

OPTIMAL CONDITIONS USING MULTI-VALUED G-PREŠIĆ TYPE MAPPING

DEB SARKAR, RAMAKANT BHARDWAJ, VANDANA RATHORE AND PULAK KONAR

Received 8 November, 2023; accepted 8 February, 2024; published 8 March, 2024.

DEPARTMENT OF MATHEMATICS, AMITY UNIVERSITY, KADAMPUKUR, 24PGS(N), KOLKATA, WEST BENGAL, 700135, INDIA. debsarkar1996@gmail.com

DEPARTMENT OF MATHEMATICS, AMITY UNIVERSITY, KADAMPUKUR, 24PGS(N), KOLKATA, WEST BENGAL, 700135, INDIA. drrkbhardwaj100@gmail.com

School of Engineering and Technology, Jagran Lakecity University, Bhopal, MP-462044, India.

drvandana@jlu.edu.in

DEPARTMENT OF MATHEMATICS, VIT UNIVERSITY, CHENNAI, TAMIL NADU-600127, INDIA. pulakkonar@gmail.com

ABSTRACT. In the present paper, some best proximity results have been presented using the concept of \mathbb{G} -Prešić type multi-valued mapping. These results are the extensions of Prešić's theorem in the non-self mapping. A suitable example has also been given. Here, some applications are presented in θ -chainable space and ordered metric space.

Key words and phrases: Best proximity point; Multi-valued mappping; Fixed point.

2010 Mathematics Subject Classification. 47H10, 54H10, 54H25, 41A50, 46TXX...

ISSN (electronic): 1449-5910

 $^{\ \, \}textcircled{\text{c}}$ 2024 Austral Internet Publishing. All rights reserved.

1. Introduction

In the year 1922, S. Banach[2] introduced the fixed point theory. This theory plays a significant role in non-linear analysis. Banach presented his famous Banach Contraction Principle by which he threw the light on the concept of fixed point. Afterthat several other mathematicians [7], [8], [4] extended and presented their ideas about this concept. In 1965, Prešić [10], [11] generalised the Banach's idea into product spaces and presented some results on fixed point. He proved the following:

Theorem 1.1 ([10]). Assume that $(\mathbb{Y}, \mathfrak{F})$ is a complete metric space and $\mathfrak{k} \geq 1$ such that $\mathfrak{k} \in \mathbb{N}$. Suppose, $\mathbb{F} : \mathbb{Y}^{\mathfrak{k}} \to \mathbb{Y}$ be a mapping satisfying the following condition:

$$\Im(\mathbb{F}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\mathfrak{k}}),\mathbb{F}(\mathbf{u}_2,\mathbf{u}_3,\cdots,\mathbf{u}_{\mathfrak{k}+1}))<\sum_{i=1}^{\mathfrak{k}}\gamma_i\Im(\mathbf{u}_i,\mathbf{u}_{i+1})$$

for each $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{\ell}, \mathbf{u}_{\ell+1} \in \mathbb{Y}$, where $\gamma_1, \gamma_2, \dots, \gamma_{\ell}$ are non-negative constants such that $\sum_{i=1}^{\ell} \gamma_i < 1$. Then, there exists a unique fixed point in \mathbb{Y} . Again, if $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{\ell}$ are some points in \mathbb{Y} and for $n \in \mathbb{N}$, $\mathbf{u}_{n+\ell} = \mathbb{F}(\mathbf{u}_n, \mathbf{u}_{n+1}, \dots, \mathbf{u}_{n+\ell-1})$. Then, $\{\mathbf{u}_n\}$ converges to the fixed point of \mathbb{F} .

The work of Prešić can further be extended by several famous mathematicians [13], [14], [3], [6], [12] in different ways and different generalised spaces. In 1969, Nadlar [9] extended the concept of Banach's principle into multi-valued mapping. He used the Pompeiu-Hausdorff metric to present his result.

Suppose, C be a non-empty subset of a metric space $(\mathbb{Y}, \mathfrak{F})$. Now, for $\mathfrak{p} \in \mathbb{Y}$,

$$\Im(\mathfrak{p},\mathcal{C}) = inf\{\Im(\mathfrak{p},\mathfrak{g}) : \mathfrak{g} \in \mathcal{C}\}$$

Assume that $CB(\mathbb{Y})$ be the set of all non-empty closed and bounded subsets of \mathbb{Y} . Now, for $\mathcal{C}, \mathcal{D} \in CB(\mathbb{Y})$,

$$\delta(\mathcal{C}, \mathcal{D}) = \sup \{ \Im(\mathfrak{p}, \mathcal{D}) : \mathfrak{p} \in \mathcal{C} \}$$

$$H(\mathcal{C}, \mathcal{D}) = \max \{ \delta(\mathcal{C}, \mathcal{D}), \delta(\mathcal{D}, \mathcal{C}) \}$$

The metric H is called Pompeiu-Hausdorff metric. Nadlar stated the following:

Theorem 1.2 ([9]). Suppose, $(\mathbb{Y}, \mathfrak{F})$ be a complete metric space and there is a mapping \mathbb{F} : $\mathbb{Y} \to CB(\mathbb{Y})$ such that for all $\mathfrak{p}, \mathfrak{g} \in \mathbb{Y}$,

$$H(\mathbb{F}(\mathfrak{p}), \mathbb{F}(\mathfrak{g})) < \rho \Im(\mathfrak{p}, \mathfrak{g})$$

where, $\rho \in [0, 1)$. Then, \mathbb{F} has a fixed point in \mathbb{Y} .

In the year 2006, Eldred et al. [5] first revealed the concept of best proximity point. In 2019, Usman Ali et al. [1] presented their ideas on the Prešić-type single valued non-self mapping. In the present paper, two best proximity results are shown using Pompeiu-Hausdorff metric where Prešić-type multivalued non-self mapping has been taken. Here, a suitable example has also been given in support of the theorem. Also, some consequences and application parts are given in θ -chainable space and ordered metric space.

2. PRELIMINARIES

Suppose, $(\mathbb{Y}, \mathfrak{F})$ be a metric space. Here, we consider a graph \mathbb{G} such that $\mathbb{V}(\mathbb{G}) = \mathbb{Y}$ and $\mathbb{E}(\mathbb{G})$ be the set of all edges containing all loops. Here, we assume that \mathbb{G} has no parallel edges. We can denote \mathbb{G} as $(\mathbb{V}(\mathbb{G}), \mathbb{E}(\mathbb{G}))$.

Suppose, \mathbb{C} and \mathbb{D} are two non-empty subsets of a metric space $(\mathbb{Y}, \mathfrak{F})$ and Δ denote the diagonal of the cartesian product $\mathbb{Y} \times \mathbb{Y}$. Here, we use the following notations:

$$\begin{split} \Im(\mathbb{C},\mathbb{D}) &= \{\inf \, \Im(\mathbf{u},\mathbf{v}) : \mathbf{u} \in \mathbb{C}, \mathbf{v} \in \mathbb{D}\} \\ \mathbb{C}_0 &= \{\mathbf{u} \in \mathbb{C} : \Im(\mathbf{u},\mathbf{v}) = \Im(\mathbb{C},\mathbb{D}) \text{ for some } \mathbf{v} \in \mathbb{D}\} \\ \mathbb{D}_0 &= \{\mathbf{v} \in \mathbb{D} : \Im(\mathbf{u},\mathbf{v}) = \Im(\mathbb{C},\mathbb{D}) \text{ for some } \mathbf{u} \in \mathbb{C}\} \end{split}$$

Here, we give the following definition which is useful to our theorems.

Definition 2.1. (Best Proximity Point): Suppose, $(\mathbb{Y}, \mathfrak{F})$ be a metric space and \mathbb{C}, \mathbb{D} be two non-empty subsets of \mathbb{Y} . An element $\mathbf{u}_* \in \mathbb{C}$ is said to be a best proximity point of the mapping $\mathbb{F}: \mathbb{C} \longrightarrow \mathbb{D}$ if $\mathfrak{F}(\mathbf{u}_*, \mathbb{F}(\mathbf{u}_*)) = \mathfrak{F}(\mathbb{C}, \mathbb{D})$.

Definition 2.2. (**P-Property**): Let (\mathbb{C}, \mathbb{D}) be a pair of non-empty subsets of a metric space $(\mathbb{Y}, \mathfrak{F})$ such that \mathbb{C}_0 is non-empty. Then, the pair (\mathbb{C}, \mathbb{D}) is said to have P-property iff $\mathfrak{F}(\mathbf{u}_1, \mathbf{v}_1) = \mathfrak{F}(\mathbf{u}_2, \mathbf{v}_2) = \mathfrak{F}(\mathbb{C}, \mathbb{D})$ implies that $\mathfrak{F}(\mathbf{u}_1, \mathbf{u}_2) = \mathfrak{F}(\mathbf{v}_1, \mathbf{v}_2)$ where $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{C}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{D}$.

3. MAIN RESULTS

Definition 3.1. Let, Ξ , Υ be the family of all functions φ , ϖ : $[0, \infty) \to [0, \infty)$ such that i) φ , ϖ are increasing.

- ii) Both must attain continuity.
- iii) $\varphi(0) = 0$, $\varphi(\mathfrak{t}) < \mathfrak{t}$ for each $\mathfrak{t} \in [0, \infty)$.

Definition 3.2. Suppose, \mathbb{C} and \mathbb{D} are two non-empty closed subsets of a metric space $(\mathbb{Y}, \mathfrak{F})$ which is complete such that $\mathbb{C}_0 \neq \emptyset$ and $\mathfrak{k} \geq 1$ such that $\mathfrak{k} \in \mathbb{N}$. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to CB(\mathbb{D})$ be a mapping. Assume that for every path $\{\mathbf{u}_i\}_{i=1}^{\mathfrak{k}+1}$ of $\mathfrak{k}+1$ vertices in \mathbb{G} , the following conditions are satisfied:

i) There exist non-negative constants γ_i s such that $\sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$ and

$$H(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})) \leq \sum_{i=1}^{\mathfrak{k}} (\gamma_i \varphi(\Im(\mathbf{u}_i, \mathbf{u}_{i+1}))) - \varpi(\max{\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}})$$

ii) If
$$\mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})$$
 and $\mathbb{F}(\mathbf{u}_3, \mathbf{u}_4, \cdots, \mathbf{u}_{\mathfrak{k}+2}) \subseteq \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})$ are such that $\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) < max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}$, then $(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) \in E(\mathbb{G})$.

Theorem 3.1. Let us assume that \mathbb{C} and \mathbb{D} are two non-empty closed subsets of a complete metric space (\mathbb{Y}, \mathbb{F}) such that $\mathbb{C}_0 \neq \emptyset$ and $\mathfrak{k} \geq 1$ such that $\mathfrak{k} \in \mathbb{N}$. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to CB(\mathbb{D})$ be a mapping satisfying the above two conditions of the Definition(3.2). Suppose that the following assertions hold:

i) There exists a path $\{\mathbf{u}_i\}_{i=1}^{\mathfrak{k}+1}$ of $\mathfrak{k}+1$ vertices in \mathbb{G} such that $\mathbb{F}(\mathbf{u}_2,\mathbf{u}_3,\cdots,\mathbf{u}_{\mathfrak{k}+1})\subseteq \mathbb{F}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\mathfrak{k}})$. ii) $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}})\subseteq \mathbb{D}_0$ and the pair (\mathbb{C},\mathbb{D}) satisfies the property such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D}) = \Im(\mathbf{u}_{\mathfrak{k}+2}, \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}))$$

$$\Rightarrow \Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) \leq H(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}))$$

iii) There exist $(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_\mathfrak{k})\in\mathbb{C}_0^\mathfrak{k}$ and $\mathbf{u}_{\mathfrak{k}+1}\in\mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1},\mathbb{F}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\mathfrak{k}}))=\mathit{dist}(\mathbb{C},\mathbb{D})$$

iv) \mathbb{F} *is continuous.*

Then, \mathbb{F} has a best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Proof. From condition (iii), there exist $(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell}) \in \mathbb{C}_0^{\ell}$ and $\mathbf{u}_{\ell+1} \in \mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D})$$

Since, $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}})\subseteq\mathbb{D}_0$, there exist $(\mathbf{u}_2,\mathbf{u}_3,\cdots,\mathbf{u}_{\mathfrak{k}+1})\in\mathbb{C}_0^{\mathfrak{k}}$ and $\mathbf{u}_{\mathfrak{k}+2}\in\mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\ell+2}, \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\ell+1})) = dist(\mathbb{C}, \mathbb{D})$$

Thus, continuing in this way, by mathematical induction, we get,

$$\Im(\mathbf{u}_{n+\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D})$$

Again, since the pair (\mathbb{C}, \mathbb{D}) satisfies condition (ii), then we can write from equations (3.1) and (3.2),

$$\Im(\mathbf{u}_{\ell+1},\mathbf{u}_{\ell+2}) \leq H(\mathbb{F}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\ell}),\mathbb{F}(\mathbf{u}_2,\mathbf{u}_3,\cdots,\mathbf{u}_{\ell+1}))$$

Let, $\gamma = \sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$. Suppose that there is a path $\{\mathbf{u}_i\}_{i=1}^{\mathfrak{k}+1}$ of $\mathfrak{k}+1$ vertices in \mathbb{G} such that $\mathbb{F}(\mathbf{u}_2,\mathbf{u}_3,\cdots,\mathbf{u}_{\mathfrak{k}+1})\subseteq \mathbb{F}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\mathfrak{k}})$.

Since, $\mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}) \in CB(\mathbb{D})$, there exists $\mathbb{F}(\mathbf{u}_3, \mathbf{u}_4, \cdots, \mathbf{u}_{\mathfrak{k}+2}) \subseteq \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})$ such that

$$\Im(\mathbf{u}_{\ell+1}, \mathbf{u}_{\ell+2}) \leq H(\mathbb{F}(\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{\ell}), \mathbb{F}(\mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{\ell+1}))
\leq \sum_{i=1}^{\ell} (\gamma_{i} \varphi(\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}))) - \varpi(\max\{\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \ell\})
\leq \sum_{i=1}^{\ell} (\gamma_{i} \varphi(\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1})))
< \sum_{i=1}^{\ell} (\gamma_{i} \Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}))
\leq \gamma \max\{\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \ell\}
< \max\{\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \ell\}$$

Hence, $(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) \in E(\mathbb{G})$

Similarly, as $\mathbb{F}(\mathbf{u}_3, \mathbf{u}_4, \cdots, \mathbf{u}_{\mathfrak{k}+2}) \in CB(\mathbb{D})$, there exists $\mathbb{F}(\mathbf{u}_4, \mathbf{u}_5, \cdots, \mathbf{u}_{\mathfrak{k}+3}) \subseteq \mathbb{F}(\mathbf{u}_3, \mathbf{u}_4, \cdots, \mathbf{u}_{\mathfrak{k}+2})$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+2}, \mathbf{u}_{\mathfrak{k}+3}) < \gamma \max\{\Im(\mathbf{u}_{i+1}, \mathbf{u}_{i+2}) : i = 1, 2, \cdots, \mathfrak{k}\}$$
$$< \max\{\Im(\mathbf{u}_{i+1}, \mathbf{u}_{i+2}) : i = 1, 2, \cdots, \mathfrak{k}\}$$

So, $(\mathbf{u}_{\mathfrak{k}+2}, \mathbf{u}_{\mathfrak{k}+3}) \in E(\mathbb{G})$

Proceeding this way, as $\mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}}) \in CB(\mathbb{D})$, there exists $\mathbb{F}(\mathbf{u}_{n+2}, \mathbf{u}_{n+3}, \cdots, \mathbf{u}_{n+\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}})$ such that

$$\Im(\mathbf{u}_{n+\mathfrak{k}}, \mathbf{u}_{n+\mathfrak{k}+1}) < \gamma \max\{\Im(\mathbf{u}_{i+n-1}, \mathbf{u}_{i+n}) : i = 1, 2, \cdots, \mathfrak{k}\}$$
$$< \max\{\Im(\mathbf{u}_{i+n-1}, \mathbf{u}_{i+n}) : i = 1, 2, \cdots, \mathfrak{k}\}$$

Hence, $(\mathbf{u}_{n+\mathfrak{k}}, \mathbf{u}_{n+\mathfrak{k}+1}) \in E(\mathbb{G})$ for all $n \in \mathbb{N}$

Now, we will prove that $\{\mathbf{u}_n\}$ is a Cauchy sequence.

Let,

$$\eta = max \left\{ \frac{\Im(\mathbf{u}_i, \mathbf{u}_{i+1})}{\zeta^i} : i = 1, 2, \cdots, \mathfrak{k} \right\}$$

where, $\zeta = \gamma^{\frac{1}{\mathfrak{k}}}$

Now, by mathematical induction we have to prove that

(3.4)
$$\Im(\mathbf{u}_n, \mathbf{u}_{n+1}) \le \eta \zeta^n \quad \forall n \in \mathbf{N}$$

Let, the \mathfrak{k} inequalities be $\Im(\mathbf{u}_n, \mathbf{u}_{n+1}) \leq \eta \zeta^n, \Im(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}) \leq \eta \zeta^{n+1}, \cdots, \Im(\mathbf{u}_{n+\mathfrak{k}-1}, \mathbf{u}_{n+\mathfrak{k}}) \leq \eta \zeta^{n+\mathfrak{k}-1}$

Now,

$$\Im(\mathbf{u}_{n+\mathfrak{k}}, \mathbf{u}_{n+\mathfrak{k}+1}) < \gamma \max \{\Im(\mathbf{u}_{i+n-1}, \mathbf{u}_{i+n}) : i = 1, 2, \cdots, \mathfrak{k}\}$$

$$\leq \gamma \max \{\eta \zeta^{i+n-1} : i = 1, 2, \cdots, \mathfrak{k}\}$$

$$\leq \gamma \eta \zeta^{n} \quad [As \quad \zeta = \gamma^{1/\mathfrak{k}} < 1]$$

$$= \eta \zeta^{n+\mathfrak{k}}$$

Thus, the proof of (3.4) is complete.

Now, for $m, n \in \mathbb{N}$ and m > n, using (3.4) we get,

$$\Im(\mathbf{u}_n, \mathbf{u}_m) \le \Im(\mathbf{u}_n, \mathbf{u}_{n+1}) + \Im(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}) + \dots + \Im(\mathbf{u}_{m-1}, \mathbf{u}_m)$$
$$< \eta \zeta^n + \eta \zeta^{n+1} + \dots + \eta \zeta^{m-1}$$

Since, $\zeta = \gamma^{1/\mathfrak{k}} < 1$, we conclude from the above inequality,

$$\lim_{m,n\to\infty}\Im(\mathbf{u}_n,\mathbf{u}_m)=0$$

Hence, $\{\mathbf{u}_n\}$ is a Cauchy sequence.

Since, (\mathbb{Y}, \Im) is complete and \mathbb{C} is closed, so the sequence $\{\mathbf{u}_n\}$ converges to a point $\mathbf{u}_* \in \mathbb{C}$. As, \mathbb{F} is continuous,

$$\mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\ell}) \to \mathbb{F}(\mathbf{u}_*, \mathbf{u}_*, \cdots, \mathbf{u}_*) \quad as \quad n \to \infty$$

The continuity of the metric implies that

$$dist(\mathbb{C},\mathbb{D}) = \Im(\mathbf{u}_{n+\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}})) \to \Im(\mathbf{u}_*, \mathbb{F}(\mathbf{u}_*, \mathbf{u}_*, \cdots, \mathbf{u}_*))$$

Hence.

$$\Im(\mathbf{u}_*, \mathbb{F}(\mathbf{u}_*, \mathbf{u}_*, \cdots, \mathbf{u}_*)) = dist(\mathbb{C}, \mathbb{D})$$

Therefore, \mathbb{F} has a best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Theorem 3.2. Suppose, \mathbb{C} and \mathbb{D} are two non-empty closed subsets of a complete metric space (\mathbb{Y}, \mathbb{F}) such that $\mathbb{C}_0 \neq \emptyset$ and $\mathfrak{k} \geq 1$ such that $\mathfrak{k} \in \mathbb{N}$. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to CB(\mathbb{D})$ be a mapping satisfying the above two conditions of the Definition(3.2). Suppose that the following assertions hold:

i) There exists a path $\{\mathbf{u}_i\}_{i=1}^{\mathfrak{k}+1}$ of $\mathfrak{k}+1$ vertices in \mathbb{G} such that $\mathbb{F}(\mathbf{u}_2,\mathbf{u}_3,\cdots,\mathbf{u}_{\mathfrak{k}+1})\subseteq \mathbb{F}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\mathfrak{k}})$. ii) $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}})\subseteq \mathbb{D}_0$ and the pair (\mathbb{C},\mathbb{D}) satisfies the property such that

$$\Im(\mathbf{u}_{\ell+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell})) = dist(\mathbb{C}, \mathbb{D}) = \Im(\mathbf{u}_{\ell+2}, \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\ell+1}))$$

$$\Rightarrow \Im(\mathbf{u}_{\ell+1}, \mathbf{u}_{\ell+2}) \leq H(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\ell+1}))$$

iii) There exist $(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}) \in \mathbb{C}_0^{\mathfrak{k}}$ and $\mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D})$$

iv) For any termwise connected sequence $\{\mathbf{u}_n\} \in \mathbb{C}$ if $\mathbf{u}_n \to \mathbf{u}_*$ and $\mathbb{F}(\mathbf{u}_{n+2}, \mathbf{u}_{n+3}, \cdots, \mathbf{u}_{n+\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}})$ for all $n \in \mathbb{N}$, then there exists a subsequence $\{\mathbf{u}_{n(r)}\}$ such that $(\mathbf{u}_{n(r)}, \mathbf{u}_*) \in E(\mathbb{G})$ for all $r \in \mathbb{N}$.

Then, \mathbb{F} has a best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Proof. From the proof of Theorem(3.1), there exists a Cauchy sequence $\{\mathbf{u}_n\} \in \mathbb{C}$ such that

$$\Im(\mathbf{u}_{n+\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D}) \quad \forall \quad n \in \mathbb{N}$$

and $\mathbf{u}_n \to \mathbf{u}_*$ as $n \to \infty$ with $\mathbf{u}_* \in \mathbb{C}$.

From the condition (iv), there exists a subsequence $\{\mathbf{u}_{n(r)}\}$ of $\{\mathbf{u}_n\}$ such that $(\mathbf{u}_{n(r)}, \mathbf{u}_*) \in E(\mathbb{G})$. Since, for each $n \in \mathbb{N}$, we have $(\mathbf{u}_n, \mathbf{u}_{n+1}) \in E(\mathbb{G})$ and $\mathbb{F}(\mathbf{u}_{n+2}, \mathbf{u}_{n+3}, \cdots, \mathbf{u}_{n+\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_{n+1}, \mathbf{u}_{n+2}, \cdots, \mathbf{u}_{n+\mathfrak{k}})$, so for any $r \in \mathbb{N}$, we obtain,

$$\begin{split} &\Im(\mathbf{u}_{*},\mathbb{F}(\mathbf{u}_{*},\mathbf{u}_{*},\cdots,\mathbf{u}_{*}))\\ &\leq \Im(\mathbf{u}_{*},\mathbf{u}_{n(r)+\mathfrak{k}+1}) + \Im(\mathbf{u}_{n(r)+\mathfrak{k}+1},\mathbb{F}(\mathbf{u}_{n(r)+1},\mathbf{u}_{n(r)+2},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}}))\\ &+ H(\mathbb{F}(\mathbf{u}_{n(r)+1},\mathbf{u}_{n(r)+2},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}}),\mathbb{F}(\mathbf{u}_{*},\mathbf{u}_{*},\cdots,\mathbf{u}_{*}))\\ &= \Im(\mathbf{u}_{*},\mathbf{u}_{n(r)+\mathfrak{k}+1}) + dist(\mathbb{C},\mathbb{D})\\ &+ H(\mathbb{F}(\mathbf{u}_{n(r)+1},\mathbf{u}_{n(r)+2},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}}),\mathbb{F}(\mathbf{u}_{*},\mathbf{u}_{*},\cdots,\mathbf{u}_{*}))\\ &\leq \Im(\mathbf{u}_{*},\mathbf{u}_{n(r)+\mathfrak{k}+1}) + dist(\mathbb{C},\mathbb{D})\\ &+ H(\mathbb{F}(\mathbf{u}_{n(r)+1},\mathbf{u}_{n(r)+2},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}}),\mathbb{F}(\mathbf{u}_{n(r)+2},\mathbf{u}_{n(r)+3},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*}))\\ &+ H(\mathbb{F}(\mathbf{u}_{n(r)+2},\mathbf{u}_{n(r)+3},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*}),\mathbb{F}(\mathbf{u}_{n(r)+3},\mathbf{u}_{n(r)+4},\cdots,\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*},\mathbf{u}_{*}))\\ &+ \dots + H(\mathbb{F}(\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*},\cdots,\mathbf{u}_{*}),\mathbb{F}(\mathbf{u}_{*},\mathbf{u}_{*},\cdots,\mathbf{u}_{*}))\\ &< \Im(\mathbf{u}_{*},\mathbf{u}_{n(r)+\mathfrak{k}+1}) + dist(\mathbb{C},\mathbb{D})\\ &+ \{\gamma_{1}\Im(\mathbf{u}_{n(r)+1},\mathbf{u}_{n(r)+2}) + \gamma_{2}\Im(\mathbf{u}_{n(r)+2},\mathbf{u}_{n(r)+3}) + \dots + \gamma_{\mathfrak{k}}\Im(\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*})\}\\ &+ \{\gamma_{1}\Im(\mathbf{u}_{n(r)+2},\mathbf{u}_{n(r)+3}) + \gamma_{2}\Im(\mathbf{u}_{n(r)+3},\mathbf{u}_{n(r)+4}) + \dots + \gamma_{\mathfrak{k}-1}\Im(\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*})\}\\ &+ \dots + \gamma_{1}\Im(\mathbf{u}_{n(r)+\mathfrak{k}},\mathbf{u}_{*}) \end{cases}$$

Letting $r \to \infty$ in the above inequality, we get,

$$\Im(\mathbf{u}_*, \mathbb{F}(\mathbf{u}_*, \mathbf{u}_*, \cdots, \mathbf{u}_*)) = dist(\mathbb{C}, \mathbb{D})$$

Therefore, \mathbb{F} has a best proximity point i.e. $\mathbf{u}_* \in \mathbb{C}^{\mathfrak{k}}$.

4. ILLUSTRATION

Example 4.1. Let, $\mathbb{Y} = \mathbf{R}$ be a metric space endowed with the metric $\Im(\mathbf{u}, \mathbf{v}) = |\mathbf{u} - \mathbf{v}|$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{C}$. Let, $\mathbb{C} = [-1, -\frac{1}{2}]$ and $\mathbb{D} = [0, 1]$. Now, we define a graph $V(\mathbb{G}) = \mathbb{Y}$, $E(\mathbb{G}) = \Delta \cup \{(-1, -\frac{\mathbf{n}+1}{\mathbf{n}+2}), (-\frac{\mathbf{n}+1}{\mathbf{n}+2}, -\frac{\mathbf{n}}{\mathbf{n}+1}) : \mathbf{n} \in \mathbf{N}\}$. Then, (\mathbb{Y}, \Im) is a complete metric space. We define a mapping, $\mathbb{F} : \mathbb{C} \times \mathbb{C} \to CB(\mathbb{D})$ such that

$$\mathbb{F}(\mathbf{a}, \mathbf{b}) = \begin{cases} \{0\} & \mathbf{a} = \mathbf{b} \in \mathbb{C} \\ \left[0, \frac{1}{\mathbf{n}+3}\right] & \mathbf{a} = -\frac{\mathbf{n}}{\mathbf{n}+1}, \mathbf{b} = -\frac{\mathbf{n}+1}{\mathbf{n}+2} & \mathbf{n} \in \mathbf{N} \end{cases}$$

$$\{1\} & otherwise$$

Then, $\mathbb F$ satisfies the weak inequality used in Theorem(3.1) with $\gamma_1=\frac{1}{3}$, $\gamma_2=\frac{79}{120}$ and $\varphi(\mathfrak t)=\frac{99\mathfrak t}{100},\ \varpi(\mathfrak t)=\frac{\mathfrak t}{1000}$ for all $\mathfrak t\in[0,\infty)$.

 \therefore All the conditions of Theorem(3.1) are satisfied and

$$\Im(-\frac{1}{2}, \mathbb{F}(-\frac{1}{2}, -\frac{1}{2})) = dist(\mathbb{C}, \mathbb{D}) = \frac{1}{2}$$

So, the best proximity point of \mathbb{F} is $-\frac{1}{2}$.

5. Consequences

Corollary 5.1. Let, (\mathbb{C}, \mathbb{D}) be a pair of non-empty closed subsets of a complete metric space (\mathbb{Y}, \mathbb{S}) such that \mathbb{C}_0 is non-empty and \mathfrak{k} be a positive integer. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to \mathbb{D}$ be a mapping such that

$$\Im(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})) \leq \sum_{i=1}^{\mathfrak{k}} (\gamma_i \varphi(\Im(\mathbf{u}_i, \mathbf{u}_{i+1}))) - \varpi(\max{\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}})$$

for all $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell+1} \in \mathbb{C}$, where γ_i are non-negative constants such that $\sum_{i=1}^{\ell} \gamma_i < 1$. Suppose the following assertions hold:

- i) $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}}) \subseteq \mathbb{D}_0$ and the pair (\mathbb{C}, \mathbb{D}) satisfies the P-property.
- ii) There exist $(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}) \in \mathbb{C}_0^{\mathfrak{k}}$ and $\mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = \Im(\mathbb{C}, \mathbb{D})$$

iii) \mathbb{F} is continuous.

Then, \mathbb{F} has a unique best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Corollary 5.2. Assume that (\mathbb{Y}, \mathbb{S}) be a complete metric space such that \mathfrak{k} be a positive integer. Suppose, $\mathbb{F}: \mathbb{Y}^{\mathfrak{k}} \to \mathbb{Y}$ be a continuous mapping such that

$$\begin{split} \Im(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})) &\leq \sum_{i=1}^{\mathfrak{k}} (\gamma_i \varphi(\Im(\mathbf{u}_i, \mathbf{u}_{i+1}))) \\ &- \varpi(\max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}) \end{split}$$

for all $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{Y}$ where $\gamma_i s$ are non-negative constants such that $\sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$. Suppose there exist $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{Y}$ such that $\mathbf{u}_{\mathfrak{k}+1} = \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})$. Thus, \mathbb{F} has a unique fixed point in $\mathbb{Y}^{\mathfrak{k}}$.

6. APPLICATION

We state the following theorem in θ -chainable space [15].

Theorem 6.1. Assume that \mathbb{C} and \mathbb{D} are two non-empty closed subsets of a complete θ -chainable space $(\mathbb{Y}, \mathfrak{F})$ such that $\mathbb{C}_0 \neq \emptyset$ and \mathfrak{k} be a positive integer. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to CB(\mathbb{D})$ be a mapping such that

$$H(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\ell+1})) \leq \sum_{i=1}^{\ell} (\gamma_i \varphi(\Im(\mathbf{u}_i, \mathbf{u}_{i+1}))) - \varpi(\max{\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}})$$

for all $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}$ with $max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \dots, \mathfrak{k}\} < \theta$ where $\gamma_i s$ are non-negative constants such that $\sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$. Suppose that the following assertions hold:

- i) There exist $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}$ such that $max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \dots, \mathfrak{k}\} < \theta$ and $\mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_{\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{\mathfrak{k}}).$
- ii) $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}}) \subseteq \mathbb{D}_0$ and the pair (\mathbb{C}, \mathbb{D}) satisfies the property such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D}) = \Im(\mathbf{u}_{\mathfrak{k}+2}, \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}))$$

$$\Rightarrow \Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) \leq H(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}))$$

iii) There exist $(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}) \in \mathbb{C}_0^{\mathfrak{k}}$ and $\mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D})$$

iv) \mathbb{F} *is continuous.*

Then, \mathbb{F} has a best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Proof. We consider the graph with $\mathbb{V}(\mathbb{G}) = \mathbb{Y}$ and

$$\mathbb{E}(\mathbb{G}) = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{C} \times \mathbb{C} : \Im(\mathbf{u}, \mathbf{v}) < \theta\}$$

Afterthat, we can easily prove this from Theorem(3.1).

Corollary 6.2. Let, (\mathbb{C}, \mathbb{D}) be a pair of non-empty closed subsets of a complete θ -chainable space (\mathbb{Y}, \mathbb{S}) such that \mathbb{C}_0 is non-empty and \mathfrak{k} be a positive integer. Let, $\mathbb{F}: \mathbb{C}^{\mathfrak{k}} \to \mathbb{D}$ be a mapping such that

$$\Im(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})) \leq \sum_{i=1}^{\mathfrak{k}} (\gamma_i \varphi(\Im(\mathbf{u}_i, \mathbf{u}_{i+1}))) - \varpi(\max{\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}})$$

for all $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}$ with $max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\} < \theta$ where $\gamma_i s$ are nonnegative constants such that $\sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$. Suppose that the following assertions hold:

- i) There exist $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}$ such that $\max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\} < \theta$.
- ii) $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}}) \subseteq \mathbb{D}_0$ and the pair (\mathbb{C}, \mathbb{D}) satisfies the P-property.
- iii) There exist $(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}) \in \mathbb{C}_0^{\mathfrak{k}}$ and $\mathbf{u}_{\mathfrak{k}+1} \in \mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = \Im(\mathbb{C}, \mathbb{D})$$

iv) \mathbb{F} *is continuous.*

Then, \mathbb{F} has a unique best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Corollary 6.3. Assume that (\mathbb{Y}, \mathbb{F}) be a complete θ -chainable space such that \mathfrak{t} be a positive integer. Suppose, $\mathbb{F} : \mathbb{Y}^{\mathfrak{t}} \to \mathbb{Y}$ be a continuous mapping such that

$$\Im(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})) \leq \sum_{i=1}^{\mathfrak{k}} (\gamma_i \varphi(\Im(\mathbf{u}_i, \mathbf{u}_{i+1}))) - \varpi(\max{\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}})$$

for all $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{Y}$ with $\max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\} < \theta$ where γ_i s are nonnegative constants such that $\sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$. Suppose there exist $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}+1} \in \mathbb{Y}$ such that $\max\{d(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, k\} < \theta$ and $\mathbf{u}_{\mathfrak{k}+1} = \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})$. Thus, \mathbb{F} has a unique fixed point in $\mathbb{Y}^{\mathfrak{k}}$.

Now, we define the following:

Definition 6.1. Suppose, \mathbb{C} and \mathbb{D} are two non-empty closed subsets of an ordered metric space $(\mathbb{Y}, \Im, \subseteq)$ which is complete such that $\mathbb{C}_0 \neq \emptyset$ and $\mathfrak{k} \geq 1$ such that $\mathfrak{k} \in \mathbb{N}$. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to CB(\mathbb{D})$ be a mapping. Assume that for every non-decreasing sequence $\{\mathbf{u}_i\}_{i=1}^{\mathfrak{k}+1}$ with respect to \subseteq , the following conditions are satisfied:

i) There exist non-negative constants γ_i s such that $\sum_{i=1}^{\mathfrak{k}} \gamma_i < 1$ so that

$$H(\mathbb{F}(\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{\mathfrak{k}}), \mathbb{F}(\mathbf{u}_{2}, \mathbf{u}_{3}, \cdots, \mathbf{u}_{\mathfrak{k}+1})) \leq \sum_{i=1}^{\mathfrak{k}} (\gamma_{i} \varphi(\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}))) - \varpi(\max{\{\Im(\mathbf{u}_{i}, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}})$$

ii) If
$$\mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})$$
 and $\mathbb{F}(\mathbf{u}_3, \mathbf{u}_4, \cdots, \mathbf{u}_{\mathfrak{k}+2}) \subseteq \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1})$ are such that $\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) < max\{\Im(\mathbf{u}_i, \mathbf{u}_{i+1}) : i = 1, 2, \cdots, \mathfrak{k}\}$, then $(\mathbf{u}_{\mathfrak{k}+1}, \mathbf{u}_{\mathfrak{k}+2}) \in E(\mathbb{G})$.

Theorem 6.4. Let us assume that \mathbb{C} and \mathbb{D} are two non-empty closed subsets of a complete ordered metric space $(\mathbb{Y}, \Im, \subseteq)$ such that $\mathbb{C}_0 \neq \emptyset$ and $\mathfrak{k} \geq 1$ such that $\mathfrak{k} \in \mathbb{N}$. Let, $\mathbb{F} : \mathbb{C}^{\mathfrak{k}} \to CB(\mathbb{D})$ be a mapping satisfying the above two conditions of the Definition(6.1). Suppose that the following assertions hold:

- i) There exists a non-decreasing sequence $\{\mathbf{u}_i\}_{i=1}^{\mathfrak{k}+1}$ with respect to \subseteq such that $\mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\mathfrak{k}+1}) \subseteq \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})$.
- ii) $\mathbb{F}(\mathbb{C}_0^{\mathfrak{k}}) \subseteq \mathbb{D}_0$ and the pair (\mathbb{C}, \mathbb{D}) satisfies the property such that

$$\Im(\mathbf{u}_{\ell+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell})) = dist(\mathbb{C}, \mathbb{D}) = \Im(\mathbf{u}_{\ell+2}, \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\ell+1}))$$

$$\Rightarrow \Im(\mathbf{u}_{\ell+1}, \mathbf{u}_{\ell+2}) \leq H(\mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\ell}), \mathbb{F}(\mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_{\ell+1}))$$

iii) There exist $(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{\mathfrak{k}})\in\mathbb{C}_0^{\mathfrak{k}}$ and $\mathbf{u}_{\mathfrak{k}+1}\in\mathbb{C}_0$ such that

$$\Im(\mathbf{u}_{\mathfrak{k}+1}, \mathbb{F}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_{\mathfrak{k}})) = dist(\mathbb{C}, \mathbb{D})$$

iv) \mathbb{F} *is continuous.*

Then, \mathbb{F} has a best proximity point in $\mathbb{C}^{\mathfrak{k}}$.

Proof. Let us consider the graph with $\mathbb{V}(\mathbb{G}) = \mathbb{Y}$ and

$$\mathbb{E}(\mathbb{G}) = \{(\mathbf{u}, \mathbf{v}) \in \mathbb{C} \times \mathbb{C} : \mathbf{u} \subseteq \mathbf{v}\}\$$

Now, we can easily prove this from Theorem(3.1).

ACKNOWLEDGEMENTS

All the authors want to thank to the learned referees for improvement of this paper.

DECLARATIONS

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- [1] M. U. ALI, M. FARHEEN, T. KAMRAN and G. MANIU, Prešić type nonself operators and related best proximity results, *Mathematics*, **7(5)** (2019), 394.
- [2] S. BANACH, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, *Fundamenta mathematicae*, 3, no. 1 (1922), pp. 133-181.
- [3] V. BERINDE and M. PACURAR, Two elementary applications of some Prešić type fixed point theorems, *Creat. Math. Inform*, **20** (2011), pp. 32-42.
- [4] S. K. CHATTERJEA, Fixed-point theorems, *Dokladi na Bolgarskata Akademiya na Naukite*, **25(6)** (1972), pp. 727-+.
- [5] A. A. ELDRED and P. VEERAMANI, Existence and convergence of best proximity points, *Journal of Mathematical Analysis and Applications*, 323, no. **2** (2006), pp. 1001-1006.
- [6] R. GEORGE, K. P. RESHMA and R. RAJAGOPALAN, A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process. *Fixed Point Theory and Applications*, **2011** (2011), pp. 1-8.
- [7] R. KANNAN, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), pp. 71-76.
- [8] R. KANNAN, Some results on fixed points, *The American Mathematical Monthly*, 76, no. **4** (1969), pp. 405-408.

- [9] S. B. NADLER JR., Multi-valued contraction mappings, Pac. J. Math., 30 (1969), pp. 475-488.
- [10] S. B. PREŠIĆ, Sur la convergence des suites, *COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES*, **260.14** (1965), 3828.
- [11] S. B. PREŠIĆ, Sur Une Classe D'Inequtions Aux Differences Finites Et Sur La Convergence De Certaines Suites, *Publications de l'Institut Mathematique*, 5, no. **25** (1965), pp. 75-78.
- [12] N. SHAHZAD and S. SHUKLA, Set-valued G-Prešić operators on metric spaces endowed with a graph and fixed point theorems, *Fixed Point Theory and Applications*, **2015.1** (2015).
- [13] S. SHUKLA and S. RADENOVIC, Some generalizations of Prešić type mappings and applications, *An. Stiint. Univ. Al. I. Cuza Iasi, Mat.*, (2017).
- [14] D. SARKAR, P. KONAR and R. BHARDWAJ, Optimality results with multivalued mappings and application to non-linear equation, *Advances in Mathematical Sciences and Applications*, (2024) (to appear).
- [15] M. EDELSTEIN, An extension of Banach's contraction principle, *Proceedings of the American Mathematical Society*, **12(1)** (1961), pp. 7-10.