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1. INTRODUCTION

In [1, 2] several results about inequalities for power-exponential functions were introduced
and proved. In particular, in [1], the following inequality

a2a + b2b + c2c ≥ a2b + b2c + c2a,(1.1)

for a, b, c ∈ R+ was presented as a conjecture. Thus, the goal of the present paper is to give a
proof of (1.1). More precisely, we analyze (1.1) and prove the following theorem:

Theorem 1.1. The inequality (1.1) holds for all positive real numbers a, b and c.

The proof of Theorem 1.1 is self-contained. However, for completeness of the discussion
given below, we recall a result of [1], which play an important role in the elaboration elaboration
of the arguments to prove Theorem 1.1.

Theorem 1.2. The inequality a2a + b2b ≥ a2b + b2a, holds for all positive real numbers a and b.

The paper is organized as follows. In section 2 we introduce the notation and a preliminary
result. In section 3 we present a complete proof of Theorem 1.1. In section 4 we prove the
Theorem 1.1 for c = 1/2 < b < a < 1, in a different way.

2. PRELIMINARIES AND NOTATION

Let us begin by introducing and proving a useful proposition.

Proposition 2.1. Consider s ∈ R+ with s 6= 1 and f, g : R+ → R defined as follows

f(x) = xs − x− ys + y, and g(x) =

 e− ln(x)/(x−1), x 6∈ {0, 1},
e−1, x = 1.
0, x = 0.

Then, the following properties are satisfied
(i) f(y) = 0 and f(0) = f(1) = −ys + y.

(ii) If s > 1, f is strictly increasing on ]g(s),∞[ and strictly decreasing on ]0, g(s)[.
(iii) If s ∈]0, 1[, f is strictly decreasing on ]g(s),∞[ and strictly increasing on ]0, g(s)[.
(iv) g is continuous on R+ ∪ {0} and strictly increasing on R+. Furthermore y = 1 is a

horizontal asymptote of y = g(x).

Proof. (i). We use the definition of f. Then f(y) = ys − y − ys + y = 0 and f(0) = f(1) =
−ys + y.

(ii)-(iii). Differentiating f , we have that f ′(x) = sxs−1 − 1 and we deduce the enunciated
property, since f ′(x) = 0 for x = e− ln(s)/(s−1) = g(s) and

f ′(x)


is positive on ]g(s),∞[, for s ∈]1,∞[;
is negative on ]0, g(s)[, for s ∈]1,∞[;
is negative on ]g(s),∞[, for s ∈]0, 1[ and
is positive on ]0, g(s)[, for s ∈]0, 1[.

(iv). We obtain the continuity of g by construction and the monotonic behavior as a conse-
quence of

g′(x) =
−x+ 1 + x ln(x)

x(x− 1)2
g(x) > 0, for x 6= 1.

We notice that g(x)→ 1 when x→ +∞. Thus y = 1 is a horizontal asymptote of y = g(x).

If a, b, c are three positive real numbers, we have the following six cases
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(a1) a > max{b, c} > 0,
(a2) b > max{a, c} > 0,

(a3) c > max{a, b} > 0,
(a4) a = b = c,

(a5) a = b 6= c,
(a6) a 6= b = c.

We can separate each of this three first alternatives into two cases. For instance, the first alterna-
tive is equivalent to a ≥ 1 and a > max{b, c} > 0 or 1 > a ≥ max{b, c} > 0. Considering this
observation and for clarity in the proof of Theorem 1.1, we introduce the following set notation

R3
+ = {(x, y, z) ∈ R3 / x > 0, y > 0 and z > 0}

E1 =
{
(x, y, z) ∈ R3

+ / x = y = z or x = y 6= z or x 6= y = z
}
,

E+
a =

{
(x, y, z) ∈ R3

+ / a ≥ 1 and a > max{b, c}
}
,

E−a =
{
(x, y, z) ∈ R3

+ / 1 > a > max{b, c}
}
,

E+
b =

{
(x, y, z) ∈ R3

+ / b ≥ 1 and b > max{a, c}
}
,

E−b =
{
(x, y, z) ∈ R3

+ / 1 > b > max{a, c}
}
,

E+
c =

{
(x, y, z) ∈ R3

+ / c ≥ 1 and c > max{a, b}
}

and

E−c =
{
(x, y, z) ∈ R3

+ / 1 > c > max{a, b}
}
.

We note that the family
{
E1,E+

a ,E−a ,E+
b ,E

−
b ,E+

c ,E−c
}

is a set partition of R3
+.

3. PROOF OF THEOREM 1.1

We present the proof of Theorem 1.1 by analyzing three cases.

3.1. Case (a, b, c) ∈ E1. This special case is a direct consequence of Theorem 1.2.

3.2. Case (a, b, c) ∈ E+
a ∪ E+

b ∪ E+
c . If (a, b, c) ∈ E+

a , we apply the Theorem 1.2 and propo-
sition 2.1 as follows. We select x = a2b, y = c2b and s = a/b, the monotonic behavior and
properties of function f , defined on proposition 2.1, implies that

a2a + c2b > a2b + c2a,(3.1)

since x > y, x > 1 and s > 1. The corresponding proof of (3.1) needs the distinction of two
cases: y > 1 and y < 1. If y > 1, then y ∈ ]g(s),∞[, so f is strictly increasing and x > y
implies (3.1). For y < 1, we note that −ys + y ≥ 0 since s > 1 and 1 ∈]g(s),∞[, then the
assumption x > 1 implies that f(x) > f(1) = −ys + y ≥ 0 = f(y) and (3.1) is again true for
this subcase. Moreover, by Theorem 1.2, we recall that the inequality

c2c + b2b > b2c + c2b,(3.2)

holds, for all positive real numbers b and c. Adding (3.1) and (3.2) we deduce (1.1).
The proof for (a, b, c) ∈ E+

b ∪ E+
c is similar to the case (a, b, c) ∈ E+

a and we omit the
details. For (a, b, c) ∈ E+

b we choose x = b2c, y = c2c and s = b/c. If (a, b, c) ∈ E+
c we select

x = c2a, y = b2a and s = c/a.
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3.3. Case (a, b, c) ∈ E−a ∪ E−b ∪ E−c . Let us assume that (a, b, c) ∈ E−a . We distinguish two
subcases: c < b < a and b < c < a. In first time, if c < b < a, we apply the function f (see
proposition 2.1) with x = b2c, y = c2c and s = a/c for c < 1/2 to prove

b2a + c2c > b2c + c2a(3.3)

and with x = c2a, y = a2a and s = b/a for c ≥ 1/2 to deduce (3.1). Indeed, if c < 1/2, we
notice that s > 1, c2c > c and

c < a ⇒ 2c− a < c ⇒ caac > c2c ⇒ c > e−c ln(a/c)/(a−c) = g(s),(3.4)

i.e. x > y > c > g(s), then the strictly increasing behavior of f on ]g(s),∞[, implies the
inequality (3.5); else if c > 1/2, we have that s < 1 and

c < b < a < 1 ⇒ c2ab < c2ba ⇒ c2a > e−b ln(b/a)/(b−a) = g(s),(3.5)

i.e. y > x > g(s), then the strictly decreasing behavior of f on ]g(s),∞[, implies the inequality
(3.1). We observe that, by Theorem 1.2, the inequalities a2a + b2b > a2b + b2a and b2b + c2c >
b2c + c2b holds, for all positive real numbers a, b and c. Adding a2a + b2b > a2b + b2a with (3.5)
and b2b + c2c > b2c + c2b with (3.1), we obtain (1.1) for c < 1/2 and c ≥ 1/2, respectively.
Thus, the inequality (1.1) holds for 0 < c < b < a < 1, as desired. Secondarily, if b < c < a,
we proceed in a similar form, selecting x = a2b, y = b2b and s = c/b for b ≥ 1/2, to prove (3.1)
and x = a2b, y = c2b and s = a/b for b ≥ 1/2, to deduce

a2c + b2b > a2b + b2c.(3.6)

In the case of b < 1/2, if proceed in the same manner to (3.6), we get that b > g(s), then
x > y > b > g(s) and s > 1 implies the strictly increasing behavior of f on ]g(s),∞[, which
leads to (3.1). Adding the inequality (3.1) with (3.2) we obtain (1.1). Meanwhile, for b ≥ 1/2
we note the function m : [b, 1[→ R defined by m(x) = xb2x − b2b+1 satisfies the following
properties

m(b) = 0, m(1) = b(b− b2b) > 0,

m has a unique maximum on [b, 1[ at xmax =
−1
2 ln b

≥ 1

2 ln 2
≈ 0.61,

then m(x) ≥ 0 for x ∈ [b, 1[. In particular for x = c, we have that m(c) = cb2c − b2b+1 ≥ 0
which implies b2b ≥ g(s) and we follow (3.6) by application of f .

For (a, b, c) ∈ E−b ∪ E−c we can follow line by line the proof of (a, b, c) ∈ E−a . However, we
can obtain a direct proof by apply the result obtained for (a, b, c) ∈ E−a by interchanging the
role of variables. For instance, if (a, b, c) ∈ E−b then (b, a, c) ∈ E−a which implies (1.1).

4. AN ADDITIONAL REMARK

In this section we present another proof for c = 1/2 < b < a < 1. We define h :]1/2, a[→ R
as follows

h(x) = a2a + x2x +
1

2
− a2x − x−

(
1

2

)2a

, x ∈ [1/2, a].

Thus the proof of (1.1) is reduced to prove h(x) ≥ 0 for x ∈ [1/2, a]. An application of
Teorem 1.2 implies the following estimate

h(x) =
[
a2a + x2x − a2x − x2a

]
+ x2a +

1

2
− x−

(
1

2

)2a

≥ x2a +
1

2
− x−

(
1

2

)2a

:= h1(x), x ∈ [1/2, a].

AJMAA, Vol. 9, No. 1, Art. 3, pp. 1-5, 2012 AJMAA

http://ajmaa.org


ON THE INEQUALITY a2a + b2b + c2c ≥ a2b + b2c + c2a 5

We note that h1 is an increasing function on [1/2, a]. In fact, because x2a−1 is strictly increasing
and 4a is convex on [1/2, 1], we have

h′1(x) = 2ax2a−1 − 1 > 2a

(
1

2

)2a−1

− 1 =
4a− 4a

4a
> 0, x ∈ [1/2, a].

Hence, h(x) ≥ h1(x) > h1(1/2) = 0, for all x ∈ [1/2, a], and the inequality (1.1) holds for
c = 1/2 < b < a < 1.
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