

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 9, Issue 1, Article 3, pp. 1-5, 2012

ON THE INEQUALITY $a^{2a} + b^{2b} + c^{2c} > a^{2b} + b^{2c} + c^{2a}$

ANÍBAL CORONEL AND FERNANDO HUANCAS

Received 5 May, 2011; accepted 6 July, 2011; published 31 January, 2012.

DEPARTAMENTO DE CIENCIAS BÁSICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DEL BÍO-BÍO, CASILLA 447, CAMPUS FERNANDO MAY, CHILLÁN, CHILE. acoronel@roble.fdo-may.ubiobio.cl

DEPARTAMENTO ACADÉMICO DE MATEMÁTICA, FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS, UNIVERSIDAD NACIONAL PEDRO RUIZ GALLO, JUAN XIII S/N, LAMBAYEQUE, PERÚ. fihuanca@gmail.com

ABSTRACT. In this paper we give a complete proof of $a^{2a} + b^{2b} + c^{2c} \ge a^{2b} + b^{2c} + c^{2a}$ for all positive real numbers a, b and c. Furthermore, we present another way to prove the statement for c = 1/2 < b < a < 1.

Key words and phrases: Cîrtoaje conjecture, power-exponential function.

2000 Mathematics Subject Classification. Primary 26D07. Secondary 26D20.

ISSN (electronic): 1449-5910

^{© 2012} Austral Internet Publishing. All rights reserved.

We acknowledge the support of the Universidad del Bío-Bío (Chile) through research project 104709 01/FE..

1. INTRODUCTION

In [1, 2] several results about inequalities for power-exponential functions were introduced and proved. In particular, in [1], the following inequality

(1.1) $a^{2a} + b^{2b} + c^{2c} \ge a^{2b} + b^{2c} + c^{2a},$

for $a, b, c \in \mathbb{R}^+$ was presented as a conjecture. Thus, the goal of the present paper is to give a proof of (1.1). More precisely, we analyze (1.1) and prove the following theorem:

Theorem 1.1. *The inequality* (1.1) *holds for all positive real numbers a*, *b and c*.

The proof of Theorem 1.1 is self-contained. However, for completeness of the discussion given below, we recall a result of [1], which play an important role in the elaboration elaboration of the arguments to prove Theorem 1.1.

Theorem 1.2. The inequality $a^{2a} + b^{2b} \ge a^{2b} + b^{2a}$, holds for all positive real numbers a and b.

The paper is organized as follows. In section 2 we introduce the notation and a preliminary result. In section 3 we present a complete proof of Theorem 1.1. In section 4 we prove the Theorem 1.1 for c = 1/2 < b < a < 1, in a different way.

2. PRELIMINARIES AND NOTATION

Let us begin by introducing and proving a useful proposition.

Proposition 2.1. Consider $s \in \mathbb{R}^+$ with $s \neq 1$ and $f, g : \mathbb{R}^+ \to \mathbb{R}$ defined as follows

$$f(x) = x^{s} - x - y^{s} + y, \quad and \quad g(x) = \begin{cases} e^{-\ln(x)/(x-1)}, & x \notin \{0,1\} \\ e^{-1}, & x = 1. \\ 0, & x = 0. \end{cases}$$

Then, the following properties are satisfied

- (i) f(y) = 0 and $f(0) = f(1) = -y^s + y$.
- (ii) If s > 1, f is strictly increasing on $]g(s), \infty[$ and strictly decreasing on]0, g(s)[.
- (iii) If $s \in [0, 1[$, f is strictly decreasing on $]q(s), \infty[$ and strictly increasing on]0, q(s)[.
- (iv) g is continuous on $\mathbb{R}^+ \cup \{0\}$ and strictly increasing on \mathbb{R}^+ . Furthermore y = 1 is a horizontal asymptote of y = g(x).

Proof. (i). We use the definition of f. Then $f(y) = y^s - y - y^s + y = 0$ and $f(0) = f(1) = -y^s + y$.

(*ii*)-(*iii*). Differentiating f, we have that $f'(x) = sx^{s-1} - 1$ and we deduce the enunciated property, since f'(x) = 0 for $x = e^{-\ln(s)/(s-1)} = g(s)$ and

$$f'(x) \begin{cases} \text{ is positive on }]g(s), \infty[, \text{ for } s \in]1, \infty[; \\ \text{ is negative on }]0, g(s)[, \text{ for } s \in]1, \infty[; \\ \text{ is negative on }]g(s), \infty[, \text{ for } s \in]0, 1[\text{ and} \\ \text{ is positive on }]0, g(s)[, \text{ for } s \in]0, 1[. \end{cases}$$

(*iv*). We obtain the continuity of g by construction and the monotonic behavior as a consequence of

$$g'(x) = \frac{-x + 1 + x \ln(x)}{x(x-1)^2} g(x) > 0, \text{ for } x \neq 1.$$

We notice that $g(x) \to 1$ when $x \to +\infty$. Thus y = 1 is a horizontal asymptote of y = g(x).

If a, b, c are three positive real numbers, we have the following six cases

(a1)
$$a > \max\{b, c\} > 0$$
, (a3) $c > \max\{a, b\} > 0$, (a5) $a = b \neq c$,
(a2) $b > \max\{a, c\} > 0$, (a4) $a = b = c$, (a6) $a \neq b = c$.

We can separate each of this three first alternatives into two cases. For instance, the first alternative is equivalent to $a \ge 1$ and $a > \max\{b, c\} > 0$ or $1 > a \ge \max\{b, c\} > 0$. Considering this observation and for clarity in the proof of Theorem 1.1, we introduce the following set notation

$$\begin{split} \mathbb{R}^{3}_{+} &= \left\{ (x, y, z) \in \mathbb{R}^{3} \ / \ x > 0, \ y > 0 \quad \text{and} \quad z > 0 \right\} \\ \mathbb{E}_{1} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ x = y = z \text{ or } x = y \neq z \text{ or } x \neq y = z \right\}, \\ \mathbb{E}^{+}_{a} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ a \ge 1 \text{ and } a > \max\{b, c\} \right\}, \\ \mathbb{E}^{-}_{a} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ b \ge 1 \text{ and } b > \max\{a, c\} \right\}, \\ \mathbb{E}^{+}_{b} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ 1 > b > \max\{a, c\} \right\}, \\ \mathbb{E}^{-}_{b} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ 1 > b > \max\{a, c\} \right\}, \\ \mathbb{E}^{+}_{c} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ c \ge 1 \text{ and } c > \max\{a, b\} \right\} \quad \text{and} \\ \mathbb{E}^{-}_{c} &= \left\{ (x, y, z) \in \mathbb{R}^{3}_{+} \ / \ 1 > c > \max\{a, b\} \right\}. \end{split}$$

We note that the family $\left\{\mathbb{E}_1, \mathbb{E}_a^+, \mathbb{E}_a^-, \mathbb{E}_b^+, \mathbb{E}_b^-, \mathbb{E}_c^-\right\}$ is a set partition of \mathbb{R}^3_+ .

3. **PROOF OF THEOREM 1.1**

We present the proof of Theorem 1.1 by analyzing three cases.

3.1. Case $(a, b, c) \in \mathbb{E}_1$. This special case is a direct consequence of Theorem 1.2.

3.2. Case $(a, b, c) \in \mathbb{E}_a^+ \cup \mathbb{E}_b^+ \cup \mathbb{E}_c^+$. If $(a, b, c) \in \mathbb{E}_a^+$, we apply the Theorem 1.2 and proposition 2.1 as follows. We select $x = a^{2b}, y = c^{2b}$ and s = a/b, the monotonic behavior and properties of function f, defined on proposition 2.1, implies that

$$(3.1) a^{2a} + c^{2b} > a^{2b} + c^{2a},$$

since x > y, x > 1 and s > 1. The corresponding proof of (3.1) needs the distinction of two cases: y > 1 and y < 1. If y > 1, then $y \in]g(s), \infty[$, so f is strictly increasing and x > y implies (3.1). For y < 1, we note that $-y^s + y \ge 0$ since s > 1 and $1 \in]g(s), \infty[$, then the assumption x > 1 implies that $f(x) > f(1) = -y^s + y \ge 0 = f(y)$ and (3.1) is again true for this subcase. Moreover, by Theorem 1.2, we recall that the inequality

(3.2)
$$c^{2c} + b^{2b} > b^{2c} + c^{2b},$$

holds, for all positive real numbers b and c. Adding (3.1) and (3.2) we deduce (1.1).

The proof for $(a, b, c) \in \mathbb{E}_b^+ \cup \mathbb{E}_c^+$ is similar to the case $(a, b, c) \in \mathbb{E}_a^+$ and we omit the details. For $(a, b, c) \in \mathbb{E}_b^+$ we choose $x = b^{2c}, y = c^{2c}$ and s = b/c. If $(a, b, c) \in \mathbb{E}_c^+$ we select $x = c^{2a}, y = b^{2a}$ and s = c/a.

3.3. Case $(a, b, c) \in \mathbb{E}_a^- \cup \mathbb{E}_b^- \cup \mathbb{E}_c^-$. Let us assume that $(a, b, c) \in \mathbb{E}_a^-$. We distinguish two subcases: c < b < a and b < c < a. In first time, if c < b < a, we apply the function f (see proposition 2.1) with $x = b^{2c}$, $y = c^{2c}$ and s = a/c for c < 1/2 to prove

$$(3.3) b^{2a} + c^{2c} > b^{2c} + c^{2a}$$

and with $x = c^{2a}$, $y = a^{2a}$ and s = b/a for $c \ge 1/2$ to deduce (3.1). Indeed, if c < 1/2, we notice that $s > 1, c^{2c} > c$ and

$$(3.4) \quad c < a \quad \Rightarrow \quad 2c - a < c \quad \Rightarrow \quad c^a a^c > c^{2c} \quad \Rightarrow \quad c > e^{-c \ln(a/c)/(a-c)} = g(s),$$

i.e. x > y > c > g(s), then the strictly increasing behavior of f on $]g(s), \infty[$, implies the inequality (3.5); else if c > 1/2, we have that s < 1 and

(3.5)
$$c < b < a < 1 \implies c^{2a}b < c^{2b}a \implies c^{2a} > e^{-b\ln(b/a)/(b-a)} = g(s),$$

i.e. y > x > g(s), then the strictly decreasing behavior of f on $]g(s), \infty[$, implies the inequality (3.1). We observe that, by Theorem 1.2, the inequalities $a^{2a} + b^{2b} > a^{2b} + b^{2a}$ and $b^{2b} + c^{2c} > b^{2c} + c^{2b}$ holds, for all positive real numbers a, b and c. Adding $a^{2a} + b^{2b} > a^{2b} + b^{2a}$ with (3.5) and $b^{2b} + c^{2c} > b^{2c} + c^{2b}$ with (3.1), we obtain (1.1) for c < 1/2 and $c \ge 1/2$, respectively. Thus, the inequality (1.1) holds for 0 < c < b < a < 1, as desired. Secondarily, if b < c < a, we proceed in a similar form, selecting $x = a^{2b}, y = b^{2b}$ and s = c/b for $b \ge 1/2$, to prove (3.1) and $x = a^{2b}, y = c^{2b}$ and s = a/b for $b \ge 1/2$, to deduce

$$(3.6) a^{2c} + b^{2b} > a^{2b} + b^{2c}.$$

In the case of b < 1/2, if proceed in the same manner to (3.6), we get that b > g(s), then x > y > b > g(s) and s > 1 implies the strictly increasing behavior of f on $]g(s), \infty[$, which leads to (3.1). Adding the inequality (3.1) with (3.2) we obtain (1.1). Meanwhile, for $b \ge 1/2$ we note the function $m : [b, 1[\rightarrow \mathbb{R} \text{ defined by } m(x) = xb^{2x} - b^{2b+1} \text{ satisfies the following properties}$

$$m(b) = 0, \quad m(1) = b(b - b^{2b}) > 0,$$

m has a unique maximum on $[b, 1[$ at $x_{\max} = \frac{-1}{2 \ln b} \ge \frac{1}{2 \ln 2} \approx 0.61$

then $m(x) \ge 0$ for $x \in [b, 1[$. In particular for x = c, we have that $m(c) = cb^{2c} - b^{2b+1} \ge 0$ which implies $b^{2b} \ge g(s)$ and we follow (3.6) by application of f.

For $(a, b, c) \in \mathbb{E}_b^- \cup \mathbb{E}_c^-$ we can follow line by line the proof of $(a, b, c) \in \mathbb{E}_a^-$. However, we can obtain a direct proof by apply the result obtained for $(a, b, c) \in \mathbb{E}_a^-$ by interchanging the role of variables. For instance, if $(a, b, c) \in \mathbb{E}_b^-$ then $(b, a, c) \in \mathbb{E}_a^-$ which implies (1.1).

4. AN ADDITIONAL REMARK

In this section we present another proof for c = 1/2 < b < a < 1. We define $h:]1/2, a[\rightarrow \mathbb{R}$ as follows

$$h(x) = a^{2a} + x^{2x} + \frac{1}{2} - a^{2x} - x - \left(\frac{1}{2}\right)^{2a}, \quad x \in [1/2, a].$$

Thus the proof of (1.1) is reduced to prove $h(x) \ge 0$ for $x \in [1/2, a]$. An application of Teorem 1.2 implies the following estimate

$$h(x) = \left[a^{2a} + x^{2x} - a^{2x} - x^{2a}\right] + x^{2a} + \frac{1}{2} - x - \left(\frac{1}{2}\right)^{2a}$$

$$\geq x^{2a} + \frac{1}{2} - x - \left(\frac{1}{2}\right)^{2a} := h_1(x), \quad x \in [1/2, a].$$

We note that h_1 is an increasing function on [1/2, a]. In fact, because x^{2a-1} is strictly increasing and 4^a is convex on [1/2, 1], we have

$$h_1'(x) = 2ax^{2a-1} - 1 > 2a\left(\frac{1}{2}\right)^{2a-1} - 1 = \frac{4a - 4^a}{4^a} > 0, \quad x \in [1/2, a].$$

Hence, $h(x) \ge h_1(x) > h_1(1/2) = 0$, for all $x \in [1/2, a]$, and the inequality (1.1) holds for c = 1/2 < b < a < 1.

REFERENCES

- [1] V. CîRTOAJE, On Some Inequalities With Power-Exponential Functions. *Journal of Inequalities in Pure and Applied Mathematics*, Vol. **10**, Iss. 1, Art. 21, 2009.
- [2] A. ZEIKII, V. CîRTOAJE and W. BERNDT, Mathlinks Forum, Nov. 2006, [ONLINE: http: //www.mathlinks.ro/Forum/viewtopic.php?t=118722].