑
λn = ∞. LetK be a nonempty closed and convex subset of a Hilbert spaceH and let

Tn : K → K, n = 1, 2, ... be nonexpansive maps such thatF := ∩∞i=1Fix(Ti) 6= ∅. Assume
that V1, V2, ..., Vn : K → K are nonexpansive maps with the property: for allk = 1, 2, ..., N
and for any bounded subsetC ofK, there holdslim

n→∞
sup
x∈C

‖Tnx−Vk(Tnx)‖ = 0. For x0, u ∈ K

define

xn+1 = λn+1u + (1− λn+1)Tn+1xn, n ≥ 0.(1.6)

Then,xn → Pu, whereP is the projection fromH.

Theorem OPH 2. (O’Hara et al., [36], Theorem 3.3) LetK be a nonempty closed convex
subset of a Hilbert spaceH and T1, T2, · · · , TN be nonexpansive self-maps ofK with F :=
∩N

n=1Fix(Ti) 6= ∅. Assume that
F = Fix(TN · · ·T1) = Fix(T1TN · · ·T2) = · · · = Fix(TN−1TN−2 · · ·TN). Let {λn} ⊂ (0, 1)

satisfy the following conditions:(i) lim
n→∞

λn = 0 (ii)
∞∑

n=1

λn = ∞ and (iii) lim
n→∞

λn

λn+N

= 1.

Given pointsx0, u ∈ K, the sequence{xn}∞n=1 ⊂ K is defined by

(1.7) xn+1 = λn+1u + (1− λn+1)Tn+1xn, n ≥ 0.

Then,xn → PF u, wherePF is the projection ofu ontoF .
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Theorem S 1(Suzuki [46]). Let C be a convex compact subset of a Banach spaceE. Let
{Tn : n ∈ N} be an infinite family of commuting nonexpansive maps onC. Fix λ ∈ (0, 1). Let
{αn} be a sequence in[0, 1

2
] satisfying

lim inf αn = 0, lim sup αn > 0, and lim(αn+1 − αn) = 0.

Define a sequence{xn} in C byx1 ∈ C and

xn+1 = λ
(
1−

∞∑
n=1

αk
n

)
T1xn + λ

∞∑
n=2

αk−1
n Tkxn + (1− λ)xn(1.8)

for n ∈ N. Then,{xn} converges strongly to a common fixed point of{Tn : n ∈ N}.

In all the results involvingaccretive-typemaps, or nonexpansive-type maps orpseudo-contractive-
typemaps, fixed point techniques are applicable because these operatorsmap a space into itself.

Unfortunately, developing algorithms for approximating solutions of the very important case of
equation (1.4) whenA : E → 2E∗

is of monotone-type(for example, the case of the subdiffer-
ential,∂f : E → 2E∗

) has not been very fruitful. Part of the difficulty seems to be that fixed
point techniques are not directly applicable because the operators involved map a spaceE to its
dual space,E∗. Futhermore, the geometric properties of Banach spaces developed from the mid
1980s to the early 1990s which played a central role with accretive-type maps are not directly
applicable when monotone-type maps fromE to E∗ are involved.

Fortunately, a new concept of fixed points for maps from a real normed spaceE to its dual,
E∗, has now been introduced. Furthermore, Alber [2] (see also, Alber and Ryazantseva [4]) re-
cently introduced a Lyapunov functionalφ : E × E → R which signalled the beginning of the
development of new geometric properties of Banach spaces which are appropriate for studying
iterative methods for approximating solutions of (1.4) whenA : E → 2E∗

is of monotone-type.
Geometric properties so far obtained have rekindled enormous research interest on iterative
methods for approximating solutions of equation (1.4) whereA is of the monotone-type, and
other related problems (see e.g., Alber [2]; Alber and Guerre-Delabriere [3]; Chidume [15];
Chidumeet. al. [17]; Diop et. al. [21]; Moudafi [34], Moudafi and Tera [35]; Reich [?]; Sow
et. al. [45]; Takahashi [47]; Zegeye [52] and the references contained in them).

The following lemma will be needed in the sequel.

Lemma 1.2(Alber, [4], p.45). LetX be a uniformly convex Banach space. Then, for anyR > 0
and anyx, y ∈ X such that‖x‖ ≤ R, ‖y‖ ≤ R, the following inequality holds:

〈Jx− Jy, x− y〉 ≥ (2L)−1δX(c−1
2 ‖x− y‖),

wherec2 = 2max{1, R}, 1 < L < 1.7.

In other to develop techniques analogous to the ones studied for accretive operators, the notion
ofJ−fixed pointof a mapT : E → E∗ has been introduced and studied (this notion has also
been calledsemi-fixed point(Zegeye [52]),duality fixed point(Liu [30]).

A point x∗ ∈ E is called aJ−fixed point ofT if Tx∗ = J∗x and we denote byFJ(T ), the set
of J−fixed points ofT , i.e.,

FJ(T ) := {x ∈ E : Tx = Jx}.(1.9)

This is an analogue of the definition of a fixed point for a mapT from a normed spaceE to itself.
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Chidume and Idu in [19], studied a new class of maps calledJ−pseudocontractions.

A mapT : E → E∗ is calledJ−pseudo contractiveif

〈Tx− Ty, x− y〉 ≤ 〈Jx− Jy, x− y〉 ∀ x, y ∈ E.(1.10)

This notion had been calledduality pseudocontractivein Liu, [30].

Remark 1.1. In theorem 1.3 below,{λn} and{θn} are sequences in(0, 1) satisfying the fol-
lowing conditions.

(i)
∑∞

n=1 λnθn = ∞;

(ii) λnM
∗
0 ≤ γ0θn; δ−1

E (λnM
∗
0 ) ≤ γ0θn,

(iii)
δ−1

E

�
θn−1−θn

θn
K
�

λnθn
→ 0,

δ−1
E∗

�
θn−1−θn

θn
K
�

λnθn
→ 0, asn →∞,

(iv)
1

2

(
θn−1−θn

θn
K

)
∈ (0, 1),

for some constantsM∗
0 > 0, K > 0 andγ0 > 0; whereδE : (0,∞) → (0,∞) is the modulus

of convexity ofE.

Real sequences that satisfy the conditions(i)∗ − (iv)∗ are the following:

λn = (n + 1)−a andθn = (n + 1)−b, n ≥ 1,(1.11)

0 < b <
1

p
· a, a + b < 1/p.

For example, one can choosea := 1
(p+1)

andb := 1
2p(p+1)

.

Verification that these choices satisfy conditions(i) to (ii) above can be found in Chidume and
Idu, [19].

With these conditions, Chidume and Idu proved the following theorem.

Theorem 1.3(Chidume and Idu, [19]). LetE be a uniformly convex and uniformly smooth real
Banach space and letE∗ be its dual. LetT : E → 2E∗

be aJ-pseudocontractive and bounded
map such that(J − T ) is maximal monotone. SupposeF J

E(T ) := {v ∈ E : Jv ∈ Tv} 6= ∅. For
arbitrary x1, u ∈ E, define a sequence{xn} iteratively by:

xn+1 = J−1 [(1− λn)Jxn + λnηn − λnθn(Jxn − Ju)] , ηn ∈ Txn, n ≥ 1, .(1.12)

Then, the sequence{xn} converges strongly to aJ-fixed point ofT .

Theorem 1.3 is an analogue of theorem 1.1 for boundedmaximal monotonemaps which is also
a complement of theproximal point algorithmof Martinet [31] and Rockafellar [42] which has
also been studied by numerous authors (see e.g., Bruck [12]; Chidume [16]; Chidume [15];
Chidume and Djitte [18]; Kamimura and Takahashi [24]; Lehdili and Moudafi [28]; Reich [39];
Reich and Sabach [40, 41]; Solodov and Svaiter [44]; Xu [50] and the references contained in
them). Furthermore, the authors applied this analogue to approximate solutions of Hammer-
stein integral equations and to convex optimization problems.

It is our purpose in this paper to first introduce the notion ofJ-nonexpansive mapand then
prove that ifT : E → E∗ is J-nonexpansive, then it isJ-pseudocontractive. Furthermore, in
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the case thatE is a uniformly convex and uniformly smooth real Banach space and{Ti}∞i=1 is an
infinite family of J-nonexpansive maps with a commonJ-fixed point, we construct an iterative
sequence inE which converges strongly to somex∗ ∈ ∩∞i=1FJ(Ti). Finally, this result is applied
in the case thatE is a real Hilbert space to obtain a convergence theorem for approximating a
common fixed point for an infinite family of nonexpansive maps. Our theorem is then compared
with some important results in the literature.

2. PRELIMINARIES

Let E be a real normed space of dimension≥ 2. Themodulus of smoothnessof E ,
ρE : [0,∞) → [0,∞), is defined by:

ρE(τ) := sup

{
‖x + y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ , τ > 0

}
.

A normed spaceE is calleduniformly smoothif

lim
τ→0

ρE(τ)

τ
= 0.

It is well known (seee.g., Chidume [14] p. 16, also Lindenstrauss and Tzafriri [29]) thatρE is
nondecreasing. If there exist a constantc > 0 and a real numberq > 1 such thatρE(τ) ≤ cτ q,
thenE is said to beq-uniformly smooth. Typical examples of such spaces are theLp, `p and
Wm

p spaces for1 < p < ∞ where,

Lp (or lp) or Wm
p is

{
2− uniformly smooth if 2 ≤ p < ∞;
p− uniformly smooth if 1 < p < 2.

A normed spaceE is said to bestrictly convexif

∀ x, y ∈ E, ‖x‖ = ‖y‖ = 1, x 6= y =⇒
∥∥∥x + y

2

∥∥∥ < 1.

A consequence of this is that,E is strictly convexif for any R > 0, we have

∀ x, y ∈ E, ‖x‖ = ‖y‖ = R, x 6= y =⇒
∥∥∥x + y

2

∥∥∥ < R.

Themodulus of convexityof E is the functionδE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{

1−
∥∥∥x + y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖
}

.

The spaceE is uniformly convexif and only if δE(ε) > 0 for everyε ∈ (0, 2]. It is also well
known (seee.g., Chidume [14] p. 34, Lindenstrauss and Tzafriri [29]) thatδE is nondecreasing.
If there exist a constantc > 0 and a real numberp > 1 such thatδE(ε) ≥ cεp, thenE is said
to bep-uniformly convex. Typical examples of such spaces are theLp, `p andWm

p spaces for
1 < p < ∞ where,

Lp (or lp) or Wm
p is

{
p− uniformly convex if 2 ≤ p < ∞;
2− uniformly convex if 1 < p < 2.

For q > 1, let Jq denote thegeneralized duality mapfrom E to 2E∗
defined by:

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and‖f‖ = ‖x‖q−1

}
,

where〈., .〉 denotes the generalized duality pairing.J2 is called thenormalized duality mapand
is denoted byJ . It is well known that ifE is smooth, thenJq is single-valued.

We now present the following definitions and lemmas which will be used in the sequel.
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Definition 2.1. A mapT : E → E∗ is calledJ-pseudo contractiveif

〈Tx− Ty, x− y〉 ≤ 〈Jx− Jy, x− y〉 ∀x, y ∈ E.(2.1)

Definition 2.2. A mapT : E → E∗ is calledJ-nonexpansiveif

‖Tx− Ty‖‖x− y‖ ≤ 〈Jx− Jy, x− y〉 ∀ x, y ∈ E.(2.2)

Remark 2.1. We observe that if a mapT : E → E∗ isJ−nonexpansive thenT isJ−pseudocon-
tractive. For,

〈Tx− Ty, x− y〉 ≤ ‖Tx− Ty‖‖x− y‖ ≤ 〈Jx− Jy, x− y〉 ∀ x, y ∈ E,

and satisfies the inequality

‖Tx− Ty‖ ≤ ‖Jx− Jy‖ ∀x, y ∈ E.(2.3)

Remark 2.2. If a mapT : E → E∗ is J-pseudocontractive, then the mapA := (J − T ) is
monotone. For

〈Ax− Ay, x− y〉 = 〈Jx− Jy, x− y〉 − 〈Tx− Ty, x− y〉 ≥ 0 ∀ x, y ∈ E.

In the sequel, we shall use the following important lemmas.

Lemma 2.1 (Cioranescu [20], corrollary 2.7 pg 156). Let A : E → E∗ be monotone and
semicontinuous withD(A) = E; thenA is maximal monotone.

Lemma 2.2(Bruck, Jr., [11]). SupposeE is strictly convex and{Tn} is a sequence of nonex-
pansive mapsTn : C → E, whereC is a subset ofE. Then, there exists a nonexpansive map
T : C → E such thatF (T ) = ∩∞n=1F (Tn).

3. M AIN RESULTS

Using the technique of Bruck [11], we prove the following lemma which will be central in
the proof of our main theorem.

Lemma 3.1. Let K be a closed convex nonempty subset of a uniformly smooth real Banach
spaceE, and Tn : K → E∗, n = 1, 2, ... be a family ofJ−nonexpansive maps such that

∩∞n=1FJ(Tn) 6= ∅. Define a mapT : K → E∗ by Tx :=
∞∑

n=1

βnTnx, where{βn} ∈ (0, 1) and

∞∑
n=1

βn = 1. Then,

(a) T is J−nonexpansive;
(b) The set ofJ−fixed points ofT is equal to the set of commonJ−fixed points of{Tn}∞n=1

i.e.,

FJ(T ) = ∩∞n=1FJ(Tn).

(c) (J − T ) is maximal montone.

Proof. The mapT is well defined since

‖Tnv‖ ≤ ‖Tnv − Ju0‖+ ‖Ju0‖ ≤ ‖Jv − Ju0‖+ ‖Ju0‖;

yielding that
∞∑

n=1

βnTnv converges absolutely inK.
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(a) Using theJ-nonexpansiveness of theT ′ns we obtain that

‖Tv − Tu‖‖v − u‖ =
∥∥∥ ∞∑

n=1

βnTnv −
∞∑

n=1

βnTnu
∥∥∥‖v − u‖

=
∥∥∥ ∞∑

n=1

βn(Tnv − Tnu)
∥∥∥‖v − u‖

≤
∞∑

n=1

βn‖Tnv − Tnu‖‖v − u‖ ≤
∞∑

n=1

βn〈Jv − Ju, v − u〉

= 〈Jv − Ju, v − u〉.

SoT is J-nonexpansive.

(b) The inclusion∩∞n=1FJ(Tn) ⊂ FJ(T ) is obvious. We prove the reverse. Letu0 ∈
∩∞n=1FJ(Tn) andv ∈ FJ(T ). Then,

‖Jv − Ju0‖ = ‖Tv − Ju0‖ =
∥∥∥ ∞∑

n=1

βnTnv − Ju0

∥∥∥(3.1)

=
∥∥∥ ∞∑

n=1

βn(Tnv − Ju0)
∥∥∥ ≤ ∞∑

n=1

βn‖Tnv − Ju0‖.(3.2)

But Tnu0 = Ju0 andTn is J−nonexpansive. Thus by inequality (2.3), we have that

‖Tnv − Tnu0‖ ≤ ‖Jv − Ju0‖. Since
∞∑

n=1

βn = 1, equations (3.1) and (3.2) imply that,

∥∥∥ ∞∑
n=1

βn(Tnv − Ju0)
∥∥∥ = ‖Jv − Ju0‖, and(3.3)

‖(Tnv − Ju0)‖ = ‖Jv − Ju0‖ ∀ n ≥ 1.(3.4)

Now, the fact thatE∗ is strictly convex, eachβn > 0 and
∞∑

n=1

βn = 1, equations (3.3)

and (3.4) imply thatTnv−Ju0 = Tkv−Ju0, ∀ n, k ≥ 1, so thatTnv = Tkv ∀ n, k ≥ 1.
Hence,

Jv = Tv =
∞∑

n=1

βnTnv =
∞∑

n=1

βnTkv = Tkv ∀ k ≥ 1.

This implies thatv ∈ ∩nFJ(Tn).

(c) We observe that sinceT is J-nonexpansive, it follows from Remark 2.1 that it isJ-
pseudocontractive and hence, by Remark 2.2,(J − T ) is monotone. Clearly,(J − T )
is continuous and is defined on the whole ofE. Therefore, by Lemma 2.1,(J − T ) is
maximal monotone.

We now prove the following Theorem.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth real Banach space and let
E∗ be its dual. Let{Ti}∞i=1, Ti : E → 2E∗

be a family ofJ-nonexpansive maps. Suppose
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∩∞i=1FJ(Ti) 6= ∅. For arbitrary x1, u ∈ E, define a sequence{xn} iteratively by:

xn+1 = J−1 [(1− λn)Jxn + λnTxn − λnθn(Jxn − Ju)] , n ≥ 1,(3.5)

whereT :=
∞∑
i=1

βiTi, {βi} ∈ (0, 1),
∞∑
i=1

βi = 1; {λn} and {θn} are sequences in(0, 1)

satisfying the same conditions as in theorem 1.3. Then, the sequence{xn} converges strongly
to somex∗ ∈ ∩∞n=1FJ(Ti).

Proof. From Lemma 3.1,T is J-nonexpansive and is hence bounded. Furthermore, from Re-
mark (2.1),T is J-pseudocontractive. Moreover, from(c) of Lemma 3.1,(J − T ) is maxi-
mal monotone. Therefore, it follows from Theorem 1.3 that{xn} converges strongly to some
x∗ ∈ FJ(T ). But we know from condition(b) of Lemma 3.1 thatFJ(T ) = ∩∞n=1FJ(Ti),
completing the proof.

Corollary 3.3. Let H be a real Hilbert space. Let{Ti}∞i=1, Ti : H → 2H be a family of
nonexpansive maps. Suppose∩∞i=1F (Ti) 6= ∅. For arbitrary x1, u ∈ H, define a sequence{xn}
iteratively by:

xn+1 = (1− λn)xn + λnTxn − λnθn(xn − u), n ≥ 1,(3.6)

whereT :=
∞∑
i=1

βiTi, {βi} ∈ (0, 1),
∞∑
i=1

βi = 1; {λn} and {θn} are sequences in(0, 1)

satisfying the same conditions as in theorem 1.3. Then, the sequence{xn} converges strongly
to somex∗ ∈ ∩∞n=1F (Ti).

Remark 3.1. We compare Corollary 3.3 with Theorem BSK 1, Theorem OPH 1, Theorem OPH
2 and Theorem S 1.

(i) In Theorem BSK 1, the recursion formular (1.5) will certainly require less computing
time than the recursion formular (3.6) of Corollary 3.3. However, Theorem BSK 1 is
proved for a finite family{Ti}r

i=1 of nonexpansive maps and also under the condition
that the family{Ti}r

i=1 satisfies the following additional condition.

∩r
i=1Fix(Ti) = Fix(TrTr−1...T1) = Fix(T1Tr...T2) = ... = F (Tr−1Tr−2...T1Tr).

(ii) In Theorem OPH 1, an infinite family{Ti}∞i=1 of nonexpansive maps is studied. While
the recursion formular (1.6) may require less computation time than the recursion for-
mular (3.6) of Corollary 3.3, the theorem is proved under the additional condition that
V1, V2, ..., Vn : K → K are nonexpansive maps with the property: for allk = 1, 2, ..., N
and for any bounded subsetC of K, the following condition holdslim

n→∞
sup
x∈C

‖Tnx −

Vk(Tnx)‖ = 0.
(iii) In Theorem OPH 2, while the recursion formular (1.7) studied may require less compu-

tation time than the recursion formular (3.6) of Corollary 3.3, the theorem is proved for
a finite family of nonexpansive maps,{Ti}N

i=1, and under the additional assumption that
∩N

n=1Fix(Ti) = Fix(TN · · ·T1) = Fix(T1TN · · ·T2) = · · · = Fix(TN−1TN−2 · · ·TN).
(iv) In Theorem S 1, an infinite family of nonexpansive maps is studied. The recursion

formular (1.8) studied may require more computation time than the recursion formular
(3.6) of Corollary 3.3. Furthermore, even though the theorem is proved in an arbitrary
Banach space, the domain of the mapsTi, i = 1, 2, ... is required to becompactand
convex, and the family{Ti}∞i=1 is alsocommuting.
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Finally, given the fact that the parameters,λn andθn in Corollary 3.3 can easily be chosen as in
(1.11), it is obvious that Corollary 3.3 is a welcome complement to Theorems BSK 1, OPH 1,
OPH 2 and S 1 for providing algorithms for approximating common fixed points of families of
nonexpansive maps defined on real Hilbert space.
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