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1. INTRODUCTION
The operator equation, central to our study is the operator equation of the Hammerstein’s type:
(1.1) u+ BAu = w,

where A and B are operatorsy, w elements in a given Banach spa&e with « being the
unknown element it
Since the work of Hammersteinl[1], the study pf {1.1) has mainly benefited by the compact
mappings.
It will become clear in the sequel that breakup of the oper&tdrfrom Banach spac&’ into
consistuent parts notably:

A: X — X*andB : X* — X with R(A) C D(B),
where X* is the dual space, will reveal the interdependence between the theory of non-linear
integral equations and that of monotone mappings.
The notion of montone operators were introduced by Zarantenello [12], Minty [11] and Kacurovskii
[13]. Monotonicity conditions in the context of variational methods for non-linear operator
equation were also used by Vainberg and KacurovskKii [14].
Interest in[(1.]1) stems mainly from the fact that several problems that arise in differential equa-
tions, for instance, elliptic boundary value problems whose linear parts possess Green’s func-
tions can, as a rule, be transformed into a fdrm|(1.1) [see [2]].
Equation|[(I.1L) is generally called the Hammerstein’s type operator equation.
Several existence and uniqueness theorems have been proved for the equation of the Hammer-
stein’s typel[2],17].
Several applications of (1.1) are found in the studies of partial differential equéltions [15], [16],
the theory of optimal control system [17], theory of mechanics, in particular in technical prob-
lems [18].
In this paper, we consideY a reflexive Banach spacd, B maximal monotone operators and
the equations of study, notably the operator equation of the Hammerstein'$ type (1.1).
The operatorsA, B will be perturbed by some small parameter. The approximate solution of
the regularized or perturbed Hammerstein operator equation will be extensively studied. The
regularized equations will finally be examined in Hilbert spaces so as to unify results.
Finally, this paper provides a more congenial solution space for the approximate solution of
the Hammerstein equation in the operator form. The methodology of this paper is to apply
regularized techniques to solve operator equations of the Hammerstein'’s type.

2. PRELIMINARIES

Let X be a real Banach space with dual. The mapping : X — 2% is said to be monotone
if for some elements, v € D(T'), the inequality:

(2.1) (f —g,u—v) >0,V[v,g] € G(T)
holds for allf € Tw andg € Twv. The mapping is said to be
e strictly monotone if the equality in (2.1) implies= v,
e monotone if
(2.2) (Tu — Tv,u —v) > 0,Yu,v € D(T),

¢ uniformly monotone if for each, v € D(T) there exists a strictly increasing function
¢ : [0,00) — [0, 00) with (0) = 0 such thatTu — Tv,u — v) > ¢(||u — v||?),

e strongly monotone if for each,v € D(T) there existst € (0,1) such that(7u —
Tv,u—v) > k(||lu—v|]?).
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A close study of the definitions shows that every strongly monotone map is uniformly monotone;
sincey(t) = kt, k € (0, 1) is strictly monotone function witky(0) = 0.

AsetM C X x X*is monotone provided thaf — g, u—wv) > 0 for any pair[u, f], [v,g] € M.

A monotone setV/ is maximal if it is not a proper subset of a monotone sefXin< X*.
The mappingl’ : X — 2% is said to be maximal monotone if its grapi7") is a maximal
monotone set ok x X*. Therefore,I" is maximal monotone if and only iff — g,u —v) >0
impliesu € D(T) and f € Tu. The elemenfu, f] € X x X* lies in G(T) if and only if
[f,u] € X* x X liesin G(T~'). Since the monotonicity is invariant under transposition of
domain and the range of a mapjs maximal monotone if and only if ~! has this property.
Let X be an arbitrary Banach space with dual spAc¢e The mapping/, whereJ : X — 2%~

is called a normalized duality mapping ahand is defined by

(2.3) J(u) = {u” € X+ (u,u) = |[ul|* = [Ju"|*}.

From now onX is seen as a Reflexive Banach Space with difalthe mappings! : X — 2%
andB : X* — 2% maximal monotone with respective domaifgA) and D(B).
In (1.1) we define amag' = A~ : X* — 2X and for anyp € Au, (1.1) may be written as:

(2.4) Ce+ By =w,
where(C' is maximal monotone []2], p. 122].

Theorem 2.1.[3]. Suppose thaX is reflexive, thatd and B are maximal monotone operators
on X and that

(2.5) D(A)NintD(B) # 0
thenA + B is maximal.
Combining [2.4) with the two theorems[[[2] p. 106 - 107], we have the following:

Lemma 2.2.1f A : X — 2¥ and B : X* — 2% maximal monotone mappings, the map
A~ + B coercive and the conditiop (2.5) holds, thgn [1.1) or|(2.4) with@ny X has at least
one solution.

The formulation of a regularized equation of Hammerstein’s type requires the following defini-
tions and notations.

Definition 2.1. Let the spaceZ be defined by
(2.6) Z=XxX"={c=[u,p:ue X, pec X}

With the natural linear operation, +, defined &y, + (<2 = [au; + Bug, apy + By, for real
numbersy and ands; = [u1, ], s2 = [ug, 5] are elements of.

For anys € Z, let||s||z = {||ul|* + ||¢||?}2 then the spac€ is a Banach space with* =
X* x X as its dual. The duality pairing of the spacésnd Z* is defined by the product

(2.7) (", <) = (¥, u) + {p,v)
of the elements = [u, p|] € Z andn* = [¢,v] € Z*.

Lemma 2.3. Let {¢,,} be a sequence i&, wheres, = [u,,p,] and letsy = [ug, ¢,]. AS

n — oo, the following relations are equiavelent:

(2.8) Sn = S0, |[snllz — [Isoll 2
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and

(2.9) Up, — U, P, = Lo, ||Un|] — [|uol], [|enl] — Tloll-

Proof. The implication(2.9) = ([2.8)) is obvious.

[tns @] = [0, Po] = sn — so @and|[cn|1Z = ([[unl]* + |6, 117) = llsol|%

On the other hand, we assurf®g) is valid and lety* = [, v] be an arbitrary element &*.
Then the relatiorn*, ¢,,) implies

(2.10) (s tn) + (Pn, 0) = (b, u0) + (P, V)
If we putv = 0in then
<¢7un> - <¢,U0> V@/J S

that is,u,, — ug. Also if ¢ = 0 thenphi,, — ¢,. By the weak convergence these imply the
inequalities

(2.11) l|uo|| < liminf ||u,||and||gy||« < liminf ||@,, ||«

since

1
[lsnllz = llsoll = ([luol* +[I6o][2)2,

one can consider thgtu,, || — a and||¢,, || — b with
a? + b% = {|uo|[* + [l |2,

where{u,, } and{¢,, } are subsequences ff,,} and{¢, } , respectively.
Then(2.11) implies||up|| = a and||¢,||« = b.
Thus, [[u,|| = [[uol| and[|¢y[l. — [I@l.- W

Lemmaz2.4.1f J: X — X*andJ* : X* — X are the normalized duality mapping on and
X*, respectively, then the operatdg : Z — Z*, defined by

(2.12) Jz¢ = [Ju, J*p] Ve =[u,¢] € Z,

is a normalized duality mapping ofi; and conversely, every normalized duality mappingzon
has the form[(2.70).

Proof. We verify for J all the conditions of a normalized duality mapping as spelt o(2i8)).
For this reason consider an arbitrary element [u, ] € Z and using the properties of the
operators/ and.J*, we obtain

(J26,6) = (Ju,u) + (6, J*¢) = ||u* + ||o[[Z = [I<[|Z;

[ Jzsllz+ = ([JulZ + [17°¢11*)2 = ([[ull® + [|6]12)2 = lIs]|z

thatisJz : Z — Z*is dual mapping or£.

Let the operator; : Z — Z* be such that

(2.13) (Jz¢,9) = [lsllZ,  [|Jzsllz = |l<ll=
Assuming that/zs = n* = [¢,v], ¥ € X* ,v € X, we write the inequality

(Jz5,¢) = (. <) = (b, u) + (¢, v),
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which by virtue of(2.13)) gives
(2.14) [lull* + 18115 = (&, u) + (&, v) = |[I1Z + (vl

Next we show that) = Ju , v = J*¢.

It is necessary to establish that, u) = ||¢]|.||u|| , and (¢, v) = ||d]|.||v|| From (2.14]) we
assume on the contrary

[ul 2+ {1112 < [l [ull+ [[olllI8]l < 27 [+ Tull?) +27 (ol P+ 112 = [Jul >+ ][
which is false. Hencé2.13)) may be written as:

ull? + 118117 < [[l]Ilull + Nollllell« < 27 (17 + [ul?) + 271 (o] P + [[¢l]2)
Then
0 = ([full = [&11)% + (Il — [lvl)?,

That is,y = Ju andv = J*¢.
|

Lemma 2.5. The spaceZ is strictly convex if and onlX and X* are strictly convex.

Proof. The spaceZ is strictly convex if and only ifJz is strcitly monotone operator. On the
other hand,/ is strictly monotone if and only iff and.J* are strictly monotone since
Jz¢ = [Ju, J*¢] for all ¢ = [u, ¢], (seel[4], p45)x
The equation(1]1) is written as the system:
Au—9=0,u+ By =w,p € Au,
which is equivalent to the operator equation:
(2.15) Ts = h,

whereT : Z — 227 such that

Ts=[Au—p,u+ Byl € Z* ¢ =[u,p] € Z,h=[0x,w] € Z*.

Lemma 2.6. The operatofl’ is monotone.

Proof. Let¢; = [uy, 4], 52 = [uz2, ¢,] € Z, the equality

(2.16) (Ts1 —T<2,61 = S2) = (Aur — Aug, uy — ug) + (01 — @q, By — Bps)

holds. Additionally, the equality is valid if; € D(A), p, € D(B) for all i = 1,2. At that, the
inclusiony, € Au; should hold, thatisy; € A~ 1p,,i =1,2

Therefore|(2.12) may be written as

(Ts1 = Tsa,61 — S2) = (o1 — 2. A7 oy — A7Hp) + (91 — 3, By — Bypy), Wherey; €
D(B),p; € D(A™),i=1,2.

With this condition it follows that if[(2.p) is satisfied then the operaftds maximal monotone
on its domainD(T').

1

Let the operators!, B be maximal monotone. Léb(A) = X and condition|[(2)5) be satisfied.
Let N be a non-empty closed solution set[of {1.1). Then we have the following result:

Lemma 2.7. The setN is convex.
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Proof. Let M be a solution of[2.4)) then M is convex and closed i& ( see[[2] p105). In view
of (2.15)) , and sincel = {[u,¢] : u € N,¢ € Au}, thenM = N x A(N). ThereforeN is
convex.u

Next we consider a regularized Hammerstein type operator equation in general Banach space
(2.17) u+ (B+aJ) A+ at)u =u’,
wherea > 0,5 > 0. w° is J—approximation ofw, where||w — w°|| < §

Lemma 2.8. The equation (2.13) is uniquely solvable for every elemént X.

Proof. Let B* = B+ aJ* , A = A+ aJ*.
We introduce an operator
T = [A% — ¢,u+ B?] = Ts + aJzs, s = [u, 9], Jz¢ = [Ju, J*¢]
The solvability of(2.15) is equivalent to the solvability of equation
(2.18) T2 = h?, h = [0%,w’]
whereT® = T + a.Jz is a maximal monotone. The conclusion of the Lemma follows from (
see([5], [6] and([7]
|
Theorem 2.9. Let a solution sefV of equation[(1.]l) be non empty and closdd, X — X* be
a maximal monotone locally bounded mapping with4) = X. Assume thaB : X* — 2% is
also maximal monotone mapping. Letbe ad— approxiamtion ofv, such that|w —w°|| < 4.
If £ — 0, and alsoa — 0, then the sequenci:’,} of solutions of the regularized equation
(2.13) converges strongly i to the solutionu* € N which is defined as

u*[]> + [|Au*|[? = min{||u|]* + ||Au||? : © € N}.

Proof. Consider the operator equati and with solutionsg, ¢ respectively. Sub-
tracting ([2.17]) from (2.18)), we have
T —Ts=h°—h
or equivalently
TS —Ts+alzs® =h® —h

Multiply the above through witk?, — ¢, we have

(2.19) (Ts% — T, 6% — &) + a(lz6%,¢% —¢) < (h® — R, 65 — )
By the monotonicty ofl’, we have

(2.20) a(I260, 50 — ) < (h° = h,<h — ) < [[B° = h|[[sg, —<]]
That is,

a(lz62,<8) < 8|l — <]

or a (5P — s 1I<) < 8lls% — ]
which is a quadratic i<? ||, giving an estimaté < ||’ || < w where

o ) 46||s
(2.21) w=||§||+——|—\/(||g||—|-—)2_|_ [Is]]
Q e} Q

Thus the sequendg? } is bounded. Hence there is a subs,%t} (seell8] p 53 ) which converges
asg — 0 tosome elemente Z
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Next we show thaf's = h.

Take an arbitrary elemente Z. SinceT is monotone, then

0 <(Ts =T, 6= %) = (T's = h,¢ = %) + B{Iz0,6 = <0) + (h = h%,s = <))
< (TS = Ry — o) + B{I260, 6 — %) +d]ls = <A

As 3,6 — 0, we have

(Ts —h,s—3) >0

which means

TS =h

implying clearly that is a solution of((2.15])
Finally, from (2.19) we have the expressidiizs}, < — <) < 2lIss =l

As 3,4 — 0,¢% — <. This implies(Iz5,s — ) < 0. Thus|[|| < |[<]|
Therefore, since is arbitrary we have:

|I<[] = mincenls]]

3. MAIN RESULTS

We now discuss our results in Hilbert spaces by looking at various types of regularization of the
parameters of the Hammerstein’s type operator equation.

Case |

We consider a regularized Hammerstein type operator equatiin in

(3.1) u+ (B+al)(A+al)u=w,
wherea > 0. The equivalent operator form of this regularized equation is :
(3.2) T, = h,

whereT* = (T + ol).

Theorem 3.1. Let a solution setV of (3.1) be a non-empty and closed,: H — H be a
maximal monotone and locally bounded mapping Vi) = H. Assume thaB : H — 24

is a maximal monotone mapping too and the condition of the maximal monotone is satisfied. If
a — 0, then the solutior,, of the regularized equation (3.1) satisfies (2.11) and also

|I<all = mincez|[<]],
wheres € Z is in the solution set of the Hammerstein’s type operator equdtion|(2.11).

Proof. Lets € Z be arbitrary. Sincé is monotone,
0 <(Ts —TSa,s —Sa) = (TS — h+ asa,s —Sa) = (T's — hys — o) + @S, — Sa). AS
a — 0 we have

0<(Ts—h,¢—<a)

implying that7’s,, = h, that is,s,, is a solution of[(3.R).
Subtracting[(2.111) fronj (3] 2) and multiplying throughy— ¢, we have

O S <Tagoz - TC) Sa — §>
= (TSo — hySa — S) + A(SaySa — S)-
By the monotonicity ofl” we have the required results
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[I<all = mincezl[<]].
|
Case ll
Next we consider a regularized Hammerstein’s type operator equatién in
(3.3) u+ (B+al)(A+al)u=u’,
wherea > 0,9 > 0. The equivalent operator form of this equation is:
(3.4) Te¢° = h?,

whereT® = T + ol andw?’ is 5—approximation ofu, where||w — w’|| > 6§ andh? = [0, w°].
Lemma 3.2. The equatlor.3) is uniquely solvable for every element X .
Proof. Refer to the proof of Lemmé.g). 1

Theorem 3.3. Let a solution sefV of equation[(1.]l) be non empty and closdd, X — X* be

a maximal monotone locally bounded mapping with4) = X. Assume thaB : X* — 2% is
also maximal monotone mapping. Letbe ad— approxiamtion ofv, such that|w —w°|| < 4.

If g — 0, and alson — 0, then the sequende:’, } of solutions of the regularized equati@SA)
converges strongly iX to the solutionu* € N which is defined as

l|u*|]? + || Au*]|? = mind{||u||* + ||Au||* : v € N}.

Proof. Refer to the proof of Theorerf2.9). 1

Case lll

The parameters and conditions of regularization are:

B AR wd o> 0, ||AMu — Aul|lg < hg(||ul]), ||Bhu — Bul|g < hg(||ul]),h > 0,6 > 0.

Let the operators!, B, A", B" be maximal monotone mappings éh— 27. The regularized
form of (2.11) is given by

(3.5) u+ (B" + alg)(A" + alg)u = u°.

Then equatior] (3]5) is represented by

(36) TR’ = hp,

where

Tosi? = [(A" + alp)ui® — 6% ui® + (B" + alw)ép’), b, = [0,w],6° = [uf’, ;).
Furthermore,

(3.7) T =T +alz,Z=H x H,

where Taég = [APugd — ¢ ud + Bh¢0?), Iz = [Tqug?, Indt?].

Letcq? ¢ € Z. Then clearly

0 < (TRo6h? = Tos2, st — <pd)
that is7; is monotone. By Lemmfa.2] .) is uniquely solvable fof®® which is maximal
monotone.

We verify the requirements inherent in Theorg} We subtract(2.11) from (3.6) and multiply
through bys¢® — ¢ to obtain

(TRogp® — Tq, 0% — ) = (h) — h,¢p® =)
or
(TPepd — T, ¢ — o) + a(lzc8, ¢80 —¢) = (h) — h,<5° — <)
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implying that
(3.8) alh i = <) = (hy = h, <7’ = <) = (T35 = T, <5 — ).
However,
(L6’ = T, 67 — <) < hy(lJul)l|ug? — ull + h(g(|oIDII¢7° — &ll)-
Also
(= D65 = <) < 0llq — |
Therefore from[(3.8) we have:
(8 sh® = <) < 2 —<llz + Elg(lulDlug?® — ull + g([lolD¢n° —
or equivalently
a2 l1> = st llllsll < 2llsa®llz + llslz + 2lg([ullug —ull + g(elDlg7° — oI,
which is quadratic equation if$°||. An argument similar to the proof of Theore@&?,) shows
that ||<2%|| is bounded and therefore there exists a subsgtt which converges a§ — 0 to
some element € Z.

Next we show thatls a solution ofKQ_T%]l) Slnc’E is monotone, We have
0<(Ts =T’ ¢ =) = (Ts — T3¢}’ ¢ — ) + (TP’ — T} ¢ — <)

oll],

= (Ts—h,s— ")+ (h— h5<—<h> (h? — T£<h,<—<h>+<T€ —Ts)’ ¢ =)
_<T§_h§_§h>+5||§ ||+5<]Zgha§_gh>+<Tlf Tgha§_§§6>-
However,

(Then’ = T s =) < hlg(llup’|)l[w = [| + gl DIl6 — &, |1
Substituting we have
0 < (Ts=h,s=p ) H0lls—<i [+8(1 255" s = )+hlg(llu’ D fu=uz [[+g(|[65 1Nl o—5 1]

As 3,0, h — 0, we have
0<(T¢—h,c—3).
Hence by the monotonicity df, we have
TS = h.

Finally from (3.9),
(6% <’ =<y < 2l = cllz + Elg(lulDup? — wll + g (1667 — ol

As? L 0 we have
a’ o

(%’ =) <0
implying that

12211 < [lsl1.
Hence,

165°I] < mingenlls]l.

Therefore Theoreim 3.3 is satisfied.
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