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2 DOUGLAS R. ANDERSON ANDJOAN HOFFACKER

1. PRELIMINARIES

In this article, we investigate the existence of positive periodic solutions for the two pairs of
first-order nonautonomous functional delta dynamic equations

(1.1) y∆(t) = −p(t)yσ(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T

and

(1.2) y∆(t) = −p(t)y(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T,

or

(1.3) x∆(t) = − (	p(t)) xσ(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T

and

(1.4) x∆(t) = 	(−p)(t)x(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T,

where for all casesp, h andτ are right-dense continuousT -periodic functions. We assume that
λ, T > 0, and thath andp are nonnegative withh andp not identically zero in[t0, T + t0]T;
additionally, we must have1− µ(t)p(t) > 0 for all t ∈ [t0,∞)T in (1.2) and (1.4). Throughout
we also assume thatf ∈ C([0,∞), [0,∞)) with f(u) > 0 for u > 0, such that the following
limits exist forf :

`0 := lim
u→0

f(u)/u ∈ [0,∞], `∞ := lim
u→∞

f(u)/u ∈ [0,∞].

Moreover, the time scaleT is itself periodic, that ist+T ∈ T andµ(t) = µ(t+T ) for all t ∈ T
(for more on time scales and time-scale notation, please consult the Appendix, Section 7). Since
y is defined on the time scaleT, τ is a function such thatt − τ(t) ∈ T. Functional dynamic
equations with periodic delays appear in a number of models in mathematical ecology. One
example would be to interpret (1.1) and (1.2) as standard Malthus population decay models in
the spirit ofy′ = −p(t)y, or (1.3) and (1.4) as growth models, all subject to a perturbation with
periodic delay. In this context an important question is whether this model supports positive
periodic solutions. Such a question has been studied extensively by a number of authors in the
continuous and discrete cases; see for example [5, 6, 11, 14] and the references therein. In the
most recent papers, for the restricted case ofT = Z, [10] considers equations (1.2) and (1.4),
while [9] extends (1.2) and (1.4) to systems such as (5.2) and (5.4). To our knowledge, no one
has considered concurrently, even forT = Z, all four equations (1.1) through (1.4) and their
related systems (5.1) through (5.4), much less the corresponding nabla equations (6.1) through
(6.4) and nabla systems (6.5) through (6.8).

There are other approaches to the existence of solutions for dynamic equations on time scales
than those featured in this note; for alternative approaches to the existence of solutions and
multiple solutions to dynamic equations on time scales, including periodic solutions to problems
on periodic time scales, consult [1, 12, 13]. In this paper, we will obtain existence criteria for
T -periodic solutions of delta equations (1.1) through (1.4), nabla equations (6.1) through (6.4),
and their corresponding systems (5.1) through (5.4) and (6.5) through (6.8), respectively, by
means of a well-known fixed point theorem [8], stated here for reference.

Theorem 1.1.LetE be a Banach space and letP ⊂ E be a cone. AssumeΩ1, Ω2 are bounded
open balls ofE such that0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose thatL : P ∩ (Ω2\Ω1) → P is a
completely continuous operator such that

(1) ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and‖Lu‖ ≥ ‖u‖ for P ∩ ∂Ω2, or that
(2) ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and‖Lu‖ ≤ ‖u‖ for P ∩ ∂Ω2.

ThenL has a fixed point inP ∩ (Ω2\Ω1).
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2. EXISTENCE RESULTS FOR (1.1)

First we consider (1.1). By the simple [3, Theorem 1.16], useful formulawσ = w + µw∆,
equation (1.1) is equivalent to

y∆(t) =
−p(t)y(t) + λh(t)f(y(t− τ(t)))

1 + µ(t)p(t)
.

Alternatively, using Theorem 7.2 in Section 7, we will rewrite (1.1) as

(2.1) (ep(t, t0)y(t))∆ = λep(t, t0)h(t)f(y(t− τ(t))).

To better understand the form of solutions to (1.1), we integrate the equivalent equation (2.1)
from t to t + T and use the fundamental theorem to obtain

ep(t + T, t0)y(t + T )− ep(t, t0)y(t) = λ

∫ t+T

t

ep(s, t0)h(s)f(y(s− τ(s)))∆s.

Sincey is to be aT -periodic solution we havey(t + T ) = y(t), allowing us to solve fory as

(2.2) y(t) = λ

∫ t+T

t

K(t, s)h(s)f(y(s− τ(s)))∆s, K(t, s) :=
ep(s, t)

ep(t0 + T, t0)− 1
;

we have used the semigroup property in Theorem 7.2 (5), and the fact thatp and the time
scaleT are periodic imply thatep satisfiesep(t + T, t) = ep(a + T, a) for a, t ∈ T. Note
that the denominator inK(t, s) is not zero since we have assumed thatp(t1) > 0 for some
t1 ∈ [t0, t0 + T ]T. It is straightforward to realize that any functiony that satisfies (2.2) is also a
T -periodic solution of (1.1). By the properties of the time-scale exponential and the definition
of K(t, s), we have

(2.3) m :=
1

ep(t0 + T, t0)− 1
≤ K(t, s) ≤ ep(t0 + T, t0)

ep(t0 + T, t0)− 1
=: M, s ∈ [t, t + T ]T,

and

(2.4) 0 <
m

M
= e	p(t0 + T, t0) ≤

K(t, s)

K(t, t + T )
≤ 1, t ∈ [t0,∞)T, s ∈ [t, t + T ]T.

Now letB be the set of all realT -periodic continuous functions, augmented with the usual linear
structure and the supremum norm

‖y‖ = sup
t∈[t0,t0+T ]T

|y(t)|.

ThenB is a Banach space with cone

S =
{

y ∈ B : y(t) ≥ m

M
‖y‖, t ∈ [t0,∞)T

}
.

Define a mappingL : B → B by

(Ly)(t) = λ

∫ t+T

t

K(t, s)h(s)f(y(s− τ(s)))∆s.

Lemma 2.1. The operatorL defined above satisfiesLS ⊂ S.

Proof. It follows using standard reasoning thatL is completely continuous on bounded subsets
of S, and fory ∈ S,

(Ly)(t) ≤ λM

∫ t0+T

t0

h(s)f(y(s− τ(s)))∆s, t ∈ [t0,∞)T,
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4 DOUGLAS R. ANDERSON ANDJOAN HOFFACKER

so that

(Ly)(t) ≥ λm

∫ t0+T

t0

h(s)f(y(s− τ(s)))∆s ≥ m

M
‖Ly‖.

Lemma 2.2. Assume that there exist two distinct positive numbersa andb such that

(2.5) max
0≤u≤a

f(u) ≤ a

λA
, min

mb
M
≤u≤b

f(u) ≥ b

λB
,

where

(2.6) A := max
t∈[t0,t0+T ]T

∫ t0+T

t0

K(t, s)h(s)∆s, B := min
t∈[t0,t0+T ]T

∫ t0+T

t0

K(t, s)h(s)∆s.

Then there existsy ∈ S which is a fixed point ofL and satisfiesmin{a, b} ≤ ‖y‖ ≤ max{a, b}.
Proof. Note thatA, B > 0. Let Sζ = {w ∈ S : ‖w‖ < ζ}. Assume thata < b. Then, for any
y ∈ S which satisfies‖y‖ = a, in view of (2.5), we have

(2.7) (Ly)(t) ≤
(

λ

∫ t+T

t

K(t, s)h(s)∆s

)
· a

λA
≤ λA · a

λA
= a.

That is,‖Ly‖ ≤ ‖y‖ for y ∈ ∂Sa. For anyy ∈ S which satisfies‖y‖ = b, we have

(2.8) (Ly)(t) ≥
(

λ

∫ t+T

t

K(t, s)h(s)∆s

)
· b

λB
≥ λB · b

λB
= b.

That is, we have‖Ly‖ ≥ ‖y‖ for y ∈ ∂Sb. In view of Theorem 1.1, there existsy ∈ S which
satisfiesa ≤ ‖y‖ ≤ b such thatLy = y. If a > b, (2.7) is replaced by(Ly)(t) ≥ b in view
of (2.5), and (2.8) is replaced by(Ly)(t) ≤ a in view of (2.5). The same conclusion then
follows.

Theorem 2.3. Assumè 0 = ∞ and`∞ = ∞. Then for anyλ ∈ (0, λ†), equation(1.1) has at
least two positive periodic solutions, where

λ† :=
1

A
sup
r>0

r

max0≤u≤r f(u)
,

for A defined in(2.6).

Proof. Let q(r) := r/(A max0≤u≤r f(u)). Clearly q ∈ C((0,∞), (0,∞)). By the choices
`0 = ∞ and`∞ = ∞, we see further thatlimr→0 q(r) = limr→∞ q(r) = 0. Thus, there exists
r0 > 0 such thatq(r0) = maxr>0 q(r) = λ†. For anyλ ∈ (0, λ†), by the intermediate value
property, there exista1 ∈ (0, r0) anda2 ∈ (r0,∞) such thatq(a1) = q(a2) = λ. Thus, we
havef(u) ≤ a1/(λA) for u ∈ [0, a1] and f(u) ≤ a2/(λA) for u ∈ [0, a2]. On the other
hand, there must existb1 ∈ (0, a1) and b2 ∈ (a2,∞) such thatf(u)/u ≥ M/(λmB) for
u ∈ (0, b1] ∪ [mb2

M
,∞). That is,f(u) ≥ b1/(λB) for u ∈ [mb1

M
, b1] andf(u) ≥ b2/(λB) for

u ∈ [mb2
M

, b2]. An application of Lemma 2.2 leads to two distinct solutions of (1.1).

Corollary 2.4. If either `0 = ∞ or `∞ = ∞, then for any0 < λ < λ†, equation(1.1) has at
least one positive periodic solution.

Theorem 2.5. Assumè 0 = 0 and`∞ = 0. Then for anyλ > λ††, equation(1.1) has at least
two positive periodic solutions, where

λ†† :=
1

B
inf
r>0

r

minmr
M
≤u≤r f(u)

,

for B defined in(2.6).
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Proof. Let v(r) := r/(B minmr
M
≤u≤r f(u)). Clearly,v ∈ C((0,∞), (0,∞)). By the choices

`0 = 0 and`∞ = 0, we see thatlimr→0 v(r) = limr→∞ v(r) = ∞. Thus, there existsr0 > 0
such thatv(r0) = minr>0 v(r) = λ††. For anyλ > λ††, there existb1 ∈ (0, r0) andb2 ∈ (r0,∞)
such thatv(b1) = v(b2) = λ. Thus, we havef(u) ≥ b1/(λB) for u ∈ [mb1

M
, b1] andf(u) ≥

b2/(λB) for u ∈ [mb2
M

, b2]. On the other hand, sincè0 = 0 we see thatf(0) = 0 and that there
existsa1 ∈ (0, b1) such thatf(u)/u ≤ 1/(λA) for u ∈ (0, a1]. Thus, we havef(u) ≤ a1/(λA).
From`∞ = 0, we see that there existsa ∈ (b2,∞) such thatf(u)/u ≤ 1/(λA) for u ∈ [a,∞).
Let $ := max0≤u≤a f(u). Then we havef(u) ≤ a2/(λA) for u ∈ [0, a2], wherea2 > a and
a2 ≥ λ$A. An application of Lemma 2.2 leads to two distinct solutions of (1.1).

Corollary 2.6. If either `0 = 0 or `∞ = 0, then for anyλ > λ††, equation(1.1)has at least one
positive periodic solution.

Corollary 2.7. Assume that either̀0 = ∞ and`∞ = 0, or `∞ = ∞ and`0 = 0. Then for any
λ > 0, equation(1.1)has a positive periodic solution.

Proof. Suppose first that̀0 = ∞ and`∞ = 0 hold. If sup0≤u<∞ f(u) = D < ∞, thenλ† ≥
(1/A) supr>0(r/D) = ∞. If f is unbounded, then there exist a sequence{rn} such thatf(rn) =

max0≤u≤rn f(u) andlimn→∞ rn = ∞. Since`∞ = 0, we haveλ† ≥ (1/A) sup(rn/f(rn)) =
∞. Thus, we have provedλ† = ∞. In this case, our assertion follows from the remark following
Theorem 2.3. If̀ ∞ = ∞ and `0 = 0 hold, then we havelimu→∞ f(u) = ∞. Let {rn}
satisfy limn→∞ rn = ∞ and f(mrn/M) = minmrn

M
≤u≤rn f(u). Since`∞ = ∞, we have

λ†† ≤ (1/B) inf(rn/f(mrn/M)) = 0. Thus,λ†† = 0. In this case, our assertion follows from
Corollary 2.6.

Theorem 2.8.Assumè0, `∞ ∈ (0,∞). Then, for eachλ satisfying either

(2.9)
M

mB`∞
< λ <

1

A`0

or
M

mB`0

< λ <
1

A`∞
,

equation(1.1)has a positive periodic solution.

Proof. Assuming (2.9) holds, letε > 0 be such that
M

mB(`∞ − ε)
≤ λ ≤ 1

A(`0 + ε)
.

Since`0 > 0, there existsβ1 > 0 such thatf(u) ≤ (`0 + ε)u for 0 < u ≤ β1. So, fory ∈ S
with ‖y‖ = β1, we have

(Ly)(t) ≤ λ(`0 + ε)

∫ t+T

t

K(t, s)h(s)y(s− τ(s))∆s

≤ λ(`0 + ε)‖y‖
∫ t0+T

t0

K(t, s)h(s)∆s

≤ λ(`0 + ε)A‖y‖ ≤ ‖y‖.
Next, sincè ∞ > 0, there exists̄β2 > 0 such thatf(u) ≥ (`∞ − ε)u for u ≥ β̄2. If β2 =
max{2β1,

m
M

β̄2}, then fory ∈ S with ‖y‖ = β2,

(Ly)(t) ≥ λ(`∞ − ε)

∫ t+T

t

K(t, s)h(s)y(s− τ(s))∆s

≥ λ(`∞ − ε)
m

M
‖y‖

∫ t0+T

t0

K(t, s)h(s)∆s

≥ λ(`∞ − ε)
m

M
B‖y‖ ≥ ‖y‖.
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6 DOUGLAS R. ANDERSON ANDJOAN HOFFACKER

In view of Lemma 2.2, we see that equation (1.1) has a positive periodic solution. The other
case can be handled in a similar manner.

Corollary 2.9. Assume that either̀0 = ∞ and `∞ ∈ (0,∞), or `∞ = ∞ and `0 ∈ (0,∞).
Then for any0 < λ < 1/(A`0) or 0 < λ < 1/(A`∞), equation(1.1) has a positive periodic
solution.

Corollary 2.10. Assume that either̀0 = 0 and `∞ ∈ (0,∞), or `∞ = 0 and `0 ∈ ((0,∞).
Then for anyM/(mB`∞) < λ < ∞ or M/(mB`0) < λ < ∞, equation(1.1) has a positive
periodic solution.

3. EXISTENCE RESULTS FOR (1.3)

Similarly, we can also discuss equation (1.3). By (1.3) and Theorem 7.2, we have

x(t) = λ

∫ t+T

t

G(t, s)h(s)f(x(s− τ(s)))∆s,

where

G(t, s) :=
e	p(s, t0)

e	p(t, t0)− e	p(t + T, t0)
=

ep(t + T, s)

ep(t0 + T, t0)− 1

satisfies

m = K(t, t) = G(t0, t0 + T ) = G(t, t + T ) ≤ G(t, s) ≤ G(t, t) = K(t0, t0 + T ) = M,

and
m

M
=

G(t, t + T )

G(t, t)
≤ G(t, s)

G(t, t)
≤ 1.

Let

A∗ := max
t∈[t0,t0+T ]T

∫ t0+T

t0

G(t, s)h(s)∆s, B∗ := min
t∈[t0,t0+T ]T

∫ t0+T

t0

G(t, s)h(s)∆s.

Then we have the following results.

Theorem 3.1.Suppose either̀0 = ∞ or `∞ = ∞. Then for anyλ ∈ (0, λ), equation(1.3)has
a positive periodic solution, where

λ =
1

A∗
sup
r>0

r

max0≤u≤r f(u)
.

Theorem 3.2. Supposè0 = ∞ and`∞ = ∞. Then for anyλ ∈ (0, λ), equation(1.3) has at
least two positive periodic solutions.

Theorem 3.3. Suppose either̀0 = 0 or `∞ = 0. Then for anyλ > λ, equation(1.3) has a
positive periodic solution, where

λ =
1

B∗ inf
r>0

r

minmr
M
≤u≤r f(u)

.

Example 3.1. Fix η > 0 and letT = ηZ. For fixed constantsp, λ > 0, chooseτ(t) ≡ nη for
somen ∈ N, and leth be a positive right-dense continuousT -periodic function on this time
scale. Takef(u) := u2, so that̀ 0 = 0 and`∞ = ∞. Then we have that(1.3) is equivalent to

(3.1) x(t + η) = (1 + ηp)x(t)− (1 + ηp)ηλh(t)(x(t− nη))2.
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As developed earlier,T -periodic solutionsx of this equation satisfy

x(t) = ηλ

(t+T )/η−1∑
j=t/η

G(t, jη)h(jη)f(x(jη − nη)),

where

G(t, s) =
(1 + ηp)(t+T−s)/η

(1 + ηp)T/η − 1
,

m

M
=

G(t, t + T )

G(t, t)
= (1 + ηp)−T/η.

Sinceλ = ∞ andλ = 0, both Theorem 3.1 and Theorem 3.3 predict that (3.1) has a positive
periodic solution for anyλ > 0.

Theorem 3.4.Supposè0 = 0 and`∞ = 0. Then for anyλ > λ, equation(1.3)has at least two
positive periodic solutions.

Corollary 3.5. Suppose either̀0 = ∞ and `∞ = 0, or `∞ = ∞ and `0 = 0. Then for any
λ > 0, equation(1.3)has a positive periodic solution.

Theorem 3.6.Supposè0 ∈ (0,∞) and`∞ ∈ (0,∞). Then, for eachλ satisfying

M

mB∗`∞
< λ <

1

A∗`0

or
M

mB∗`0

< λ <
1

A∗`∞
,

equation(1.3)has a positive periodic solution.

Corollary 3.7. Suppose either̀0 = ∞ and`∞ ∈ (0,∞), or `∞ = ∞ and`0 ∈ (0,∞). Then for
any0 < λ < 1/(A∗`∞) or 0 < λ < 1/(A∗`0) equation(1.3)has a positive periodic solution.

Corollary 3.8. Suppose either̀0 = 0 and`∞ ∈ (0,∞), or `∞ = 0 and`0 ∈ (0,∞). Then for
anyM/(mB∗`∞) < λ < ∞ or M/(mB∗`0) < λ < ∞ equation(1.3)has a positive periodic
solution.

4. EXISTENCE RESULTS FOR (1.2) AND (1.4)

In a manner analogous to that of the previous sections, we get the existence of positive solu-
tions to (1.2) and (1.4); remember the additional assumption here of1 − µ(t)p(t) > 0 for all
t ∈ [t0,∞)T. For (1.2), that is

y∆(t) = −p(t)y(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T,

a periodic solutiony exists if and only ify satisfies

y(t) = λ

∫ t+T

t

γ(t, s)h(s)f(y(s− τ(s)))∆s, γ(t, s) :=
e−p(t + T, σ(s))

1− e−p(t0 + T, t0)
.

Then
e−p(t + T, σ(t))

1− e−p(t0 + T, t0)
= γ(t, t) ≤ γ(t, s) ≤ γ(t, t + T ) =

e−p(t + T, σ(t + T ))

1− e−p(t0 + T, t0)
,

so that
m

M
:=

γ(t, t)

γ(t, t + T )
=

1

e−p(σ(t0), σ(t0) + T )
= e−p(t0 + T, t0) < 1.

Likewise, for (1.4),

x∆(t) = 	(−p)(t)x(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T,

a solutionx would have to satisfy

x(t) = λ

∫ t+T

t

Γ(t, s)h(s)f(x(s− τ(s)))∆s, Γ(t, s) :=
e−p(σ(s), t)

1− e−p(t0 + T, t0)
.
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8 DOUGLAS R. ANDERSON ANDJOAN HOFFACKER

In this case the kernel bounds are
e−p(σ(t + T ), t)

1− e−p(t0 + T, t0)
= Γ(t, t + T ) ≤ Γ(t, s) ≤ Γ(t, t) =

e−p(σ(t), t)

1− e−p(t0 + T, t0)
,

so that, interestingly, we again have

(4.1)
m

M
:=

Γ(t, t + T )

Γ(t, t)
=

e−p(σ(t + T ), t)

e−p(σ(t), t)
= e−p(t0 + T, t0).

Compare (2.4) with (4.1); we point out that

e−p(t0 + T, t0) = e	p(t0 + T, t0)

if T = R.

5. EXTENDING TO A SYSTEM

In this section, we investigate the existence of positive periodic solutions for the two pairs of
higher-dimensional nonautonomous functional delta dynamic equations

(5.1) y∆(t) = −P (t)yσ(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T

and

(5.2) y∆(t) = −P (t)y(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T,

or

(5.3) x∆(t) = − (	P (t)) xσ(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T

and

(5.4) x∆(t) = 	(−P )(t)x(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T,

where

P (t) = diag[p1(t), p2(t), . . . , pn(t)], h(t) = diag[h1(t), h2(t), . . . , hn(t)];

for all casespi, hi (1 ≤ i ≤ n) andτ are right-dense continuousT -periodic functions. We
assume thatλ, T > 0, and thathi andpi are nonnegative withhi andpi not identically zero
in [t0, T + t0]T; additionally, we must have1 − µ(t)pi(t) > 0 for all t ∈ [t0,∞)T in (5.2) and
(5.4) for 1 ≤ i ≤ n. Throughout we also assume thatf : Rn

+ → R+ is continuous where
Rn

+ = {(y1, . . . , yn)T ∈ Rn : yi ≥ 0, 0 ≤ i ≤ n} andR+ = {y ∈ R : y > 0}. For a related
discrete version of this discussion, see [9].

DefineK(t, s) = diag[K1(t, s), K2(t, s), . . . , Kn(t, s)] where

Ki(t, s) :=
epi

(s, t)

epi
(t0 + T, t0)− 1

.

Then using equation (2.2) we have that

y(t) = λ

∫ t+T

t

K(t, s)h(s)f(y(s− τ(s)))∆s

is a T -periodic solution of equation (5.1). Also using equations (2.3), (2.4) we have fors ∈
[t, t + T ]T that

(5.5) mi :=
1

epi
(t0 + T, t0)− 1

≤ Ki(t, s) ≤
epi

(t0 + T, t0)

epi
(t0 + T, t0)− 1

=: Mi,

and

(5.6) 0 <
mi

Mi

= e	pi
(t0 + T, t0) ≤

K(t, s)

K(t, t + T )
≤ 1, t ∈ [t0,∞)T, s ∈ [t, t + T ]T.
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Let

γ = min

{
mi

Mi

: 1 ≤ i ≤ n

}
.

Thenγ ∈ (0, 1). Again letB be the Banach space of continuous andT -periodic functions
augmented with the supremum norm

||y|| = max
1≤i≤n

|yi|0, where|yi|0 = sup
t∈[t0,t0+T ]T

|yi(t)|.

Define a coneS by
S = {y ∈ B : yi(t) ≥ γ|yi|0, 1 ≤ i ≤ n},

and for a positive numberr, defineΩr by

Ωr = {y ∈ S : |yi|0 < r : 1 ≤ i ≤ n}.
Note that∂Ωr = {y ∈ S : |yi|0 = r : 1 ≤ i ≤ n}. Define a mappingL : B → B by

(Ly)(t) = λ

∫ t+T

t

K(t, s)h(s)f(y(s− τ(s)))∆s,

and denote
(Ly) = (L1y, L2y, . . . , Lny)T .

For the remainder of this section we will use the following notations:

qi = min
t0≤u≤t0+T

hi(u), ri = max
t0≤u≤t0+T

hi(u)

l0i = lim
u→0

fi(u)
u

∈ [0,∞], l∞i = lim
u→∞

fi(u)

u
∈ [0,∞],

for 1 ≤ i ≤ n and

q = min
1≤i≤n

qi r = max
1≤i≤n

ri

m = min
1≤i≤n

mi M = max
1≤i≤n

Mi.

Lemma 5.1. The operatorL satisfiesLS ⊂ S.

Proof. It follows using standard reasoning thatL is completely continuous on bounded subsets
of S. Then fory ∈ S,

(Liy)(t) ≤ λMi

∫ t0+T

t0

hi(s)fi(y(s− τ(s)))∆s, t ∈ [t0,∞)T,

so that

(Liy)(t) ≥ λmi

∫ t0+T

t0

h(s)f(y(s− τ(s)))∆s ≥ mi

Mi

|Liy|0 ≥ γ|Liy|0,

and soLS ⊂ S.

Lemma 5.2. For 1 ≤ i ≤ n, assume that there exist distinct positive numbersai and bi such
that

(5.7) max
0≤u≤ai

fi(u) ≤ ai

λAi

, min
mibi
Mi

≤u≤bi

fi(u) ≥ bi

λBi

where

(5.8) Ai := max
t∈[t0,t0+T ]T

∫ t

t0

Ki(t, s)hi(s)∆s, Bi := min
t∈[t0,t0+T ]T

∫ t

t0

Ki(t, s)hi(s)∆s.
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Leta = max{ai : 1 ≤ i ≤ n} andb = min{bi : 1 ≤ i ≤ n}. Then there existsy ∈ S which is
a fixed point ofL and satisfies

min{a, b} ≤ ‖y‖ ≤ max{a, b}.

Proof. As in Lemma 2.2, ifa < b, then for anyy ∈ ∂Ωai
we have(Liy) ≤ ai ≤ a for 1 ≤ i ≤ n,

that is‖Ly‖ ≤ ‖y‖. Also for y ∈ Ωbi
, (Liy) ≥ bi ≥ b for 1 ≤ i ≤ n, that is‖Ly‖ ≥ ‖y‖.

In view of Theorem 1.1, there existsy ∈ S which satisfiesa ≤ ‖y‖ ≤ b such thatLy = y. If
a > b, then the same conclusion follows.

Similar to the theorems in Section 2, the following results may be proven.

Theorem 5.3.Assumel0i = ∞ andl∞i = ∞ for 1 ≤ i ≤ n. Then for anyλ ∈ (0, λ∗), equation
(5.1)has at least two positive solutions, where

λ∗ := min
1≤i≤n

 1

Ai

sup
r>0

r

max
0≤u≤r

fi(u)

 ,

for Ai as defined in(5.8).

Corollary 5.4. If either l0i = ∞ for 1 ≤ i ≤ n, or l∞i = ∞ for 1 ≤ i ≤ n, then for any
0 < λ < λ∗, equation(5.1)has at least one positive periodic solution.

Theorem 5.5.Assumel0i = 0 andl∞i = 0 for 1 ≤ i ≤ n. Then for anyλ > λ∗∗, equation(5.1)
has at least two positive periodic solutions, where

λ∗∗ = max
1≤i≤n

 1

Bi

inf
r>0

r

min
mir

Mi
≤u≤r

f(u)

 ,

for Bi as defined in(5.8).

Corollary 5.6. If either l0i = 0 for 1 ≤ i ≤ n, or l∞i = 0 for 1 ≤ i ≤ n, then for anyλ > λ∗∗,
equation(5.1)has at least one positive periodic solution.

Corollary 5.7. Assume that eitherl0i = ∞ and l∞i = 0 for 1 ≤ i ≤ n, or l0i = 0 and l∞i = ∞
for 1 ≤ i ≤ n. Then for anyλ > 0 equation(5.1)has a positive periodic solution.

Similarly one may discuss existence results for equation (5.3).

6. CORRESPONDING NABLA EQUATIONS

Consider briefly nabla dynamic equations, introduced in [2] and explored in [4, Chapter
3]. Just as in the previous sections, we may also investigate the existence of positive periodic
solutions for the two pairs of first-order nonautonomous functional nabla dynamic equations

(6.1) y∇(t) = −q(t)yρ(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T

and

(6.2) y∇(t) = −q(t)y(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T,

or

(6.3) x∇(t) = − (	νq(t)) xρ(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T

and

(6.4) x∇(t) = 	ν(−q)(t)x(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T,
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where for these casesq, h and τ are left-dense continuousT -periodic functions. Note that
ν(t) = t − ρ(t) and	νq := −q

1−νq
. Again we assume thatλ, T > 0, and thath and q are

nonnegative withh andq not identically zero in[t0, T + t0]T; additionally, we must have1 −
ν(t)q(t) > 0 for all t ∈ [t0,∞)T in (6.1) and (6.3). Moreover, the time scaleT is periodic in the
sense thatt + T ∈ T andν(t) = ν(t + T ) for all t ∈ T. Using the nabla exponential functionê
and its properties, aT -periodic solutiony of (6.1) satisfies

y(t) = λ

∫ t+T

t

K̂(t, s)h(s)f(y(s− τ(s)))∇s, K̂(t, s) :=
êq(s, t)

êq(t0 + T, t0)− 1
,

while aT -periodic solutionx of (6.3) satisfies

x(t) = λ

∫ t+T

t

Ĝ(t, s)h(s)f(x(s− τ(s)))∇s

for

Ĝ(t, s) :=
ê	νq(s, t0)

ê	νq(t, t0)− ê	νq(t + T, t0)
=

êq(t + T, s)

êq(t0 + T, t0)− 1
.

Similarly for the other pair,y is aT -periodic solution of (6.2) if and only if

y(t) = λ

∫ t+T

t

γ̂(t, s)h(s)f(y(s− τ(s)))∇s, γ̂(t, s) :=
ê−q(t + T, ρ(s))

1− ê−q(t0 + T, t0)
,

andx is aT -periodic solution of (6.4) if and only if

x(t) = λ

∫ t+T

t

Γ̂(t, s)h(s)f(x(s− τ(s)))∇s, Γ̂(t, s) :=
ê−q(ρ(s), t)

1− ê−q(t0 + T, t0)
.

One may also consider the higher-dimensional nabla dynamic equations

(6.5) y∇(t) = −Q(t)yρ(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T

and

(6.6) y∇(t) = −Q(t)y(t) + λh(t)f(y(t− τ(t))), t ∈ [t0,∞)T,

or

(6.7) x∇(t) = − (	νQ(t)) xρ(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T

and

(6.8) x∇(t) = 	ν(−Q)(t)x(t)− λh(t)f(x(t− τ(t))), t ∈ [t0,∞)T,

where

Q(t) = diag[q1(t), q2(t), . . . , qn(t)], h(t) = diag[h1(t), h2(t), . . . , hn(t)];

for all casesqi, hi (1 ≤ i ≤ n) and τ are left-dense continuousT -periodic functions. We
assume thatλ, T > 0, and thathi andqi are nonnegative withhi andpi not identically zero
in [t0, T + t0]T; additionally, we must have1 − ν(t)qi(t) > 0 for all t ∈ [t0,∞)T in (6.6) and
(6.8) for 1 ≤ i ≤ n. Throughout we also assume thatf : Rn

+ → R+ is continuous where
Rn

+ = {(y1, . . . , yn)T ∈ Rn : yi ≥ 0, 0 ≤ i ≤ n} andR+ = {y ∈ R : y > 0}.
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7. APPENDIX ON T IME SCALES

A time scale is simply any nonempty closed set of real numbers, and the time-scale calculus
is the unification and extension of discrete calculus, quantum calculus, continuous calculus, and
indeed arbitrary real-number calculus to a new, more general and overarching theory [7]. The
definitions that follow here will serve as a short summary of the time-scale calculus; they can
be found in [3] and [4] and the references therein.

Definition 7.1. Define the forward (backward) jump operatorσ(t) at t for t < sup T (respec-
tively ρ(t) at t for t > inf T) by

σ(t) = inf{τ > t : τ ∈ T}, (ρ(t) = sup{τ < t : τ ∈ T}, ) for all t ∈ T.

Also defineσ(sup T) = sup T, if sup T < ∞, andρ(inf T) = inf T, if inf T > −∞. Define the
graininess functionµ : T → R by µ(t) = σ(t)− t.

Throughout this work the assumption is made thatT is unbounded above and has the topology
that it inherits from the standard topology on the real numbersR. Also assume throughout that
a < b are points inT and define the time scale interval[a, b]T = {t ∈ T : a ≤ t ≤ b}. The
jump operatorsσ andρ allow the classification of points in a time scale in the following way: If
σ(t) > t, then the pointt is right-scattered, while ifρ(t) < t, thent is left-scattered. Ifσ(t) = t,
thent is right-dense; ift > inf T andρ(t) = t, thent is left-dense. The following defines the
so-called delta derivative.

Definition 7.2. Fix t ∈ T and lety : T → R. Definey∆(t) to be the number (if it exists) with
the property that givenε > 0 there is a neighbourhoodU of t such that, for alls ∈ U ,

|[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|.

Call y∆(t) the (delta) derivative ofy(t) at t.

Definition 7.3. If F∆(t) = f(t), then define the (Cauchy) delta integral by∫ t

a

f(s)∆s = F (t)− F (a).

Similar definitions hold for the nabla derivative and integral. The following theorem is due to
Hilger [7].

Theorem 7.1.Assume thatf : T → R and lett ∈ T.

(1) If f is differentiable att, thenf is continuous att.
(2) If f is continuous att andt is right-scattered, thenf is differentiable att with

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
.

(3) If f is differentiable andt is right-dense, then

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(4) If f is differentiable att, thenf(σ(t)) = f(t) + µ(t)f∆(t).

Next we define the important concept of right-dense continuity. An important fact concerning
right-dense continuity is that every right-dense continuous function has a delta antiderivative
[3, Theorem 1.74]. This implies that the delta definite integral of any right-dense continuous
function exists.
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Definition 7.4. The functionf : T → R is right-dense continuous, denotedf ∈ Crd(T; R),
providedf is continuous at every right-dense pointt ∈ T, andlims→t− f(s) exists and is finite
at every left-dense pointt ∈ T.

A functionp : T → R is regressive provided1 + µ(t)p(t) 6= 0,∀t ∈ T. Let

R := {p ∈ Crd(T; R) : 1 + µ(t)p(t) 6= 0, t ∈ T}.

Also, p ∈ R+ iff 1 + µ(t)p(t) > 0, ∀t ∈ T. Then if p ∈ R, t0 ∈ T, one can define the
generalized exponential functionep(t, t0) to be the unique solution of the initial value problem

x∆ = p(t)x, x(t0) = 1.

Many of the properties of this generalized exponential functionep(t, t0) listed in Theorem 7.2
below are employed throughout this work.

Theorem 7.2. [3, Theorem 2.36]If p, q ∈ R ands, t ∈ T, then

(1) e0(t, s) ≡ 1 andep(t, t) ≡ 1;
(2) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(3) 1

ep(t,s)
= e	p(t, s), where	p := −p

1+µp
;

(4) ep(t, s) = 1
ep(s,t)

= e	p(s, t);
(5) ep(t, s)ep(s, r) = ep(t, r);
(6) ep(t, s)eq(t, s) = ep⊕q(t, s), wherep⊕ q := p + q + µpq;
(7) ep(t,s)

eq(t,s)
= ep	q(t, s).

Again a similar list of properties for the nabla exponential functionê exists; see [4, Chapter 3].
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