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2 ABDELOUHAB KADEM

1. INTRODUCTION

The spectral methods established an analytical formulation whose basic goals is to find exact
solution for approximations of the fractional transport equation, this technique by using the
fractional derivatives greatly simplifying the problem and making it computational plausible
on the other hand that permit us to solve some of the particular cases and then we can check
that the solution is close to the dynamics of some anomalous processes, the other aspect of this
technique, it allows us to establish a fractional derivative which performs the same mapping
of a given linear operator, it becomes to use the Riemann-Liouville definition for fractional
derivatives and considerate the ordinary model and look that in the limit of some situations
where the ordinary model do not work fine it is necessary to introduce such fractional operators
in the model so we solve the problem.

In ordinary cases several approaches have been suggested among them, the method pro-
posed by Chandrasekhar [7] solves analytically the discrete equations, (SN equations), the SGF
method [3, 4], is a numerical nodal method that generates numerical solution for the SN equa-
tions in slab geometry that is completely free of spatial truncation error. The LTSN method [28]
solve analytically the SN equations employing the Laplace Transform technique in the spatial
variable (finite domain). Recently, following the idea encompassed by the LTSN method, we
have derived a generic method, prevailing the analyticity, for solving one-dimensional approxi-
mation that transform the transport equation into a set of differential equations.

In our recent work, we have presented a new approximation where the one dimensional frac-
tional integro-differential equation is converted into a system of fractional differential equation
(FDE), where we are using the Chebyshev polynomials [21].

There are three classes of set of orthogonal functions which are widely used. The first in-
cludes sets of piecewise constant basis functions (e.g. Walsh, block-pulse, etc.). The second
consists of sets of orthogonal polynomials (e.g. Laguerre, Legendre, Chebyshev, etc.). The
third is the widely used sets of sine-cosine functions in Fourier series.

Briefly speaking, in this paper the Walsh function is used for solving the three-dimensional
case of fractional transport equation. This method is based on expansion of the angular flux in a
truncated series of Walsh function in the angular variable. By replacing this development in the
transport equation, this will result a first-order fractional linear differential system is solved for
the spatial function the convergence of a solution defined for all the spatial variables obtained
in the context of the discrete-ordinates approximation for the isotropic case.

The paper has been organized as follows. Section 2 contains a definition and some proper-
ties of Walsh function, in Section 3 we enlist some basic results and definitions of fractional
derivatives, Section 4 describes how to convert a fractional transport equation into a first-order
fractional linear differential equation system by using Chebyshev polynomials, and in Section
5 we report the convergence of the spectral solution, finally we give an specific application of
this method in Section 6.

2. WALSH FUNCTION

The Walsh functions have many properties similar to those of the trigonometric functions.
For example they form a complete, total collection of functions with respect to the space of
square Lebesgue integrable functions. However, they are simpler in structure to the trigono-
metric functions because they take only the values 1 and −1. They may be expressed as linear
combinations of the Haar functions [13], so many proofs about the Haar functions carry over to
the Walsh system easily. Moreover, the Walsh functions are Haar wavelet packets; see [29]. For
a good account of the properties of the Haar wavelets and other wavelets. We use the ordering
of the Walsh functions due to Paley [15]. Any function f ∈ L2 [0, 1] can be expanded as a series
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of Walsh functions

(2.1) f(x) =
∞∑
i=0

ciWi(x) where ci =

∫ 1

0

f(x)Wi(x).

Fine [11] discovered an important property of the Walsh Fourier series: the m = 2n th partial
sum of the Walsh series of a function f is piece-wise constant, equal to the L1 mean of f ,
on each subinterval [(i − 1)/m, i/m]. For this reason, Walsh series in applications are always
truncated to m = 2n terms. In this case, the coefficients ci of the Walsh (-Fourier) series are
given by

(2.2) ci =
m−1∑
j=0

1

m
Wijfj,

where fj is the average value of the function f(x) in the jth interval of width 1/m in the interval
(0, 1), and Wij is the value of the ith Walsh function in the jth subinterval. The order m Walsh
matrix,Wm, has elements Wij .

Let f(x) have a Walsh series with coefficients ci and its integral from 0 to x have a Walsh
series with coefficients bi:

∫ x
0
f(t)dt =

∑∞
i=0 biWi(x) . If we truncate to m = 2n terms and

use the obvious vector notation, then integration is performed by matrix multiplication b = P T
mc

where

(2.3) P T
m =

[
Pm/2

1
2m
Im/2

− 1
2m
Im/2 Om/2

]
, P T

2 =

[
1
2

1
4

−1
4

0

]
,

and Im is the unit matrix, Om is the zero matrix (of order m), see [9].
Before to start to study the three-dimensional spectral solution of a fractional transport equa-

tion, we give some preliminaries.

3. PRELIMINARIES

We enlist some definitions and basic results [26, 22, 23].

Definition 3.1. A real function f(x), x > 0 is said to be in the space Cα,α∈R if there exists a
real number p(> α), such that f(x) = xpf1(x) where f1(x) = C [0,∞) . Clearly Cα ⊂ Cβ if
β ≤ α.

Definition 3.2. A function f(x), x > 0 is said to be in space Cm
α , m ∈ N ∪ {0} , if f(m) ∈ Cα.

Definition 3.3. The (left sided) Riemann-Liouville fractional integral of order µ > 0, of a
function f ∈ Cα, α ≥ 1 is defined as:

(3.1) Iµf(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1f(τ)dτ , µ > 0, t > 0,

I0f(t) = f(t),

Definition 3.4. The (left sided) Riemann-Liouville fractional derivative of f, f ∈ Cm
−1, m ∈

N ∪ {0} of order α > 0, is defined as:

(3.2) Dµf(t) =
dm

dtm
Im−µf(t), m− 1 < µ ≤ m, m ∈ N.

Definition 3.5. The (left sided) Caputo fractional derivative of f, f ∈ Cm
−1, m ∈ N ∪ {0} of

order α > 0, is defined as:

(3.3) Dµ
c f(t) =

{ [
Im−µf (m)(t)

]
, m− 1 < µ ≤ m, m ∈ N,

dm

dtm
f(t) µ = m.
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Note that

(i) Iµtγ = Γ(γ+1)
Γ(γ+µ+1)

tγ+µ, µ > 0, γ > −1, t > 0.

(ii) IµDµ
c f(t) = f(t)−

∑m−1
k=0 f

(k)(0+) t
k

k!
, m− 1 < µ ≤ m, m ∈ N.

(iii) Dµ
c f(t) = Dµ

(
f(t)−

∑m−1
k=0 f

(k)(0+) t
k

k!

)
, m− 1 < µ ≤ m, m ∈ N.

(iv) DβIαf(t) =

 Iα−βf(t) if α > β,
f(t) if α = β,
Dβ−αf(t) if α < β,

(v) Dα
cD

mf(t) = Dα+mf(t), m = 0, 1, 2, ..., n− 1 < α < n.

4. THE THREE-DIMENSIONAL SPECTRAL SOLUTION

Consider the three-dimensional linear, steady state, transport equation given by

µ
∂γ

∂xγ
Ψ(x, µ, θ) +

√
1− µ2

(
cos θ

∂γ

∂yγ
Ψ(x, µ, θ) + sin θ

∂γ

∂zγ
Ψ(x, µ, θ)

)

(4.1) + σtΨ(x, µ, θ) =

∫ 1

−1

∫ 2π

0

σs(µ
′
, θ
′ → µ, θ)Ψ(x, µ

′
, θ
′
)dθ

′
dµ
′
+ S(x, µ, θ)

where we assume that the spatial variable x :=(x, y, z) varies in the cubic domain
Ω := {(x, y, z) : −1 ≤ x, y, z ≤ 1} , 0 < γ ≤ 1 and Ψ(x, µ, θ) := Ψ(x, y, z, µ, θ) is the
angular flux in the direction defined by µ ∈ [−1, 1] and θ ∈ [0, 2π]. σt and σs denote the total
and the differential cross section, respectively, σs(µ

′
, φ
′ → µ, φ) describes the scattering from

an assumed pre-collision angular coordinates (µ
′
, θ
′
) to a post-collision coordinates (µ, θ) and

S is the source term. See [14] for further details.
Note that, in the case of one-speed neutron transport equation; taking the angular variable

in a disc, this problem would corresponds to a three dimensional case with all functions being
constant in the azimuthal direction of the z variable. In this way the actual spatial domain may
be assumed to be a cylinder with the cross-section Ω and the axial symmetry in z. Then D will
correspond to the projection of the points on the unit sphere (the ”speed”) onto the unit disc
(which coincides with D.).

Given the functions f1(y, z, µ, φ), f2(x, z, µ, φ) and f3(x, y, µ, φ) describing the incident flux,
we seek for a solution of (4.1) subject to the following boundary conditions:

For the boundary terms in x; for 0 ≤ θ ≤ 2π, let

(4.2) Ψ(x = ±1, y, z, µ, θ) =

{
f1(y, z, µ, θ), x = −1, 0 < µ ≤ 1,

0, x = 1, − 1 ≤ µ < 0.

For the boundary terms in y and for −1 ≤ µ < 1,

(4.3) Ψ(x, y = ±1, z, µ, θ) =

{
f2(x, z, µ, θ), y = −1, 0 < cos θ ≤ 1,

0, y = 1, − 1 ≤ cos θ < 0.

Finally, for the boundary terms in z; for −1 ≤ µ < 1,

(4.4) Ψ(x, y, z = ±1, µ, θ) =

{
f3(x, y, µ, θ), z = −1, 0 ≤ θ < π,

0, z = 1, π < θ ≤ 2π.
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Theorem 4.1. Consider the fractional integro-differential equation (4.1) under the boundary
conditions (4.2), (4.3) and (4.4), then the function Ψ(x, y, z, µ, θ) satisfy the following first-
order fractional linear differential equation system for the spatial component Ψi,j(x, µ, θ)

µ
∂γΨi,j

∂xγ
(x, µ, θ) + σtΨi,j(x, µ, θ) = G

i,j
(x;µ, θ)∫ 1

−1

∫ 1

−1

σs(µ
′
, θ
′ → µ, θ)Ψi,j(x, µ

′
, θ
′
)dθ

′
dµ
′

with the boundary conditions

Ψi,j(−1, µ, η) = f i,j1 (µ, θ),

where

f i,j1 (µ, θ) =
4

π2

∫ 1

−1

∫ 1

−1

Ti(y)Rj(z)√
(1− y2)(1− z2)

f1(y, z, µ, θ)dzdy,

Ψi,j(1,−µ, θ) = 0,

and
Gi,j(x;µ, θ) = S

i,j
(x, µ, θ)−√

1− µ2

[
cos θ

I∑
k=i+1

Aki Ψk,j(x, µ, θ) + sin θ
J∑

l=j+1

Bl
jΨi,l(x, µ, θ)

]
,

with

Si,j(x, µ, θ) =
4

π2

∫ 1

−1

∫ 1

−1

Ti(y)Rj(z)√
(1− y2)(1− z2)

S(x, µ, θ)dzdy,

Aki =
2

π

∫ 1

−1

d

dy
(Tk(y))

Ti(y)√
1− y2

dy

Bl
j =

2

π

∫ 1

−1

d

dy
(Rl(y))

Rj(z)√
1− z2

dz.

Proof. Expanding the angular flux Ψ(x, y, z, µ, φ) in a truncated series of Chebyshev polyno-
mials Ti(y)and Rj(z) leads to

(4.5) Ψ(x, y, z, µ, θ) =
I∑
i=0

J∑
j=0

Ψi,j(x, µ, θ)Ti(y)Rj(z).

We insert Ψ(x, y, z, µ, θ) given by (4.5) into the boundary condition in (4.3), for y = ±1.

Multiplying the resulting expressions by Rj(z)√
1−z2 and integrating over z, we get the components

Ψ0,j(x, µ, θ) for j = 0, ...J :

(4.6) Ψ0,j(x, µ, θ) = f j2 (x, µ, θ)−
I∑
i=1

(−1)jΨi,j(x, µ, θ); 0 < cos θ ≤ 1,

and

(4.7) Ψ0,j(x, µ, θ) = −
I∑
i=1

Ψi,j(x, µ, θ); − 1 ≤ cos θ < 0.

Similarly, we substitute Ψ(x, y, z, µ, θ) from (4.5) into the boundary conditions for z = ±1,

multiply the resulting expression by Ti(y)√
1−y2

, i = 0, ...I and integrating over y, to define the

components Ψi,0(x, µ, θ) : For −1 ≤ x ≤ 1, −1 < µ < 1,
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Ψi,0(x, µ, θ) = f i3(x, µ, θ)−
J∑
j=1

(−1)jΨi,j(x, µ, θ); 0 ≤ θ < π,

Ψi,0(x, µ, θ) = −
J∑
j=1

Ψi,j(x, µ, θ); π < θ ≤ 2π,

where

fβ2 (x, µ, θ) =
2− δ0,j

π

∫ 1

−1

f2(x, z, µ, θ)
Rj(z)√
1− z2

dz

f i3(x, µ, θ) =
2− δi,0
π

∫ 1

−1

f3(x, y, µ, θ)
Ti(y)√
1− y2

dy.

To determine the components Ψi,j(x, µ, θ), i = 1, ...I, and j = 1, ...J, we substitute Ψ(x, µ, θ),
from (4.3) into (4.1) and the boundary conditions for x = ±1. Multiplying the resulting ex-
pressions by Ti(y)√

1−y2
× Rj(z)√

1−z2 , and integrating over y and z we obtain I × J one-dimensional

transport problems, viz

µ
∂γΨi,j

∂xγ
(x, µ, θ) + σtΨi,j(x, µ, θ) = G

i,j
(x;µ, θ)

(4.8)
∫ 1

−1

∫ 1

−1

σs(µ
′
, θ
′ → µ, θ)Ψi,j(x, µ

′
, θ
′
)dθ

′
dµ
′

with the boundary conditions

(4.9) Ψi,j(−1, µ, η) = f i,j1 (µ, θ),

where

(4.10) f i,j1 (µ, θ) =
4

π2

∫ 1

−1

∫ 1

−1

Ti(y)Rj(z)√
(1− y2)(1− z2)

f1(y, z, µ, θ)dzdy,

and
Ψi,j(1,−µ, θ) = 0,

for 0 < µ ≤ 1, and 0 ≤ θ ≤ 2π. Finally

Gi,j(x;µ, θ) = S
i,j

(x, µ, θ)−

(4.11)
√

1− µ2

[
cos θ

I∑
k=i+1

Aki Ψk,j(x, µ, θ) + sin θ
J∑

l=j+1

Bl
jΨi,l(x, µ, θ)

]
,

with

(4.12) Si,j(x, µ, θ) =
4

π2

∫ 1

−1

∫ 1

−1

Ti(y)Rj(z)√
(1− y2)(1− z2)

S(x, µ, θ)dzdy,

(4.13) Aki =
2

π

∫ 1

−1

d

dy
(Tk(y))

Ti(y)√
1− y2

dy

(4.14) Bl
j =

2

π

∫ 1

−1

d

dy
(Rl(y))

Rj(z)√
1− z2

dz.

Now, starting from the solution of the problem given by equations (4.8)-(4.14) for ΨI,J(x, µ, θ),
we then solve the problems for the other components, in the decreasing order in i and j. Recall
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that
∑I

i=I+1 ... =
∑J

j=J+1 ≡ 0. Hence, solving I × J one-dimensional problems, the angular
flux Ψ(x, µ, θ) is now completely determined through (4.5).

Remark 4.1. If we have to deal with different type of boundary conditions, we have to keep in
mind that the first components Ψi,0(x, µ, θ) and Ψ0,j(x, µ, θ) for i = 1, ..., I and j = 1, ..., J
will satisfy one-dimensional transport problems subject to the same of boundary conditions of
the original problem in the variable x.

5. ANALYSIS

Now we would like to solve the first fractional order linear differential equation system with
isotropic scattering, i.e., σs(µ

′
, φ
′ → µ, φ) ≡ σs = constant by using the Walch function.

Assuming isotropic scattering, the equation (4.8) is written as

µ
∂γΨi,j

∂xγ
(x, µ, θ) + σtΨi,j(x, µ, θ) = G

i,j
(x;µ, θ)

(5.1) σ

∫ 1

−1

∫ 2π

0

Ψi,j(x, µ
′
, θ
′
)dθ

′
dµ
′

for x ∈Ω := {(x, y):0 ≤ x ≤ 1,−1 ≤ y ≤ 1} , 0 < γ ≤ 1, µ ∈ [−1, 1] and θ ∈ [0, 2π] .
Subject to the following boundary conditions (4.9).

Theorem 5.1. Consider the fractional integro-differential equation (5.1) under the boundary
conditions (4.9), then the function Ψi,j(x, µ, θ) satisfy the following fractional linear system of
algebraic equations

N∑
n=0

Dn,mZ
(γ)

n,i,j(x, θ)− σs
N∑
n=0

Y n,i,j(x, θ) + σtY n,i,j(x, θ) =

∫ 1

−1

Gi,j(x, µ, θ)W
e
n(µ)dµ+

N∑
n=0

Dn,mZn,i,j(x, θ).

N∑
n=0

Dn,mY
(γ)

n,i,j(x, θ)− σs
N∑
n=0

Zn,k(x, θ) + σtZn,i,j(x, θ) =

∫ 1

−1

Gi,j(x, µ, θ)W
o
n(µ)dµ+

N∑
n=0

Dn,mY n,i,j(x, θ).

Proof. For this problem we expand the angular flux in terms of the Walsh function in the angular
variable with its domain extended into the interval [−1, 1] . To this end, the Walsh function
Wn(µ) are extended in an even and odd fashion as follows [6]:

(5.2) W e
n(µ) =

{
Wn(µ), if µ ≥ 0
Wn(−µ), if µ < 0

,

(5.3) W o
n(µ) =

{
Wn(µ), if µ ≥ 0
−Wn(−µ), if µ < 0

,

for n = 0, 1, ..., N. The important feature of this procedure relies on the fact that a function
f(µ) defined in the interval [−1, 1] can be expanded in terms of these extended functions in the
manner:

(5.4) f(µ) =
∞∑
n=0

[anW
e
n(µ) + bnW

o
n(µ)] ,
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where the coefficients an and bn are determined as:

(5.5) an =
1

2

∫ 1

−1

f(µ)W e
n(µ)dµ,

(5.6) bn =
1

2

∫ 1

−1

f(µ)W o
n(µ)dµ,

So, in order to use the Walsh function for the solution of the problem (5.1), the angular flux
is approximated by the truncated expansion:

(5.7) Ψi,j(x, µ, θ) =
N∑
n=0

[Yn,i,j(x, θ)W
e
n(µ) + Zn,i,j(x, θ)W

o
n(µ)]

Inserting this expansion into the linear transport equation (5.1), it turns out:
N∑
n=0

[{
µ
∂γYn,i,j
∂xγ

(x, θ) + σtYn,i,j(x, θ)

}
W e
n(µ)+

{
µ
∂γZn,i,j
∂xγ

(x, θ) + σtZn,i,j(x, θ)

}
W o
n(µ)

]
=

(5.8)
N∑
n=0

σs

[∫ 1

−1

∫ 2π

0

Yn,i,j(x, θ
′
)W e

n(µ
′
)dθ

′
dµ
′
+

∫ 1

−1

∫ 2π

0

Yn,i,j(x, θ
′
)W o

n(µ
′
)dθ

′
dµ
′
]

+Gi,j(x, µ, θ)

Multiplying equation (5.8) by W e
m , m = 0., ..., N and integrating over the interval [−1, 1] ,

results:
N∑
n=0

[
∂γZn,i,j
∂xγ

(x, θ)

∫ 1

−1

µW o
n(µ)W e

n(µ)dµ

(5.9) +σtYn,i,j(x, θ)

∫ 1

−1

W e
n(µ)W e

m(µ)dµ

]
=

N∑
n=0

σs

[∫ 2π

0

Yn,i,j(x, θ
′)dθ′

∫ 1

−1

W o
n(µ

′
)W o

n(µ
′
)dµ

′
]

+

∫ 1

−1

Gi,j(x, µ, θ)W
e
n(µ)dµ

Similarly, multiplying equation (5.8) by W 0
m , m = 0., ..., N and integrating yields:

N∑
n=0

[
∂γYn,i,j
∂xγ

(x, θ)

∫ 1

−1

µW o
n(µ)W e

n(µ)dµ

(5.10) +σtZn,i,j(x, θ)

∫ 1

−1

W 0
n(µ)W 0

m(µ)dµ

]
=

N∑
n=0

σs

[∫ 2π

0

Zn,i,j(x, θ
′)dθ′

∫ 1

−1

W o
n(µ

′
)W o

n(µ
′
)dµ

′
]

+
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∫ 1

−1

Gi,j(x, µ, θ)W
0
n(µ)dµ

The integrals appearing in equations (5.9) and (5.10) are known and are given [6] as

(5.11) Dn,m =
1

2

∫ 1

−1

µW o
n(µ)W e

m(µ)dµ =

∫ 1

0

µW(n+m) mod 2(µ)

or

(5.12) Dn,m =

 1/2 if n = m
−2−(k+2) , if (n+m) mod 2 = 2k, k natural

0 at another case

where the notation (n + m) mod 2 denotes the mod 2 sum of the binary digits n and m [8] we
obtain an algebraic linear system of equations

N∑
n=0

Dn,mZ
(γ)

n,i,j(x, θ) + (σt − σs)
N∑
n=0

Y n,i,j(x, θ) =

(5.13)
∫ 1

−1

Gi,j(x, µ, θ)W
e
n(µ)dµ+

N∑
n=0

Dn,mZn,i,j(x, θ)

N∑
n=0

Dn,mY
(γ)

n,i,j(x, θ) + (σt − σs)
N∑
n=0

Zn,i,j(x, θ) =

(5.14)
∫ 1

−1

Gi,j(x, µ, θ)W
o
n(µ)dµ+

N∑
n=0

Dn,mY n,i,j(x, θ)

6. SPECIFIC APPLICATION OF THE METHOD

Consider now the discrete ordinates (SN ) approximation of the equation (4.8) for m =
1, ...,M
(6.1)

µm
∂γΨα,β

∂xγ
(x, µm, φm) + σtΨα,β(x, µm, φm) =

M∑
n=1

ωnΨα,β(x, µm, φm) +G
α,β

(x, µm, φm)

where 0 < γ ≤ 1.

Theorem 6.1. Consider the integro-differential equation (6.1), then the function Ψα,β(x, µ, θ)
satisfy the following differential equation

Ak
∂γWk

∂xγ
+DkWk = B

Proof. expand Ψα,β(x, µm, φm) in a truncated series of Walsh functions i.e.

(6.2) Ψα,β(x, µm, φm) =
K∑
k=0

Ck(µm, φm)Wk(x)

where

Ck(µm, φm) =

∫ 1

0

Ψα,β(x, µm, φm)Wk(x)
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Inserting the equation (6.2) in equation (6.1) to get

µm
∂γ

∂xγ

K∑
k=0

Ck(µm, φm)Wk(x) + σt

K∑
k=0

Ck(µm, φm)Wk(x)

(6.3) =
M∑
n=1

ωn

K∑
k=0

Ck(µm, φm)Wk(x) +G
α,β

(x, µm, φm)

with
G
α,β

(x, µm, φm) = S
α,β

(x, µm, φm)−
√

1− µ2

(6.4) ×

[
cosφ

I∑
α=i+1

Aαi

K∑
k=0

Ck(µm, φm)Wk(x) +

sinφ
J∑

β=j+1

Bβ
j

K∑
k=0

Ck(µm, φm)Wk(x)

]
then the matrix form of the equation (6.3) yields the following differential equation

(6.5) Ak
∂γWk

∂xγ
+DkWk = B

where

(6.6) Ak = µm

K∑
k=0

Ck(µm, φm)

(6.7) Dk =
M∑
K=0

Ck(µm, φm)

[
σt −

M∑
n=1

ωn +
√

1− µ2

[
cosφ

I∑
α=i+1

Aαi + sinφ
J∑

β=j+1

Bβ
j

]]
and

(6.8) B = S
α,β

(x, µm, φm)

the solution of differential equation for the vector Wk is thus constructed as follows [25]

(6.9) Wk(x) = e−A
−1Dx

γ Wk(0)−
∫ x

0

e−A
−1D(x−ξ)

γ A−1B(ξ)dξ

equation (6.9) depend on vectorWk(0).Having established an analytical formulation for the ex-
ponential appearing in equation (6.9), the unknown components of vector Wk(0) for the bound-
ary problem (4.1) can be readily obtained applying the boundary conditions (4.2), (4.3) and
(4.4).

An analytical formulation for the exponential of matrix D, appearing in equation (6.9), is
given by [25]

e−A
−1Dx

γ = xβ−1

∞∑
k=0

(A−1D)k
xkγ

Γ [(k + 1)γ]

Moreover, it is easy to see that the function e−A−1D
γ satisfies the following properties [25]:

(i) If ‖ A−1D ‖= maxi,j | Ai,jDi,j |, where Ai,j and Di,j are the components of matrix A
and D respectively then
‖ eA−1D

γ ‖ ≤
∑∞

k=0 ‖ A−1D ‖k x(k+1)γ−1

Γ[(k+1)γ]
(x > 0),

(ii) eA−1D
γ eKxγ 6= e

(A−1D+K)x
γ (γ 6= 1),
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(iii) DγeA
−1Dx

γ = (A−1D)eA
−1Dx

γ ,
where A,D, K ∈Mn(R) and γ ∈ (0, 1] .

7. CONCLUSION

We have discussed a Walsh function for solving the fractional transport equation in three-
dimensional case this method represent very interesting new ideas for studying the convergence
of many numerical methods and can be extended easily to general linear transport problems
should be general enough to consider higher spatial dimensions in a way similar to that pre-
sented in this paper, although we have not investigated this idea thoroughly. We will be con-
sidering more complicated geometries in future studies, during which we will ascertain this
method’s usefulness for larger spatial dimensional problems. In this context we expect to deter-
mine the unknown order of the fractional derivative comparing the kernel of the integral equa-
tion with the one of the Riemann-Liouville definition of fractional derivative. Our attention is
focus in this direction.
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