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2 D. SARKAR, R. BHARDWAJ, V. RATHORE AND P. KONAR

1. INTRODUCTION

In the year 1922, S. Banach[2] introduced the fixed point theory. This theory plays a signifi-
cant role in non-linear analysis. Banach presented his famous Banach Contraction Principle by
which he threw the light on the concept of fixed point. Afterthat several other mathematicians
[7], [8], [4] extended and presented their ideas about this concept. In 1965 Pr@gi[11]
generalised the Banach’s idea into product spaces and presented some results on fixed point. He
proved the following:

Theorem 1.1([10]). Assume thatY, &) is a complete metric space ad> 1 such thatt € IN.
SupposeF : Yt — Y be a mapping satisfying the following condition:

4
S(F(ur,ug, -+ ue), Fug, ug, -+ wer)) < Z VS (i, wiy1)
=1
for eachu;, uy, - - ,ue, uer1 € Y, Wherey,,v,, - - - , 7y, are non-negative constants such that
Zle v, < 1. Then, there exists a unique fixed pointin Again, ifu;, uy, - - - , u, are some
points inY and forn € N, u,¢ = F(u,, u,41, -+ ,u,1e-1). Then,{u,} converges to the

fixed point off.

The work of Pre& can further be extended by several famous mathematiciahs [13], [14],
[3], [6], [12] in different ways and different generalised spaces. In 1969, Nadlar [9] extended
the concept of Banach’s principle into multi-valued mapping. He used the Pompeiu-Hausdorff
metric to present his result.

Suppose¢ be a non-empty subset of a metric sp&teS). Now, forp € Y,

3(p,C) = inf{3(p,9) g €C}
Assume thatU B(Y) be the set of all non-empty closed and bounded subsérs dfow, for
C,D e CB(Y),
6(C, D) = sup{SS(p,D) : p € C}
H(C,D) =max{6(C,D),0(D,C)}
The metricH is called Pompeiu-Hausdorff metric. Nadlar stated the following:

Theorem 1.2([9]). Suppose(Y, <) be a complete metric space and there is a mapfiing
Y — CB(Y) such that for allp, g € Y,

H(F(p), F(g)) < 03(p, 0)
where,p € [0,1). Then,F has a fixed point irY.

In the year 2006, Eldred et al.|[5] first revealed the concept of best proximity point. In 2019,
Usman Ali et al. [1] presented their ideas on the Rrégpe single valued non-self mapping.
In the present paper, two best proximity results are shown using Pompeiu-Hausdorff metric
where Predi-type multivalued non-self mapping has been taken. Here, a suitable example has
also been given in support of the theorem. Also, some consequences and application parts are
given ing-chainable space and ordered metric space.

2. PRELIMINARIES

Suppose(Y, ) be a metric space. Here, we consider a gr@psuch thatV(G) = Y and
E(G) be the set of all edges containing all loops. Here, we assum&thas no parallel edges.
We can denoté& as(V(G), E(G)).
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SupposeC andD are two non-empty subsets of a metric Sp@£es) andA denote the diag-
onal of the cartesian produttx Y. Here, we use the following notations:

FC,D) = {inf S(u,v) :ueC,veD}

Co={ueC:J(u,v)=S(C,D) for somev € D}

Dy ={veD:J(u,v)=S(C,D) for someu € C}
Here, we give the following definition which is useful to our theorems.

Definition 2.1. (Best Proximity Point). Suppose(Y, ) be a metric space ard, D be two
non-empty subsets &f. An elementu, € C is said to be a best proximity point of the mapping
F:C— Dif S(u,, F(u,)) = S(C, D).

Definition 2.2. (P-Property). Let (C,D) be a pair of non-empty subsets of a metric space
(Y, &) such thatCy is non-empty. Then, the pdi€, D) is said to have’-property iff S(uy, vi) =
I(ug, v2) = ¥(C, D) implies that3(uy, uz) = I(vy, ve) Whereu;, u, € C andvy, vy € D,

3. MAIN RESULTS

Definition 3.1. Let, =, T be the family of all functions, @ : [0, 00) — [0, co) such that
i) ¢, w are increasing.

i) Both must attain continuity.

i) ©(0) =0, ¢(t) < tforeacht € [0, c0).

Definition 3.2. SupposeC andD are two non-empty closed subsets of a metric SPace)
which is complete such thdt, # () and¢ > 1 such that € N. Let,F : C* — CB(D) be a
mapping. Assume that for every pafh,}**! of £ + 1 vertices inG, the following conditions
are satisfied:

i) There exist non-negative constants such thaEf:1 v, < land

:
H(F(u, g, we), Fluz,uz, -+, uey1)) < Z(%sﬁ(%(ui, u;i1)))
i—1

— w(maz{S(u;, wiy) i =1,2,--- £}
") If F(u% us, - 7u3+1) - F(ulv Uy, - ,llg) andIF('-l?H Uy, - au?-f—?) - F(u27 us, - 7u3+1)
are such tha(I‘s(ugH, 1194.2) < max{%(ui, 112‘+1) 1=1,2,--- ,E}, then(uEH, 1194_2) € E(G)

Theorem 3.1. Let us assume th& and D are two non-empty closed subsets of a complete
metric spac€Y, $) such thatCy # () and¢ > 1 such thatt € N. Let,F : C* — CB(D) be a
mapping satisfying the above two conditions of the Defin[tioh(3.2). Suppose that the following
assertions hold:

i) There exists a patfu; fi} of ¢-+1 vertices inG such thatf (ug, us, - - - , uer1) C F(ug, ug, - -+, ue).
i) F(C}) C D, and the pair(C, D) satisfies the property such that

S(uerr, F(ur, ug, -+, ue)) = dist(C, D) = S(uey2, F(uz, uz, -, wey1))

= S(Uet1, Uer) < H(F(ur, vz, we), Fug,uz, -, uey1))
iii) There exist(u;, uy, - - - ,ug) € C§ andu,,; € Cy such that

Sy, F(ug,ug, -+ - ,ue)) = dist(C, D)

iv) F is continuous.
Then,F has a best proximity point if*.
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Proof. From condition (iii), there existu;, uy, - - - , u¢) € C§ andug,; € Cy such that
(3.2) (g1, F(ug,ug, -+ - ,ue)) = dist(C, D)

Since,F(Cf) C Dy, there exis{uy, us, - - - , ugy1) € Cf andug,» € Cy such that
(3.2) S(uer2, Fug, ug, -+, uet1)) = dist(C, D)

Thus, continuing in this way, by mathematical induction, we get,

(3.3) S(pper1, F(Upy1, Upgo, -+ s Upye)) = dist(C, D)

Again, since the paifC, D) satisfies condition (ii), then we can write from equatig¢8<|) and
(3-2).

%(uf—i-h uE+2) S H(F(ula Ug, - - ,113), ]F(u% us, - au[’—i-l))

Let,7 = 3,7, < 1. Suppose that there is a path; }**! of £ + 1 vertices inG such that
F(u27 ug, - - 7u3+1) - F(ula Ug, - ,UE)-

Since,F(UQ, us,- - ,ugﬂ) € CB(D), there eXiSti?(u;),, Uy, - 7ué+2) - F(LIQ, Us, - ,u§+1)
such that
S(ep1, Uepa) < H(]F(Uh Uy, -, ), F(ug,us, -+, Uepq))

< Z Y o(S(w, wi41))) — (max{%(ui,uiﬂ) i=1,2,--- ,E})
< Z (1S (s w41))

< Z Sy, wi1))

<7 maa:{\s(ul-,ul-ﬂ) i=1,2,--- .}
<mazr{S(u, )i =1,2,--- £}
Hence,(ug. 1, ueso) € E(G)
Similarly, asF(us, uy, - - - , ues2) € CB(D), there exist& (uy, us, - -+, uer3) C Fug, ug, - -+, Uppn)
such that
%(uk+2, ué+3) < fy max{%(uz‘+1, ui+2) : ’l = 1’ 27 e ’E}
<mar{S(y1, Wpo) 11 =1,2,--- £}
S0, (ugt2, uer3) € £(G)
Proceeding thisway, &, 1, U, 2, -+ , U,ye) € CB(D), there exist& (w, 12, Wyi3, -, Upger1) C
F(un+17 Upy2,: " 7un+é> such that
S(Wppe, Wprer1) <y mar{S(Wipn_1,Wp) i =1,2,--- €}
< mar{S(Wipn-1,Wiyn) 11 =1,2,--- £}

Hence,(u, ¢, Upyer1) € E(G) foralln € N
Now, we will prove thatf{u, } is a Cauchy sequence.
Let,

S(ui, wigr) .

; i:1,2,~-,E}

n= max{
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where,( = fy%
Now, by mathematical induction we have to prove that
(34) %(una un+1) < 77Cn Vn e N
Let, thet inequalities beX(u,,, w, 1) < 7¢", S(Wpp1, Wnpz) < ¢ S(Wnpe1, Unge) <
ncn+ffl
Now,
S (Wt Wpger1) <y Mar{S(Wign—1, Wigy) 17 =1,2,--- £}

<qymaz{n¢*ti=1,2,--- 8}
<an" [As (=7Y'<1]

= ¢t

Thus, the proof ofj3.4)) is complete.
Now, form,n € N andm > n, using(3.4) we get,

g(uny um) S S(una un+1) + g(un-i—la un+2) +-+ %(um—h um)
< nCn + nCn-ﬁ-l et 77Cm—l
Since,( = vt < 1, we conclude from the above inequality,

lim $(u,,u,) =0

m,n—00

Hence,{u,} is a Cauchy sequence.
Since,(Y, &) is complete and is closed, so the sequenfe,, } converges to a poini, € C.
As, IF is continuous,

F(upir, wpao, -+ s uppe) — Flu,,u,, -+ ,u,) as n— oo
The continuity of the metric implies that
dist(C,D) = F(prer1, F(Upp1, Unpo, -y Uppe)) — (s, Flus, us, - -+, uy))
Hence,
(g, Flu,, u,, - -+ ,uy)) = dist(C,D)
ThereforeF has a best proximity point ic®. g

Theorem 3.2. SupppseC andD are two non-empty closed subsets of a complete metric space
(Y, ) such thatC, # 0 andt > 1 such thatt € N. Let,F : C* — C'B(D) be a mapping
satisfying the above two conditions of the Definifion(3.2). Suppose that the following assertions
hold:

i) There exists a patfu; } 1 of ¢-+1 vertices inG such thaff (uy, us, - - - , ue ) € F(ug, ug, - - -, ug).
i) F(C{) C Dy and the pair(C, D) satisfies the property such that

%(ué—&-la F(Ul, Uy, - 711&)) = diSt(Ca ]D) = g(uuz, F(Uz, usz, - 7Ue+1))

= %(uﬂ»la u?+2) < H(]F(ula Ug, - - 7u9)a F(u27 ug, - - 7u9+1))
iii) There exist(uy, uy, - - - ,ug) € C§ andu,,; € Cy such that

%(u@rl, IF(ul, Ug, -, 11[:)) = dZSt((C, ]D))

iv) For any termwise connected sequefiag} € Cif u, — u, andF(u, 1o, Upi3, -, Wpper1) C
F(Wpi1, Uppo, -+, u,qe) for all n € N, then there exists a subsequer{as,)} such that

(Un(r), w,) € E(G) forall r € N.
Then,F has a best proximity point if*.
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Proof. From the proof of Theoreff.1]), there exists a Cauchy sequereg, } € C such that
%(un+g+1, F(un+1, Up492, " ,un+g)) = dlSt(C, D) vV neN

andu,, — u, asn — oo with u, € C.

From the condition (iv), there exists a subsequefwg,)} of {u,} such that(u,),u,) €
E(G). Since, for eaclh € N, we have(u,, u,.1) € E(G) andF(u, 2, Uni3, -, Upier1) C
F(u,i1, w02, ,u,1e), SO for anyr € N, we obtain,

I(uy, Fu,, uy, -+, uy))

< %(u*, un(r)—i—?—i—l) + \5\<un(7‘)+v'3+17 F(un(r)—l—l; Un(ry42, " 7un(r)+8))

+ H( ( r)+1 Un(r)+2, " ° 7un(r)+3)7 F(u*7 Wy, - - 7u*))

= S(u, un(r)+?+1) + dist(C, D)

+ H(F( r)+1 Un(r)+2, -, Up (T)+E)7 F(u*> Wy, - - au*))

< S(uy, u, ,,)+g+1) + dist(C, D)

+ H(F( )41 Un(r) 425" un('r)—l—E)a IE‘(un('r)—l-Qa Wn(r)+35 " 5 Un(r)+6 u*))

+ H(F( )42 un(?“)-‘r?n ) un(r)+E7 u*)a F(un('r‘)-‘r?n un(’r‘)-‘r47 ) un(r)+?7 U, u*))

+~~-+H<F<un<r>+f,u*,--- ), Flu,u, )
< (W, Up(ryyer1) + dist(C, D)
+ {7111, Uner)r2) + 723 (Wniryr2; Wngryas) + 00+ 7eS (Wagry4e W) }
+ {718 (a2, W) +3) + V2SS (Wa(r)+3, Wnry+a) + 0+ Vo1 Sy e W) t
+ o+ 7S (U1 )
Lettingr — oo in the above inequality, we get,
(g, Flu,, u,, - -+ ,u,)) = dist(C,D)

Therefore[F has a best proximity pointi.e1, € C*. g

4. |LLUSTRATION

Example 4.1. Let, Y = R be a metric space endowed with the meti1, v) = [u — v|

forall u,v € C. Let,C = [-1,—3] andD = [0,1]. Now, we define a graph(G) =Y,
E(G)=AU{(-1,-5), (—E—E, —ai7) :n € N}. Then,(Y, Q) is a complete metric space.
We define a mappind,: C x C — C'B(D) such that
{0} a=beC
F(a,b) = [o,n%g a=-2 b=-2 neN
{1} otherwise

Then F satisfies the weak inequality used in Theof@m with y, = 1, v, = ;5 andp(t) =
B w(t) = o5 forall t € [0, 00).
. All the conditions of Theoref8.1) are satisfied and

1 1 1
2 _—— —_—— — — = ) = —
( 2,]F( 5 2)) dist(C,D)
So, the best proximity point &fis —%.

AJMAA Vol. 21(2024), No. 1, Art. 5, 10 pp. AIMAA


https://ajmaa.org

MULTI-VALUED G-PRESIC TYPE MAPPING 7

5. CONSEQUENCES

Corollary 5.1. Let, (C,DD) be a pair of non-empty closed subsets of a complete metric space
(Y, ) such thatC, is non-empty and be a positive integer. LeE : C* — D be a mapping
such that

o

%(F<u17u27”' ,UE),]F(UQ,Ug,"' 7uE+l Z ul7ul+1)))

=1
— w(maz{S(u;, wi4) i =1,2,--- ¢}
for all u;,uy,--- ,ue; € C, where~, are non-negative constants such t@ﬁzl v, < L
Suppose the following assertions hold:

i) F(CY) C D, and the pair(C, D) satisfies the’-property.
i) There existu;, uy, - -+ ,ue) € C{ andug,; € Cy such that

%(UEH, F(ub Ug, - - 711&)) = %(Q D)

iii) I is continuous.
Then,F has a unique best proximity point G¥.

Corollary 5.2. Assume thatY, &) be a complete metric space such thae a positive integer.
Supposel : Y* — Y be a continuous mapping such that

o=

%(]F(ul’uzw“ 711{%)7]1?(1127113,"‘ ,ue+1 Z Uuuzﬂ)))

=1
— w(maz{S(w;, wis1) i =1,2,--- ,t})
for all u;,us,---,ue; € Y wherey,s are non-negative constants such t@le v, < 1.

Suppose there exist;, uy, - -+ ,ugr; € Y such thatug,; = F(uy, uy, -+ ,ue). Thus,F has a
unique fixed point if'®,

6. APPLICATION

We state the following theorem tirchainable spaceé [15].

Theorem 6.1.Assume that andD are two non-empty closed subsets of a completeainable
space(Y, ) such thatC, # () and be a positive integer. LeF, : C* — CB(ID) be a mapping
such that

o=

H(]F(uhu??'” 7uf)7]F<u27u37"' 7uf+1 Z ul,ul+1)))
=1
w(max{\s w, )i =1,2,--- ,E})
for all uj,us, - -+, uey1 € Cwithmax{S(w;,w;11) : ¢ =1,2,--- €} < 6 where~,s are non-
negative constants such th@fz1 v, < 1. Suppose that the following assertions hold:
i) There existuy, uy, - - - ,up 1 € C such thatmaz{S(u;, u;11) :i=1,2,--- ¢} <6 and
Fluz,uz, -, uer1) C Fug, ug, -+, we).
i) F(C§) C D, and the pair(C, D) satisfies the property such that
S(uer, Fug, ug, - -+, ue)) = dist(C, D) = S(uer2, F(ug, ug, - -+, aey1))
= %(ué—i-h Ug+2) S H(F(ula Ug, - - 7u3)7 F(u27 us,--- 7ué+1))
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iii) There exist(u;, uy, - - - ,ug) € C§ andu,,; € Cy such that
S(ug_,_h IF(ul, Ug, -, llg)) = d’LSt((:7 ]D))

iv) F is continuous.
Then,F has a best proximity point if*.

Proof. We consider the graph witki(G) = Y and
E(G) ={(u,v) e Cx C:J(u,v) <0}
Afterthat, we can easily prove this from Theorem|34L).

Corollary 6.2. Let, (C,DD) be a pair of non-empty closed subsets of a compglathainable
space(Y, ) such thatC, is non-empty and be a positive integer. Leff : C* — D be a
mapping such that

]~

%(]F(uh uy, - - 7u3>7F(u27 us, - - 7u3+1)) S (7@90(%(11@7 ui+l)))

— w(maz{S(w;, wis1) i =1,2,--- ,t})
for all us,uy, -, ue; € Cwithmax{S(u;,u;1) : ¢ =1,2,--- €} < 6 where~,s are non-
negative constants such th@fz1 v, < 1. Suppose that the following assertions hold:
i) There existu;, uy, - - - , upy; € C such thatmar{3(uw;, w;41) :i=1,2,--- €} < 0.
i) F(C{) C Dy and the pair(C, D) satisfies the’-property.
iii) There exist(u;, uy, - - - ,ug) € C§ andu,,; € Cy such that

g(ue+1, IE?(ula Ug, - - ,113)) = %(Ca ]D))

iv) F is continuous.
Then,F has a unique best proximity point @¥.

Corollary 6.3. Assume thatY, ) be a complet@-chainable space such thate a positive
integer. Supposé, : Y* — Y be a continuous mapping such that
14
S(F(ug, ug, - -+, ue), F(ug, uz, -, ep1)) < (7i0(S(ug,1441)))
=1
— w(maz{S(u;, wi41) i =1,2,--- ¢}

forall uj,ug, -, uer1 € Y withmaz{S(u;, ;1) : ¢ =1,2,--- €} < 6 where~,s are non-
negative constants such th@le v, < 1. Suppose there exiat, u,, - -- ,uz; 1 € Y such that
max{d(w;,w;11) : i =1,2,--- k} < 0andue; = F(ug,uy, -+ ,ue). Thus,F has a unique
fixed point inY®.

Now, we define the following:

Definition 6.1. Suppose andD are two non-empty closed subsets of an ordered metric space
(Y, S, €) which is complete such thal, # () andé > 1 suchthat € N. Let,F : C* — CB(D)

be a mapping. Assume that for every non-decreasing seqyenge; with respect toC, the
following conditions are satisfied:

i) There exist non-negative constants such thagfz1 v, < 1 so that

:
H(F(u, g, we), Fluz,uz, -+, uey)) < Z(%sﬂ(%(uia u;i1)))
i—1

— w(maz{S(u;, wiy) i =1,2,--- ,£})
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i) If F(ug,us, -+ ,ues1) € F(ug,ug,--- ,ue) andF(us, ug, - -+, uer2) € Flug, us, -+, uepq)
are such tha%(u@rl, 1134.2) < ma:v{%(ui, 11,'_,_1) e=1,2,--- ,E}, then(u@rl, 1134.2) € E(G)

Theorem 6.4. Let us assume tha and D are two non-empty closed subsets of a complete
ordered metric spacé€Y, ¥, C) such thatC, # () and¢ > 1 such thatt € N. Let,F : C* —
C'B(D) be a mapping satisfying the above two conditions of the Defirfitidn(6.1). Suppose that
the following assertions hold:

i) There exists a non-decreasing seque{m@fj with respect ta_ such thaff(us, uz, - -+, ueyq) C
F(ul, Ug, - - - ,I,Ig).

i) F(C{) C Dy and the pair(C, D) satisfies the property such that

(s, F(ug,ug, -+ - ,ue)) = dist(C,D) = (g2, F(ug, us, - -+, tep1))
= S(upsr, eyn) < H(F(ug,ug, - ue), Flug, ug, - uey))
iii) There exist(u;, uy, - - - ,ug) € C§ andu,,; € Cy such that
S(uesr, Flug,ug, - -+ ,up)) = dist(C,D)

iv) IF is continuous.
Then,F has a best proximity point ifc*.

Proof. Let us consider the graph witi(G) = Y and
E(G) ={(u,v)eCxC:uclv}
Now, we can easily prove this from Theorém({3.4.).
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