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1. INTRODUCTION

In [1} 2] several results about inequalities for power-exponential functions were introduced
and proved. In particular, in [[1], the following inequality

(11) a2a +b2b+620 Z a2b+b26+02a,

for a,b,c € R was presented as a conjecture. Thus, the goal of the present paper is to give a
proof of (I.1). More precisely, we analyze (1.1)) and prove the following theorem:

Theorem 1.1. The inequality (I.1)) holds for all positive real numbers a,b and c.

The proof of Theorem @ is self-contained. However, for completeness of the discussion
given below, we recall a result of [1]], which play an important role in the elaboration elaboration
of the arguments to prove Theorem

Theorem 1.2. The inequality a®* + b* > a®® + b*?, holds for all positive real numbers a and b.

The paper is organized as follows. In section 2] we introduce the notation and a preliminary
result. In section [3] we present a complete proof of Theorem [I.1] In section 4] we prove the
Theorem [1.1]for ¢ = 1/2 < b < a < 1, in a different way.

2. PRELIMINARIES AND NOTATION

Let us begin by introducing and proving a useful proposition.
Proposition 2.1. Consider s € RY with s # 1 and f, g : Rt — R defined as follows

efln(:r)/(xfl)’ T g {07 1},
flx)=a2°—x—y*+y, and g(r)=1] e, r=1
0, x = 0.
Then, the following properties are satisfied
(i) f(y) =0and f(0) = f(1) = —y" +y.

(i) If s > 1, f is strictly increasing on |g(s), oo| and strictly decreasing on |0, g(s)].

(iii) If s €]0, 1], f is strictly decreasing on |g(s), oo| and strictly increasing on |0, g(s)].

(iv) g is continuous on R™ U {0} and strictly increasing on R™. Furthermore y = 1 is a

horizontal asymptote of y = g(x).

Proof. (i). We use the definition of f. Then f(y) = y* —y —y* +y = 0 and f(0) = f(1) =
—y° + .

(ii)-(iii). Differentiating f, we have that f’(z) = sz*~! — 1 and we deduce the enunciated
property, since f'(x) = 0forz = e~ In(s)/(s=1) = ¢(s) and

is positive on |g(s), o], for s €]1, 0o[;
is negative on |0, g(s)[, for s €]1, co[;
is negative on |g(s), ool, for s €]0, 1] and

is positive on |0, g(s)[, for s €]0, 1[.

f'(x)

(iv). We obtain the continuity of g by construction and the monotonic behavior as a conse-
quence of

—z+ 1+ zn(z)
z(x —1)2
We notice that g(x) — 1 when © — +o00. Thus y = 1 is a horizontal asymptote of y = g(z). 1

g(x) >0, forx # 1.

g'(z) =

If a, b, c are three positive real numbers, we have the following six cases
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(al) a > max{b,c} > 0, (a3) ¢ > max{a,b} > 0, (a5) a =b # c,
(a2) b > max{a,c} >0, (a4) a =b =c, (a6) a £ b =c.

We can separate each of this three first alternatives into two cases. For instance, the first alterna-
tive is equivalent to a > 1 and @ > max{b,c} > 0 or 1 > a > max{b, ¢} > 0. Considering this
observation and for clarity in the proof of Theorem|I.1I] we introduce the following set notation
R = {(z,9,2)€R® / >0, y>0 and z>0}
E, = {(m,y,z)GRi x:y:zorx:yyézora:#y:z},
(x,y,2) € R‘i a > 1 and a > max{b, c} },

(z,y,2) € RS 1> a > max{b, c} },

(x,y,2) € Ri 1> b > max{a,c} },

(z,y,2) € R}

/
/
/

(.y,2) €RL / b>1andb>max{a,c} |,
/
/ ezlande>maxfa,b} | and
/

=

S

I
= A N N

(z,y,2) € R 1 > ¢ > max{a, b} }

We note that the family {El, ESE,,Ef E, ET, Ec_} is a set partition of R? .

3. PROOF OF THEOREM [1.1]

We present the proof of Theorem [I.1]by analyzing three cases.
3.1. Case (a,b,c) € E,. This special case is a direct consequence of Theorem|1.2

3.2. Case (a,b,c) € Ef UE] UE?. If (a,b,c) € E, we apply the Theorem [1.2] and propo-
sition as follows. We select x = a*,y = ¢®® and s = a/b, the monotonic behavior and
properties of function f, defined on proposition implies that

(3.1 a?? 4 > a® 4 2

since z > y, x > 1 and s > 1. The corresponding proof of (3.1)) needs the distinction of two
cases: y > landy < 1. If y > 1, then y € ]g(s), 00|, so f is strictly increasing and x > y
implies (3.1). For y < 1, we note that —y* 4+ y > 0 since s > 1 and 1 €]g(s), oo, then the
assumption z > 1 implies that f(z) > f(1) = —y* +y > 0 = f(y) and (3.1) is again true for
this subcase. Moreover, by Theorem[I.2] we recall that the inequality

(3.2) 4 0% > % 4 P,

holds, for all positive real numbers b and ¢. Adding (3.1)) and (3.2)) we deduce (I.1).

The proof for (a,b,c) € E; UE] is similar to the case (a,b,c¢) € E} and we omit the
details. For (a,b,c) € E; we choose z = b*,y = ¢* and s = b/c. If (a,b, c) € E} we select
r=c*y=10"and s = c/a.
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3.3. Case (a,b,c) € E; UE, UE_. Let us assume that (a,b,c) € E,. We distinguish two
subcases: ¢ < b < aand b < ¢ < a. In first time, if ¢ < b < a, we apply the function f (see
proposition 2.1)) with x = b%, y = ¢* and s = a/c for ¢ < 1/2 to prove

(33) b2a + CQC > b20 4 CQa

and with x = ¢**, y = a** and s = b/a for ¢ > 1/2 to deduce (B.1). Indeed, if ¢ < 1/2, we
notice that s > 1, ¢* > c and

(B4) c<a = 2c—a<c = a°>c = > @I — gy

ie. © >y > ¢ > g(s), then the strictly increasing behavior of f on ]g(s), 0o, implies the
inequality (3.3); else if ¢ > 1/2, we have that s < 1 and

(35 c<b<a<l = Ab<Pa = &> thO/b-a) — g(5),

i.e. y > x > g(s), then the strictly decreasing behavior of f on |g(s), oo|, implies the inequality
(B-T). We observe that, by Theorem [1.2} the inequalities a?* + 0% > a + b** and b? 4 > >
b*¢ + ¢® holds, for all positive real numbers a, b and c. Adding a** + ** > a* + b** with (3.3)
and b*° + c* > b* + ¢® with (3.1)), we obtain (I.T)) for ¢ < 1/2 and ¢ > 1/2, respectively.
Thus, the inequality (I.1]) holds for 0 < ¢ < b < a < 1, as desired. Secondarily, if b < ¢ < a,
we proceed in a similar form, selecting z = a?*, y = b* and s = ¢/b for b > 1/2, to prove (3.1)
and r = a®,y = ¢* and s = a/b for b > 1/2, to deduce

(3.6) a’ + b? > a® + b*.

In the case of b < 1/2, if proceed in the same manner to (3.6), we get that b > ¢(s), then
x>y >0b> g(s)and s > 1 implies the strictly increasing behavior of f on ]g(s), co[, which
leads to (3.I). Adding the inequality (3.1)) with (3.2) we obtain (I.1). Meanwhile, for b > 1/2
we note the function m : [b, 1[— R defined by m(x) = xb** — b*T! satisfies the following
properties
m(b) =0, m(1) =b(b—b*) >0,
—1

—_— >
2lnb — 2In2
then m(x) > 0 for z € [b,1]. In particular for z = ¢, we have that m(c) = cb* — b*1 > 0
which implies v** > ¢(s) and we follow (3.6)) by application of f.

For (a,b,c) € E, UE_ we can follow line by line the proof of (a, b, c¢) € E; . However, we

can obtain a direct proof by apply the result obtained for (a,b,c) € E_ by interchanging the
role of variables. For instance, if (a, b, ¢) € E, then (b, a,c) € E; which implies (L.I)).

m has a unique maximum on [b, 1] at . =

~ 0.61,

4. AN ADDITIONAL REMARK

In this section we present another proof for c = 1/2 < b < a < 1. We define h :]1/2,a[— R

as follows
1

1 2a
h(z) = a2a+x2m+§—a2x—x—(§) , x€[l/2,a].

Thus the proof of (I.I) is reduced to prove h(x) > 0 for x € [1/2,a]. An application of
Teorem[I.2]implies the following estimate

1 1 2a
h(fl]) — a2a+m2x _a2x _:L,Qa] +m2a+ 5 —r— (5)

. 1 1 2a
> x —1—5—33— 3 = hy(x), x€][l/2,a]
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We note that /1, is an increasing function on [1/2, a]. In fact, because x2*~! is strictly increasing
and 4% is convex on [1/2, 1], we have

5 1 >0, zell/2al

Hence, h(xz) > hi(xz) > hy(1/2) = 0, for all z € [1/2,a], and the inequality (I.I]) holds for
c=1/2<b<a<]l.

1 2a—1 4 . 4(1
K (z) = 2a2% — 1 > 2a (-) =07
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