\qquad

CORRIGENDUM FOR DIFFERENTIAL EQUATIONS FOR INDICATRICES, SPACELIKE AND TIMELIKE CURVES

SAMEER, PRADEEP KUMAR PANDEY

Received 9 January, 2024; accepted 19 January, 2024; published 15 February, 2024.

Department of Mathematics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India. sksameer08@gmail.com, pandeypkdelhi@gmail.com

Abstract. This article is a corrigendum to AJMAA Volume 20, Issue 2, Article 7, PDF Link: https://ajmaa.org/cgi-bin/paper.pl?string=v20n2/V20I2P7.tex.

[^0]The third section of the paper deals with "DERIVATION OF THE DIFFERENTIAL EQUATIONS". We thank the journal editors and Prof. Yücesan for providing inputs about an important reference [24]. In their article Başak et al. [24] obtained a general differential equation satisfied by the distance function for non-null (and similarly for null) Frenet curves in Minkowski 3 -space.

The equations (3.1), (3.7), (3.13), and (3.19) should be replaced as follows:

$$
\left\{\begin{array}{l}
T^{\prime}=\kappa N \tag{3.1}\\
N^{\prime}=-\kappa T+\tau B \\
B^{\prime}=\tau N
\end{array}\right.
$$

where $\langle T, T\rangle=1,\langle N, N\rangle=1,\langle B, B\rangle=-1,\langle T, N\rangle=\langle T, B\rangle=\langle N, B\rangle=0$ [14].

$$
\left\{\begin{array}{l}
T^{\prime}=\kappa N \tag{3.7}\\
N^{\prime}=\kappa T+\tau B \\
B^{\prime}=\tau N
\end{array}\right.
$$

where $\langle T, T\rangle=1,\langle N, N\rangle=-1,\langle B, B\rangle=1,\langle T, N\rangle=\langle T, B\rangle=\langle N, B\rangle=0$ [14].

$$
\left\{\begin{array}{l}
T^{\prime}=\kappa N \tag{3.13}\\
N^{\prime}=\tau N \\
B^{\prime}=-\kappa T-\tau B
\end{array}\right.
$$

where $\langle T, T\rangle=1,\langle N, B\rangle=1,\langle N, N\rangle=\langle B, B\rangle=\langle T, N\rangle=\langle T, B\rangle=0$ [14].

$$
\left\{\begin{array}{l}
T^{\prime}=\kappa N \tag{3.19}\\
N^{\prime}=\kappa T+\tau B \\
B^{\prime}=-\tau N
\end{array}\right.
$$

where $\langle T, T\rangle=-1,\langle N, N\rangle=1,\langle B, B\rangle=1,\langle T, N\rangle=\langle T, B\rangle=\langle N, B\rangle=0$ [14].
The equations (3.2), (3.8), (3.20) should be replaced as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
\langle\beta, T\rangle^{\prime}=1+\kappa\langle\beta, N\rangle \\
\langle\beta, N\rangle^{\prime}=-\kappa\langle\beta, T\rangle+\tau\langle\beta, B\rangle \\
\langle\beta, B\rangle^{\prime}=\tau\langle\beta, N\rangle
\end{array}\right. \tag{3.2}\\
& \left\{\begin{array}{l}
\langle\beta, T\rangle^{\prime}=1+\kappa\langle\beta, N\rangle \\
\langle\beta, N\rangle^{\prime}=\kappa\langle\beta, T\rangle+\tau\langle\beta, B\rangle \\
\langle\beta, B\rangle^{\prime}=\tau\langle\beta, N\rangle
\end{array}\right. \tag{3.8}\\
& \left\{\begin{array}{l}
\langle\beta, T\rangle^{\prime}=-1+\kappa\langle\beta, N\rangle \\
\langle\beta, N\rangle^{\prime}=\kappa\langle\beta, T\rangle+\tau\langle\beta, B\rangle \\
\langle\beta, B\rangle^{\prime}=-\tau\langle\beta, N\rangle
\end{array}\right. \tag{3.20}
\end{align*}
$$

Moreover, the proof of the theorems (3.4), (3.5), (3.7) follows on the pattern of Başak et al. [24].
An addition of reference
■ B. ÖZÜLKÜ, A. YÜCESAN, The characterizations of some special Frenet curves in Minkowski 3-space, Malaya J. Matematik, 8 (2020), No. 4, pp. 2137-2143; to the list of References as below.

References

[1] A. T. Ali, Position vectors of general helices in Euclidean 3-space, Bull. Math. Ana. App., 3 (2010), No. 2, pp. 198-205.
[2] A. T. ALI, M. TURGUT, Some characterizations of slant helices in the Euclidean space \mathbb{E}^{n}, Hacettepe J. Math. Stat., 39 (2010), No. 3, pp. 327-336.
[3] B. SAHINER, Direction curves of tangent indicatrix of a curve, Applied Math. Comp., 343 (2019), 273-284.
[4] B. Y. CHEN, When does the position vector of a space curve always lie in its rectifying plane?, The American mathematical monthly, 110 (2003), No. 2, pp. 147-152.
[5] B. Y. CHEN, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math., 48 (2017), No. 2, pp. 209-214. doi:10.5556/j.tkjm.48.2017.2382
[6] B. YILMAZ, A. HAS, New Approach to Slant Helix, I. Elect. J. Geom., 12 (2019), No. 1, pp. 111-115. DOI:10.36890/IEJG. 545879
[7] C. CAMCI, L. KULA and M. ALTINOK, On spherical slant helices in euclidean 3-space, arXiv preprint arXiv:1308.5532, 2013.
[8] J. ARROYO, M. BARROS, and O. J. GARAY, A characterisation of helices and Cornu spirals in real space forms, Bull. Aust. Math. Soc., 56 (1997), No. 1, pp. 37-49.
[9] J. H. CHOI, Y. H. KIM, Associated curves of a Frenet curve and their applications, Applied Math. Comp., 218 (2012), No. 18, pp. 9116-9124. doi:10.1016/j.amc.2012.02.064
[10] L. KULA, N. EKMEKCI, Y. YAYLI and K. ILARSLAN, Characterizations of slant helices in Euclidean 3-space, Turk. J. Math., 34 (2010), No. 2, pp. 261-274. DOI: 10.3906/mat-0809-17
[11] L. KULA, Y. YAYLI, On slant helix and its spherical indicatrix, Applied Math. Comp., 169 (2005), No. 1, pp. 600-607. https://doi.org/10.1016/j.amc.2004.09.078
[12] M. BARROS, General helices and a theorem of Lancret, Proc. American Math. Soc., 125 (1997), No. 5, pp. 1503-1509. DOI:10.1090/S0002-9939-97-03692-7
[13] M. BARROS, A. FERRANDEZ, P. LUCAS, and M. A. MERONO, General helices in the threedimensional Lorentzian space forms, Rocky Mountain J. Math., 31 (2001), No. 2, pp. 373-388. DOI: 10.1216/rmjm/1020171565
[14] M. PETROVIC-TURGASEV, E. Sucurovic, Some characterizations of the spacelike, the timelike and the null curves on the pseudohyperbolic space H_{0}^{2} in E_{1}^{3}, Kragujevac J. Math., (2000), No. 22, pp. 71-82.
[15] N. EKMEKCI, O. Z. OKUYUCU and Y. YAYLI, Characterization of Spherical Helices in Euclidean 3-Space, An. St. Univ. Ovidius Constanta, 22 (2014), No. 2, pp. 99-108.
[16] P. LUCAS, J. A. ORTEGA-YAGUES, Slant helices in the three-dimensional sphere, J. Korean Math. Soc., 54 (2017), No. 4, pp. 1331-1343. https://doi.org/10.4134/JKMS.j160508
[17] P. LUCAS, J. A. O. ORTEGA-YAGUES, Slant helices: a new approximation, Turk. J. Math., 43 (2019), No. 1, pp. 473-485. DOI: 10.3906/mat-1809-16
[18] R. S. MILLMAN, G. D. PARKER, Elements of Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1977.
[19] S. DESHMUKH, B. Y. CHEN, and S. H. ALSHAMMARI, On rectifying curves in Euclidean 3space, Turk. J. Math., 42 (2018), No. 2, pp. 609-620. DOI: 10.3906/mat-1701-52
[20] S. DESHMUKH, B. Y. CHEN and N. B. TURKI, A differential equations for Frenet curves in Euclidean 3-space and its applications, Romanian J. Math. and Comp. Sci., 8 (2018), No. 1, pp. 1-6.
[21] S. IZUMIYA, N. TAKEUCHI, New special curves and developable surfaces, Turk. J. Math., 28 (2004), pp. 153-163.
[22] Z. OZDEMIR, I. GOK, F. N. EKMEKCI and Y. YAYLI, A New Approach on Type-3 Slant Helix in \mathbb{E}^{4}, Gen. Math. Notes, 28 (2015), No. 1, pp. 40-49.
[23] Y. C. WONG, On an explicit characterization of spherical curves, Proc. American Math. Soc., 34 (1972), No. 1, pp. 239-242.
[24] B. ÖZÜLKÜ, A. YÜCESAN, The characterizations of some special Frenet curves in Minkowski 3-space, Malaya J. Matematik, 8 (2020), No. 4, pp. 2137-2143.

[^0]: Key words and phrases: Helix; Slant helix; Tangent, Binormal, Principal Normal indicatrices; Spacelike curves; and Timelike curves.

