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2 DOUGLAS R. ANDERSON ANDJOAN HOFFACKER

1. PRELIMINARIES

In this article, we investigate the existence of positive periodic solutions for the two pairs of
first-order nonautonomous functional delta dynamic equations

(1.2) y2(t) = —p(t)y” (t) + An(t) f(y(t — 7(t))), t € [to,00)7
and

1.2) y2(t) = —p(t)y(t) + Ah(t) f(y(t — 7(t))), ¢ € [to, 00)r,
or

(1.3) z2(t) = — (op(t) 27 (t) — Ab(t) f (x(t — (1)), t € [to,00)
and

(1.4) z2(t) = &(—=p)(t)z(t) — A(t) f(z(t — (1)), t € [to, 00)r,

where for all caseg, h andr are right-dense continuodsperiodic functions. We assume that
A, T > 0, and thath andp are nonnegative with andp not identically zero inty, T + to]r;
additionally, we must have — i (t)p(t) > 0 for all t € [ty, co)r in (1.2) and[(1.4). Throughout
we also assume thgt € C([0,0), [0, 00)) with f(u) > 0 for uw > 0, such that the following
limits exist for f:

by = ilir(l)f(u)/u € [0, 0], loo := Jirglof(u)/u € [0, oc].

Moreover, the time scal@ is itself periodic, thatis+7 € T andu(t) = u(t+7) forallt € T

(for more on time scales and time-scale notation, please consult the Appendix, Section 7). Since
y is defined on the time scalg, 7 is a function such that — 7(¢) € T. Functional dynamic
equations with periodic delays appear in a number of models in mathematical ecology. One
example would be to interprdt (1.1) ad (1.2) as standard Malthus population decay models in
the spirit ofy’ = —p(t)y, or (1.3) and[(1.4) as growth models, all subject to a perturbation with
periodic delay. In this context an important question is whether this model supports positive
periodic solutions. Such a question has been studied extensively by a number of authors in the
continuous and discrete cases; see for example [5, 6, 11, 14] and the references therein. In the
most recent papers, for the restricted cas@& ef 7Z, [10] considers equations (1.2) and (1.4),
while [9] extends[(1]2) and (1.4) to systems such ag (5.2)[and (5.4). To our knowledge, no one
has considered concurrently, even r= Z, all four equations[(1]1) through (1.4) and their
related systems (5.1) throudh (5.4), much less the corresponding nabla eqdiations (6.1) through
(6.4) and nabla systenis (5.5) through|6.8).

There are other approaches to the existence of solutions for dynamic equations on time scales
than those featured in this note; for alternative approaches to the existence of solutions and
multiple solutions to dynamic equations on time scales, including periodic solutions to problems
on periodic time scales, consult [1,/12] 13]. In this paper, we will obtain existence criteria for
T-periodic solutions of delta equatioris (1.1) through](1.4), nabla equafions (6.1) throdgh (6.4),

and their corresponding systems (5.1) throdgh|(5.4) (6.5) thrpudh (6.8), respectively, by
means of a well-known fixed point theorem [8], stated here for reference.

Theorem 1.1.Let £ be a Banach space and |etC E be acone. Assurrfg, (), are bounded
open balls ofF such thatd € ©Q; C Q; C Q,. Suppose thal : PN (2,\2) — Pisa
completely continuous operator such that

(1) || Lu|| < ||ul| foruw € PN oQy and||Lu|| > ||u|| for P N0y, or that
(2) || Lu|| > ||u]| foru € PN 0Qy and||Lu|| < ||u]| for P N 0.

ThenL has a fixed point it N (2,\,).
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2. EXISTENCE RESULTS FOR (1.1)

First we considef{(1]1). By the simple [3, Theorem 1.16], useful formudla= w + pw?,
equation[(T.]1) is equivalent to
—p)y(t) + A1) f(y(t — 7(t)))

A
y=({t) =
" 1+ p(t)p(t)
Alternatively, using Theorein 7.2 in Sectioh 7, we will rewr[te {1.1) as

(2.1) (ep(t, to)y(1))™ = Aep(t, to) A(t).f(y(t — 7(1))).

To better understand the form of solutions[to [1.1), we integrate the equivalent eqpatjon (2.1)
fromt tot + T and use the fundamental theorem to obtain

t+T
ep(t + T to)y(t +T) — ep(t, to)y(t) = A/ ep(s,to)h(s)f(y(s — 7(s)))As.
t
Sincey is to be dl'-periodic solution we haveg(t + T') = y(t), allowing us to solve foy as

@D v =) [ K s ro)ds Kt = 2D

we have used the semigroup property in Theofem 7.2 (5), and the fagt tvad the time
scaleT are periodic imply that,, satisfiese,(t + 7',t) = e,(a + T, a) for a,t € T. Note

that the denominator itk (¢, s) is not zero since we have assumed th@t) > 0 for some

ty € [to, to + T)r. Itis straightforward to realize that any functigrihat satisfieq (2]2) is also a
T-periodic solution of[(1]1). By the properties of the time-scale exponential and the definition
of K(t,s), we have

1 e (to +T to)
23) m:= < K(t,s) < —2 d =M, seltt+T|r,
( ) Gp(to + T, to) -1 ( ) - 6p<t0 + T, to) -1 [ ]T
and
m K(t,s)
(24) 0< M = €@p<t0 +T, to) < m < 1, te [to,OO)'ﬂ‘, S € [t,t+ T]T

Now let B be the set of all real’-periodic continuous functions, augmented with the usual linear
structure and the supremum norm

lyll =" sup [|y(t)].
tE[to,to-l—T]T

ThenB is a Banach space with cone
m
s={veB:y®)= Tl teltoo)r}.
Define a mappind. : B — B by
t+T
L)) =7 [ K h s = 7(s)) s
t

Lemma 2.1. The operatorL defined above satisfidsS C S.

Proof. It follows using standard reasoning thiats completely continuous on bounded subsets
of S, and fory € S,

to+T
(Ly)(t) < AM / W(s)F(y(s — 7(5))As, £ € [to,00)m,
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so that

to+T m

(Ly)(t) = Am/ h(s)f(y(s = 7(s)))As = 7 Lyll.

to
|
Lemma 2.2. Assume that there exist two distinct positive numbexsdb such that

a b

(2.5) Olgjgaf(u) SEVE mg&bf( u) > B
where

(26) A:= max /to+T K(t,s)h(s)As, B:= min /to+T K(t,s)h(s)As.

tE[to,t0+T}T to tE[to,to-‘rT}T to
Then there existg € S which is a fixed point of. and satisfiesnin{a, b} < ||7|| < max{a, b}.

Proof. Note thatA, B > 0. LetS, = {w € S : |Jw|| < (}. Assume that < b. Then, for any
y € S which satisfies|y|| = a, in view of (2.5), we have

(2.7) (Ly)(t) < (/\/t K(t,s)h(s)As) VR <AA- )\_A = a.
= b, we have
(2.8) (Ly)(t) > (A/t K(t,s)h(s)As) )\bB > \B - % =b.

That is, we havé{Ly|| > |ly|| for y € 8S,. In view of Theorenj 1]1, there exisgse S which
satisfiesa < ||7]| < b such thatly = 5. If a > b, (2.7) is replaced byLy)(t) > b in view
of (2.5), and[(2.8) is replaced byLy)(t) < a in view of (2.5). The same conclusion then
follows.

Theorem 2.3. Assumé, = oo and/,, = co. Then for any\ € (0, \"), equation(I.1) has at

least two positive periodic solutions, where
1 r
M= Zsu
A 7“>IOD maxo<y<r f( )

for A defined in(2.§).

Proof. Let ¢(r) := r/(Amaxo<u<, f(u)). Clearlyq € C((0,00),(0,00)). By the choices
ly = oo andl., = oo, we see further thdim, ., ¢(r) = lim,_,« ¢(r) = 0. Thus, there exists
ro > 0 such thaty(ro) = max,-oq(r) = Al. For any\ € (0, \"), by the intermediate value
property, there exist; € (0,7ry) andas € (ro,00) such thatg(a;) = g(az) = A. Thus, we
have f(u) < a;/(AA) for u € [0,a;] and f(u) < ay/(ANA) for u € [0,as]. On the other
hand there must exisy € (0,a;) andby € (az,00) such thatf(u)/u > M/(AmB) for

€ (0,b1] U [22 00). Thatis, f(u) > bi/(AB) for u € [2% ;] and f(u) > by/(AB) for
u € [z p,]. An application of Lemm.2 leads to two distinct solutiong of](1s1).

Corollary 2.4. If either /, = oo or £, = oo, then for any0 < A < AT, equation(T.1) has at
least one positive periodic solution.

Theorem 2.5. Assumé, = 0 and/,, = 0. Then for anyA > \'f, equation(I.1) has at least
two positive periodic solutions, where

1 T
M= —inf
B }20 rmnmr <u<r f(u)’

for B defined in(2.6).
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Proof. Let v(r) := r/(Bminmr<,<, f(u)). Clearly,v € C((0,00),(0,00)). By the choices
¢y = 0 and/,, = 0, we see thalim, ., v(r) = lim,_, v(r) = co. Thus, there existg, > 0
such thaw(ry) = min,~o v(r) = AT, Forany\ > AT, there exisb, € (0,r,) andb, € (ry, o0)
such that(b;) = v(bs) = A. Thus, we havef(u) > by /(AB) for u € [2% 5] and f(u) >
bo/(AB) for u € [ b,]. On the other hand, sindg = 0 we see thaf(0) = 0 and that there
existsa; € (0,b1) such thatf(u)/u < 1/(AA) for u € (0, aq]. Thus, we have (u) < a;/(AA).
From/,, = 0, we see that there exisisc (by, co) such thatf (u)/u < 1/(A\A) for u € [a, 00).
Let w := maxg<y<q f(u). Then we havef (u) < ay/(AA) for u € [0, as], wherea; > a and
as > AwA. An application of Lemma 2]2 leads to two distinct solutiond of|(1s1).

Corollary 2.6. If either ¢, = 0 or £, = 0, then for any\ > AT, equation(T.1) has at least one
positive periodic solution.

Corollary 2.7. Assume that eithef, = oo and/,, = 0, or /. = oo and/, = 0. Then for any
A > 0, equation(I.T) has a positive periodic solution.

Proof. Suppose first thaty = oo and/,, = 0 hold. If supy.,... f(u) = D < oo, then\" >
(1/A) sup,.,(r/D) = oco. If fisunbounded, then there exist a sequenge such thatf (r,,) =
maxo<y<r, f(u) andlim, .. r, = co. Sincely, = 0, we have\’ > (1/A)sup(r,/f(r,)) =

oo. Thus, we have provelf = co. In this case, our assertion follows from the remark following
Theorem 2.8. Iff., = co and{, = 0 hold, then we havéim,_ ., f(u) = co. Let{r,}
satisfy lim,,_.o. 7, = oo and f(mr,/M) = minmm <, f(u). Sincel,, = oo, we have

M

M < (1/B)inf(r,/ f(mr,/M)) = 0. Thus,A'" = 0. In this case, our assertion follows from
Corollary[2.6.1
Theorem 2.8. Assumé), /. € (0,00). Then, for each\ satisfying either
1 M 1
A< — OfF —— <A< —
mBly =~ Al mBly ~ " Al
equation(1.1) has a positive periodic solution.

Proof. Assuming[(2.P) holds, let > 0 be such that

L

mB(lee —€) = T A(ly +¢)
Sincel, > 0, there exists’; > 0 such thatf(u) < (¢p +¢e)ufor0 < u < ;. So, fory € S
with ||y|| = 5,, we have

t+T
L)) < Alo+e) / K (t, $)h(s)y(s — (s))As

to+T
< Mt [ Kt 9h(s)As

to

< Ao +2)Allyll < lyll-

Next, sincel,, > 0, there existsd, > 0 such thatf(u) > (fo — )u foru > 3,. If 8, =
max{2(3;, 170, }, then fory € S with ||y|| = 3,,

(2.9)

Lo)(t) > Mlw—c) / K (t, s)h(s)y(s — 7(s))As

v

m to+T
New =) gglol [ K oh(s)as

m
Mloe = )37 Bllyll = Iyl

A%
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In view of Lemmd 2.P, we see that equatipn [1.1) has a positive periodic solution. The other
case can be handled in a similar manmer.

Corollary 2.9. Assume that eithef, = oo and/,, € (0,00), or o, = oo and{, € (0, c0).
Then forany0 < A < 1/(Afy) or0 < A < 1/(Al), equation(1.D) has a positive periodic
solution.

Corollary 2.10. Assume that eithef, = 0 and /., € (0,00), or {o, = 0 and?, € ((0, c0).
Then for anyM /(mBl,) < A < oo or M/(mB{ly) < A < oo, equation(L.T)) has a positive
periodic solution.

3. EXISTENCE RESULTS FOR (1.3)
Similarly, we can also discuss equatipn {1.3). By](1.3) and Thepregm 7.2, we have

£(t) = A / G(t, 5)h(s) fla(s — 7(5)))As,

where
Glt,s) = Conls f) = alttTs)
€@p<t, to) - e@p(t + T, to) Gp(to + T, to) -1

satisfies
m=K(t,t) =Gy, to+T)=G(t,t+T) < G(t,s) < G(t,t) = K(to,to +T) = M,

and
mo_ G(t,t+ 1) < G(t,s) <1
M G(t,t) — G(t,t) —

Let
to+T to+T
A" =  max / G(t,s)h(s)As, B*:= min / G(t,s)h(s)As.
tefto,to+Tr Jy, t€fto,to+Tr Jy,
Then we have the following results.
Theorem 3.1. Suppose eithef, = oo or £, = co. Then for any\ € (0, \), equation(I.3) has
a positive periodic solution, where
1 r

A= —su
A* T>Ig maXo<y<r f(u)

Theorem 3.2. Supposée, = oo and/,, = oo. Then for any\ € (0, \), equation(L.3) has at
least two positive periodic solutions.

Theorem 3.3. Suppose eithef, = 0 or /,, = 0. Then for anyA > )\, equation(1.3) has a
positive periodic solution, where

A:iinf d

B* r>0 min%gugr f(u) '

Example 3.1.Fix n > 0 and letT = nZ. For fixed constantp, A > 0, chooser(t) = nn for
somen € N, and leth be a positive right-dense continuoiisperiodic function on this time
scale. Takef (u) := u?, so that/, = 0 and /., = co. Then we have th4fl.3)is equivalent to

(3.1) z(t+n) = (L+np)z(t) — (1 + np)nih(t)(z(t — nn))*.
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As developed earlief]-periodic solutions: of this equation satisfy

(t+T)/n—1
w(t)=n\ Y Gt in)h(in)f(x(jn —nn)),
Jj=t/n
where ( )(HT y : )
~ (I+np =)/ m_Gt,t—l—T B T

SinceX = oo and) = 0, both Theorem 3|1 and Theor¢m|3.3 predict thaf (3.1) has a positive
periodic solution for any > 0.

Theorem 3.4. Supposé, = 0 and/,, = 0. Then for any\ > )\, equation(1.3)has at least two
positive periodic solutions.

Corollary 3.5. Suppose eithef, = oo and/,, = 0, or /., = oo and/, = 0. Then for any
A > 0, equation(T.3) has a positive periodic solution.

Theorem 3.6. Supposé, € (0,00) and/, € (0,00). Then, for each\ satisfying

<A< or M <A<
mB*l A*ly mB*{, Al

equation(1.3) has a positive periodic solution.

Corollary 3.7. Suppose eithel, = co and/., € (0, 00), or £, = oo and/, € (0, c0). Then for
any0 < A < 1/(A*y)or0 < X\ < 1/(A*(y) equation(L.3) has a positive periodic solution.

Corollary 3.8. Suppose eithef, = 0 and/,, € (0,0), or {,, = 0 and/, € (0, 00). Then for
any M/(mB*l) < A < oo or M/(mB*{;) < A < oo equation(L.3) has a positive periodic
solution.

4. EXISTENCE RESULTS FOR (1.2)AnD (1.4)

In a manner analogous to that of the previous sections, we get the existence of positive solu-
tions to [1.2) and (1]4); remember the additional assumption here-ofi(t)p(t) > 0 for all
t € [ty,00)r. For (1.2), thatis
y2(t) = —p)y(t) + M) f(y(t — 7(1))), € [to,00)r,
a periodic solutiory exists if and only ify satisfies

W= [ A s~ r))As, fts) = ZHE R

Then
e_p(t +T,0(t))
1—e_p(to+ T, to)
so that

e_p,(t+T,o(t+1T))
1— e_p(to + T, to) ’

=q(t,t) <A(t,s) <At t+T) =

m oyt 1 B
M=+ T) ool ot 1) ot T <L

Likewise, for [1.4),

22(t) = ©(=p) () (t) — M(t) f(a(t = 7(¢))), € [to,00)m,
a solutionz would have to satisfy

#(t) = A / D(t, $)h(s)f(x(s — 7(s))As, T(t,s) :21_ee_f,fgsisi’?,to>‘
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In this case the kernel bounds are
ep(o(t+T),1)
1—e_,(to+ 1T, to)
so that, interestingly, we again have
@.1) mo_ L(t,t+1T) _ e_p(o(t+1T),1)
M [(t,t) e_p(o(t),t)
Compare[(Z}4) with (4]1); we point out that

e_p(t() + T, to) = 66p(t0 + T, t())

= e_,(to+ T to).

if T =R.
5. EXTENDING TO A SYSTEM

In this section, we investigate the existence of positive periodic solutions for the two pairs of
higher-dimensional nonautonomous functional delta dynamic equations

(5.1) y2(t) = —P()y7 () + M) f(y(t — 7(1))), ¢ € [to, 00)r
and

(5.2) y2(t) = —P(t)y(t) + A(t) f(y(t — 7(1))), t € [to, 00)r,
or

(5.3) 22(t) = — (©P(t)) 27 (t) — Ah(t) f(x(t — (1)), t € [to,00)r
and

(5.4) z2(t) = o(=P)(t)z(t) — Au(t) f(x(t — 7(t))), t € [to,00)r,
where

P(t) =diagp(t), pa(t),...,pa(t)], h(t) =diaghi(t), ha(t), ..., ha(t)];
for all cases;, h; (1 < i < n) andrT are right-dense continuous-periodic functions. We
assume thah, 7" > 0, and thath; andp; are nonnegative witth; andp; not identically zero
in [to, T + to]r; additionally, we must have — pu(t)p;(t) > 0 for all t € [ty, 00)r in (5.4) and
(5.4) for1 < i < n. Throughout we also assume that R? — R* is continuous where
R? = {(y1,...,yn)t €R":y; > 0,0 <i<n}andR" = {y € R:y > 0}. For arelated
discrete version of this discussion, see [9].
Define K (t,s) = diag K (t, s), Ka(t, s), ..., K,(t, s)] where

ep:(5,t)
epi<t0 +T, tO) -1

Kl<t, 8) =
Then using equatiof (2.2) we have that

o= Kt 5)h(s) Fly(s — 7(s))As

is aT-periodic solution of equation (5.1). Also using equatidns](2[3), (2.4) we have ¢r
[t,t + T that

1 (T Tt
(5.5) m; = < Ki(t,s) < il + T o) =: M;
€p; (to -+ T, t()) —1 €p; (to + T, to) —1
and
m; K(tu S)
5.6 0< —= (T Tty) < ————<1, telt t,t+ T|r.
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Let
ind Mg <<
= min . .
K M, ==

Theny € (0,1). Again letB be the Banach space of continuous angeriodic functions
augmented with the supremum norm

lyll = max ly;|o, wherely;lo = sup y;(t)].
lsisn t€lto,to+T)r

Define a cone by
S={y € B:ui(t) =yilo. 1 <1 <n},
and for a positive number, definef?, by
Q. ={yeS:|ylo<r:1<i<n}
Note thato$2, = {y € S : |ys|o = : 1 < i < n}. Define a mappind. : B — B by

(Ly)(t) = A / K (t, s)h(s) f(y(s — 7(s)) As,

and denote
(Ly) = (L1y, Loy, . .., Lyy)*.
For the remainder of this section we will use the following notations:

b= <usiorr ha(u), i = foSus iy T hi(u)
fi(u)

10 = lim £% € 0,00, 12 = lim
u—0 U U—00 Uu

€ [0, o0,

forl1 <i<nand
= min ¢; r = maxr;
q 1<i<n di 1<i<n '
m = min m; M = max M;.
1<i<n 1<i<n

Lemma 5.1. The operatorL satisfiesLS C S.

Proof. It follows using standard reasoning thiats completely continuous on bounded subsets
of S. Then fory € S,

to+T
(L)1) < AM, / Ba(s) (s — m())As, £ € [t 00)r.
so that
to+T m;
(La)(t) > Am, / A(s)F(uls — ()5 = T Ligly > 5| Lo
and soLS C S. 1 ’

Lemma 5.2. For 1 < i < n, assume that there exist distinct positive numherand b; such
that

a; . bi
(5.7) 0<uta; filu) < AA; memSIBSb flw) 2 AB;
where
t t
(5.8) A,:= max K;(t,s)hi(s)As, B;:= min K;(t,s)h;(s)As.
tG[to,to-ﬁ-T}T to tG[to,to-{-T}T to
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Leta = max{a; : 1 <i <n}andb = min{b; : 1 <i < n}. Then there existg € S which is
a fixed point ofL and satisfies

min{a, b} < ||7]| < max{a,b}.

Proof. AsinLemmd 2.2, if: < b, then for anyy € 9%2,, we have(L;y) < a; < aforl <i <n,
that is||Ly|| < [y]|. Also fory € S, (Liy) > b > bfor 1 < i < n, thatis|Ly|| > [y]|.
In view of Theorenj 1]1, there exisfse S which satisfies: < ||y|| < b such thatLy = 3. If
a > b, then the same conclusion follows.

Similar to the theorems in Sectiph 2, the following results may be proven.

Theorem 5.3. Assumé! = oo andi° = oo for 1 < i < n. Then for any\ € (0, \*), equation
(5.1) has at least two positive solutions, where

1 r
A= min | —sup ————
1<i<n \ A; r>0 max fi(u) |’
o<u<r

for A; as defined ir(5.9).

Corollary 5.4. If either 1 = cofor 1 < i < n, ori®* = oo for 1 < i < n, then for any
0 < A < X%, equation(5.1) has at least one positive periodic solution.

Theorem 5.5. Assum@? = 0 and/® = 0 for 1 < i < n. Then for any\ > \**, equation(5.7)
has at least two positive periodic solutions, where

k% 1 : r
A= max | —inf ——
1<i<n | B;v>0 min f(u)

DT <<
1, =Y

Y

M

for B; as defined ir{5.8).

Corollary 5.6. If either) = 0for 1 <i < n, ori® = 0for 1 <i < n, then for any\ > \**,
equation(5.1) has at least one positive periodic solution.

Corollary 5.7. Assume that eithéf = co andi® = 0for1 <i < mn,orl) = 0andl{* = 0
for 1 <i < n. Then for any\ > 0 equation(5.1) has a positive periodic solution.

Similarly one may discuss existence results for equafion (5.3).

6. CORRESPONDING NABLA EQUATIONS

Consider briefly nabla dynamic equations, introduced_In [2] and explored in [4, Chapter
3]. Just as in the previous sections, we may also investigate the existence of positive periodic
solutions for the two pairs of first-order nonautonomous functional nabla dynamic equations

(6.1) yV(t) = —q(t)y’(t) + A(t) f(y(t — 7(t))), t € [to,00)1
and

(6.2) y¥ (t) = —q()y(t) + Ah(t) f(y(t — (1)), t € [to,00)r,

or

(6.3) 2V () = — (©uq(t) 2”(t) = Ab(t) f(x(t = 7(t))), t € [to, 00)1
and

(6.4) 2V (t) = 0, (=) () (t) = M(t) f(x(t = 7(1))), € [to,00)r,
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where for these cases h andr are left-dense continuous-periodic functions. Note that
v(t) =t — p(t) and©,q := =L.. Again we assume that,T > 0, and thath andq are
nonnegative withh andq not identically zero inty, 7' + to|r; additionally, we must havé —
v(t)q(t) > 0forallt € [ty,00)r in (6.1) and[(6.B). Moreover, the time scélés periodic in the
sense that+ 7 € T andv(t) = v(t + T) for all t € T. Using the nabla exponential functién

and its properties, @-periodic solutiorny of (6.7 satisfies

é,(s,1)
eq(to+T,tg) — 1

y(t) = A / K(t, s)h(s) [(y(s — 7(s))Vs,  K(t,s) =

while aT-periodic solutionz of (6.3) satisfies

t+T R
(1) :)\/t Gt $)h(s) f(a(s — 7(5))) Vs

for
é(t, S) —— é@uq(:‘;?to) = éq(t+T7 S) )
Co,q(tito) —eo,q(t+T,t0) (o +T,t0) — 1

Similarly for the other pairy is aT-periodic solution of[(6]2) if and only if

t+T é_ s
v =A [ AL s = )T A ::1_2@;5;/);)20)’

andz is aT-periodic solution of{(6J4) if and only if

é_q(p(s),t)
1—é_,(to+T,ty)

x(t) = )\/t f‘(t,s)h(s)f(a:’(s —7(s)))Vs, f‘(t, s) =

One may also consider the higher-dimensional nabla dynamic equations

(6.5) yV (1) = =Q)y"(t) + Ah(t) f(y(t — 7(t))), t € [to,00)x
and

(6.6) yV(t) = =Q()y(t) + A(t) f(y(t — (1)), 1 € [to,00)r,

or

(6.7) 2V (t) = = (©,Q(t) a*(t) — M(t) f(x(t — (1)), € [to,00)r
and

(6.8) 2V (1) = ©,(=Q)(t)x(t) — Ah(t) f(x(t = 7(t))), € [to,00)r,
where

Q(t) =diagqi(t), ¢2(t), ..., qu(t)], h(t) =diaghi(t), ha(t),. .., h.(1)];

for all casesy;, h; (1 < i < n) andr are left-dense continuouB-periodic functions. We
assume thah, 7" > 0, and thath; and¢; are nonnegative witth; and p; not identically zero
in [to, T + to]r; additionally, we must have — v(t)g;(t) > 0 for all ¢ € [ty, 00)r in (6.6) and
(6.8) for1 < i < n. Throughout we also assume that R — R is continuous where
R? ={(y1,..,yn)  €R":y;>0,0<i<n}andR* ={yeR:y >0}
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7. APPENDIX ON TIME SCALES

A time scale is simply any nonempty closed set of real numbers, and the time-scale calculus
is the unification and extension of discrete calculus, quantum calculus, continuous calculus, and
indeed arbitrary real-number calculus to a new, more general and overarching theory [7]. The
definitions that follow here will serve as a short summary of the time-scale calculus; they can
be found in[[3] and[4] and the references therein.

Definition 7.1. Define the forward (backward) jump operatgit) att¢ for t < sup T (respec-
tively p(t) att for ¢ > inf T) by

ot)=inf{r >t: 7€ T}, (p(t)=sup{r<t:7e€T}, )forallteT.
Also defines(sup T) = sup T, if sup T < oo, andp(inf T) = inf T, if inf T > —oo. Define the
graininess functiom : T — R by u(t) = o(t) — t.

Throughout this work the assumption is made thet unbounded above and has the topology
that it inherits from the standard topology on the real numieralso assume throughout that
a < b are points inT and define the time scale intenjalb]yr = {t € T : a < t < b}. The
jump operatorg andp allow the classification of points in a time scale in the following way: If
o(t) > t, then the point is right-scattered, while if(¢) < ¢, thent is left-scattered. 1&(t) = t,
thent is right-dense; it > inf T andp(t) = t, thent is left-dense. The following defines the
so-called delta derivative.

Definition 7.2. Fixt € T and lety : T — R. Definey”(¢) to be the number (if it exists) with
the property that givea > 0 there is a neighbourhodd of ¢ such that, for alk € U,

[y(o(t) = y()] = y>(B)[o(t) — 5| < elo(t) — 5.
Call y2(¢) the (delta) derivative of(t) att.
Definition 7.3. If F2(t) = f(t), then define the (Cauchy) delta integral by

t
/ F(s)As = F(t) — F(a).
Similar definitions hold for the nabla derivative and integral. The following theorem is due to
Hilger [7].

Theorem 7.1. Assume thaf : T — R and lett € T.

() If fis differentiable at, thenf is continuous at.
(2) If fis continuous at andt is right-scattered, therf is differentiable at with

_ flo(®) = F(t)
fA@) = To( =t
(3) If f is differentiable and is right-dense, then
20) — tim JO=F6)

s=t L — 5§
(4) If f is differentiable at, thenf (o (t)) = f(t) + u(t)f2(1).
Next we define the important concept of right-dense continuity. An important fact concerning
right-dense continuity is that every right-dense continuous function has a delta antiderivative

[3, Theorem 1.74]. This implies that the delta definite integral of any right-dense continuous
function exists.
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Definition 7.4. The functionf : T — R is right-dense continuous, denotgde C,.,4(T;R),
providedf is continuous at every right-dense poirg T, andlim,_ ;- f(s) exists and is finite
at every left-dense poirte T.

A functionp : T — R is regressive providet + u(¢)p(t) # 0,Vt € T. Let
R:={p€ Cra(T;R) : 1+ pu(t)p(t) # 0,¢ € T}.

Also, p € RYIiff 1+ u(t)p(t) > 0, Vt € T. Thenifp € R,t, € T, one can define the
generalized exponential functiep(t, t,) to be the unique solution of the initial value problem

A =pt)z, z(ty) = 1.

Many of the properties of this generalized exponential functign t,) listed in Theore2
below are employed throughout this work.

Theorem 7.2.[3, Theorem 2.36lf p, ¢ € R ands,t € T, then

(1) eo(t,s) = Lande,(t,t) = 1;

(2) ey(a(t), ) (L+ p(t)p(t))ep(t, s);

@) oo = ( s), whereop := =0

(4) ey(t, s) = 7 = €an(s,t);

©)) ep(tjs)ep( ) = ep(t,7);

(6) e(t, 8) ( $) = €paq(t; s), Wherep ® q := p + q + upq;
(7) 2 = epoy(t, s)-

Again a similar list of properties for the nabla exponential functi@xists; se€ [4, Chapter 3].
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