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direct numerical approximation of the problem, which has received little attention in the liter-
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established, and numerical simulations are conducted for both the isotropic and anisotropic me-
dia cases. The obtained solution is compared to the homogenized solution, and the results show
that this approach provides an adequate approximation of the exact solution.
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1. INTRODUCTION

There exist numerous practical computational problems that have solutions with highly oscil-
latory behavior, such as the computation of flow in heterogeneous porous media for petroleum
and groundwater reservoir simulation (see, for example, [15] and the bibliographies therein). If
we consider a porous medium with periodic structure, where the period size is much smaller
than the size of the reservoir, denoted by ε (0 < ε << 1), an asymptotic analysis as ε ap-
proaches 0 is necessary. We will consider the following model problem:

(Pε)

{
−div (Kε (x)∇uε) = f in Ω,

uε = 0 on Γ.

Ω ⊂ Rn (n = 1, 2, 3) is a bounded polygonal convex domain with a periodic structure and
smooth boundary Γ, Kε(x) = K(x /ε), K is a symmetric and uniformly positive definite ma-
trix in Ω which has discontinuities across a given interface. The case of piecewise constant
coefficient Kε is very important for the applications.
In porous medium flow, the problem (Pε) results from Darcy’s law and continuity for a single
phase, incompressible flow through a horizontal heterogeneous porous medium with periodic
structure.
Using homogenization tools (see e.g. [5], [6], [17], [24]), the original problem (Pε) can be re-
placed by a homogenized problem that models some average quantity without the oscillations.
Homogenized equations are extremely useful for computational purposes whenever they are
applicable. This theory is applicable to models with highly oscillating coefficients so that the
examples with ε = 1/2, ε = 1/4, ... are beyond the framework.
The numerical approximation of partial differential equations with highly oscillating coeffi-
cients has been a topic of interest for many years, with various methods developed (see, for
example, [2], [10], [20], [21], [22], [27] and the references therein).
The case in which Kε has continuous coefficients has been extensively studied. Some studies
have also examined the situation involving discontinuous coefficients, such as in [7] and [8],
where the authors analyze the 1D problem by investigating specific correctors derived from the
asymptotic expansion in order to obtain a suitable approximation of the exact solution. In [2]
and [22], the numerical approximation of the problem with discontinuous coefficients was car-
ried out using finite element methods, no error estimate has been established and remains an
unresolved issue to the best of our knowledge.
The approximation of the problem with discontinuous coefficients by a finite volume method
has only been approached recently in [20], only in 1D case, where errors estimates are estab-
lished.
The elliptic problems with discontinuous coefficients (referred to as interface problems) natu-
rally arise in mathematical modeling processes involving heat and mass transfer, diffusion in
composite media, flows in porous media, etc.
In this paper, the approximation is performed using a cell-centered finite volume method (see,
for example, [11], [12], [13], [14]), focusing on the two-dimensional problem (2D problem).
The numerical simulations are carried out using the homogenized solution as a reference solu-
tion.
The paper is organized as follows: Section 2 presents a description of the methods employed as
well as the error estimates obtained. Section 3 is dedicated to numerical simulations. Finally,
some concluding remarks are presented in Section 4.

AJMAA, Vol. 21 (2024), No. 1, Art. 13, 20 pp. AJMAA

https://ajmaa.org
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2. FINITE VOLUME APPROXIMATION

We will focus to the case where Kε is a diagonal matrix with piecewise constant coefficients,
and we will assume that Ω = (0, 1)× (0, 1). In this case the problem (Pε) can be simply written
as follows:

(2.1)

 − (Kε
11u

ε
x)x −

(
Kε

22u
ε
y

)
y
= f(x, y) in Ω,

uε(0, y) = uε(x, 0) = uε(1, y) = uε(x, 1) = 0.

where Kε
ll(x) = Kll (x /ε) = Kll(y), with y = x /ε, Kll(l = 1, 2) are piecewise constant

(see [4] for the case of piecewise continuous functions) and periodic functions of period 1 on
(0, 1)× (0, 1) . In all of this paper we make the following assumptions:

(A1) α < Kε(x)ξ.ξ ≤ β for a.e. x ∈ Ω and ∀ ξ ∈ R2, with some α, β ∈ R∗
+.

(A2) f ∈ L2 (]Ω[) .

It is well known that assumptions (A1) and (A2) ensure the existence and uniqueness of the
solution of the problem (2.1). From homogenization theory (see e.g. [6, 17, 24]) follows:

uε ⇀ u in H1
0 (Ω) (consists of functions in Sobolev space H1 (Ω) that vanish on Γ)

weakly, where u (homogenized solution) satisfies the following homogenized problem:

(2.2)
{

−div (K∗ (x)∇u) = f in Ω,
u = 0 on Γ.

Tensor K∗ is called effective (or homogenized) and calculed by solving the so-called local or
cell problem. He is still symmetric and positive definite, but in general cases, even with the
permeability at the microscopic scale in the porous medium being isotropic, we may have an
effective tensor which is significantly anisotropic (see e.g. [1]).
We are interested here in the approximation of (1) by a cell-centenred finite volume method. In
order to do this, let us define a Ω mesh, denoted by Ωh, satisfying the following definition.

Definition 2.1. Let be Ωh an uniform mesh of Ω given by partitioning Ω in the x and y directions
as:
0 = x 1

2
< x1 < x 3

2
< x2 < ... < xi− 1

2
< xi < xN+ 1

2
= 1,

0 = y 1
2
< y1 < y 3

2
< y2 < ... < yj− 1

2
< yi < yN+ 1

2
= 1.

We then define the cells (finite volumes) to be the square
Vi,j =

(
xi− 1

2
, xi+ 1

2

)
×

(
yj− 1

2
, yj+ 1

2

)
, 1 ≤ i, j ≤ N, with the center (xi, yj) and nodes of half

indices. Let be

h = xi+1 − xi = yj+1 − yj, 1 ≤ i, j ≤ N − 1, h = xi+ 1
2
− xi− 1

2
= yi+ 1

2
− yi− 1

2
, 1 ≤ i, j ≤ N.

Ωh is then defined as follows:

(2.3) Ωh = { Vi,j, 1 ≤ i, j ≤ N} , with Vi,j as in the below graphic

Ωh is an admissible mesh of Ω in the sens of Definitions 3.1 and 3.7 which are in [13] (pp. 37
& 79).
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4 J. D. BAMBI PEMBA AND B. ONDAMI

Figure 1: Cells graphics

2.1. Cell-Centered Finite Volume Distcretization. The cell-centered finite volume approx-
imation consists in seeking a discrete approximate solution vector whose each component
uε
i,j ≈ uε (xi, xj) , is constant on each volume Vi,j .

Let Ωh be an admissible mesh, in the sense of Definition 2.1, such that the discontinuities of
tensor Kε coincide with the mesh interfaces. The principle of classical finite volume schemes
is to integrate the first equation of the problem (2.1) on each volume of the mesh Vi,j (see e.g.
[13]). So by using divergence formula to integrate the first equation of (2.1) on each Vi,j , one
has:

(2.4)
∑

σ∈∂Vi,j

−
∫
σ

Kε(x)∇uε(x).nVi,j ,σdγ(x) =

∫
Vi,j

f(x)dx

where ∂Vi,j denotes the set of edges of the control volume Vi,j and σ is any edge. nVi,j ,σ

is the normal unit vector to σ outward to Vi,j and dγ denotes the integration symbol for the
onedimensional Lebesgue mesure. The finite volume scheme for the numerical approximation
of the solution of Problem (2.1) is obtained by approximating the flux over each edge σ of Vi,j .
This yields:

(2.5)
∑

σ∈∂Vi,j

F ε
Vi,j ,σ

= m(Vi,j)fij,

where fij =
1

m(Vi,j)

∫
Vi,j

f(x)dx and F ε
Vi,j ,σ

is an approximation of∫
σ

−Kε
Vi,j

∇uε(x).nVi,j ,σdγ(x), K
ε
Vi,j

=
1

m (Vi,j)

∫
Vi,j

Kε (x) dx.

So, from (2.5) and using Figure 1, one has:

(2.6) FVi,j ,σ1 + FVi,j ,σ2 + FVi,j ,σ3 + FVi,j ,σ4 = m(Vi,j)fij,

where [13]:

(2.7) FVi,j ,σk
= −m(σm)λ

ε
Vi,j ,σm

uε
σm

− uε
ij

di,j,σm

, 1 ≤ m ≤ 4, 2 ≤ i, j ≤ N − 1,

(2.8) λε
Vi,j ,σm

= |Kε
Vi,j

.nVi,j ,σm| (|.| denotes the Eucludean norm) ,
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(2.9) m(σm) = h (uniform mesh) , di,j,σm =
h

2
.

Writting the conservativity of the scheme (see [13]) between Vi,j and Vi+1,j i.e. FVi+1,j ,σ2 =
−FVi,j ,σ2 , we get:

(2.10) uε
σ2

=
λε
Vij ,σ2

di+1,j,σ2u
ε
ij + λε

Vi+1,j ,σ2
di,j,σ2u

ε
i+1,j

λε
Vij ,σ2

di+1,j,σ2 + λε
Vi+1,j ,σ2

di,j,σ2

.

From (2.8) one has:

(2.11) λε
Vi,j ,σ2

= Ki,j,ε
11 , λε

Vi+1,j ,σ2
= Ki+1,j,ε

11 ,

where Ki,j,ε
11 and Ki+1,j,ε

11 are the Kε
11 values on Vi,j and Vi+1,j respectively. Using (2.7), (2.10)

and (2.11), we get :

(2.12) FVij ,σ2 = τ εi+1,j,σ2
(uε

ij − uε
i+1,j),

where

(2.13) τ εi+1,j,σ2
= τ i+1,j

11,ε =
2Ki,j,ε

11 Ki+1,j,ε
11

Ki,j,ε
11 +Ki+1,j,ε

11

.

In the same way we get:

(2.14) FVij ,σ1 = τ εi,j−1,σ1
(uε

i,j − uε
i,j−1),

(2.15) FVij ,σ3 = τ εi,j+1,σ3
(uε

ij − uε
i,j+1),

(2.16) FVij ,σ4 = τ εi−1,j,σ4
(uε

i,j − uε
i−1,j),

where

(2.17) τ εi,j−1,σ1
= τ i,j−1

22,ε =
2Ki,j,ε

22 Ki,j−1,ε
22

Ki,j,ε
22 +Ki,j−1,ε

22

,

(2.18) τ εi,j+1,σ3
= τ i,j+1

22,ε =
2Ki,j,ε

22 Ki,j+1,ε
22

Ki,j,ε
22 +Ki,j+1,ε

22

,

(2.19) τ εi−1,j,σ4
= τ i−1,j

11,ε =
2Ki,j,ε

11 Ki−1,j,ε
11

Ki,j,ε
11 +Ki−1,j,ε

11

.

from (2.6)-(2.19) we get for 2 ≤ i, j ≤ N − 1 (internal cells):

(2.20)
τ i−1,j
11,ε

(
uε
i,j − uε

i−1,j

)
− τ i+1,j

11,ε

(
uε
i+1,j − uε

i,j

)
+ τ i,j−1

22,ε

(
uε
i,j − uε

i,j−1

)
− τ i,j+1

22,ε

(
uε
i,j+1 − uε

i,j

)
= h2fi,j.

From (2.20), and after grouping similar terms, we get for 2 ≤ i, j ≤ N − 1 :

(2.21)
−τ i−1,j

11,ε uε
i−1,j−τ i,j−1

22,ε uε
i,j−1−τ i+1,j

11,ε uε
i+1,j−τ i,j+1

22,ε uε
i,j+1+

(
τ i−1,j
11,ε + τ i,j−1

22,ε + τ i+1,j
11,ε + τ i,j+1

22,ε

)
uε
i,j = h2fi,j.

To complete the scheme (2.21), we need to take boundary edges into account . In the case where
one of edges σ1, σ2, σ3, σ4 is a boundary edge, one has [13]:
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6 J. D. BAMBI PEMBA AND B. ONDAMI

(2.22) FVi,j ,σ1 = m(σ1)λ
ε
Vi,j ,σ1

uε
i,j

di,j,σ1

= τ i,j22,εu
ε
i,j, τ i,j22,ε = 2Ki,j,ε

22 .

(2.23) FVi,j ,σ2 = m(σ2)λ
ε
Vi,j ,σ2

uε
i,j

di,j,σ2

= τ i,j11,εu
ε
i,j, τ i,j11,ε = 2Ki,j,ε

11 .

(2.24) FVi,j ,σ3 = m(σ3)λ
ε
Vi,j ,σ3

uε
i,j

di,j,σ3

= τ i,j22,εu
ε
i,j, τ i,j22,ε = 2Ki,j,ε

22 .

(2.25) FVi,j ,σ4 = m(σ4)λ
ε
Vi,j ,σ4

uε
i,j

di,j,σ4

= τ i,j11,εu
ε
i,j, τ i,j11,ε = 2Ki,j,ε

11 .

So, from (2.6)-(2.19), (2.22)-(2.25) one has the following equations:
1. For i = 1 and 2 ≤ j ≤ N − 1, σ4 is a boundary edge,

(2.26) −τ 1,j−1
22,ε uε

1,j−1−τ 2,j11,εu
ε
2,j−τ 1,j+1

22,ε uε
1,j+1+

(
τ 1,j11,ε + τ 1,j−1

22,ε + τ 2,j11,ε + τ 1,j+1
22,ε

)
uε
1,j = h2f1,j.

2. For i = 1 and j = 1, σ1 and σ4 are boundary edges,

(2.27) −τ 2,111,εu
ε
2,1 − τ 1,222,εu

ε
1,2 +

(
τ 1,111,ε + τ 1,122,ε + τ 2,111,ε + τ 1,222,ε

)
uε
1,1 = h2f1,1.

3. For i = 1 and j = N, σ3 and σ4 are boundary edges,

(2.28) −τ 1,N−1
22,ε uε

1,N−1 − τ 2,N11,εu
ε
2,N +

(
τ 1,N11,ε + τ 1,N−1

22,ε + τ 2,N11,ε + τ 1,N22,ε

)
uε
1,N = h2f1,N .

4. For i = N and 2 ≤ j ≤ N − 1, σ2 is a boundary edge,
(2.29)
−τN−1,j

11,ε uε
N−1,j−τN,j−1

22,ε uε
N,j−1−τN,j+1

22,ε uε
N,j+1+

(
τN−1,j
11,ε + τN,j−1

22,ε + τN,j
11,ε + τN,j+1

22,ε

)
uε
N,j = h2fN,j.

5. For i = N and j = 1, σ1 and σ2 are boundary edges,

(2.30) −τN−1,1
11,ε uε

N−1,1 − τN,2
22,εu

ε
N,2 +

(
τN−1,1
11,ε + τN,1

22,ε + τN,1
11,ε + τN,2

22,ε

)
uε
N,1 = h2fN,1.

6. For i = N and j = N , σ2 and σ3 are boundary edges,
(2.31)
−τN−1,N

11,ε uε
N−1,N − τN,N−1

22,ε uε
N,N−1 +

(
τN−1,N
11,ε + τN,N−1

22,ε + τN,N
11,ε + τN,N

22,ε

)
uε
N,N = h2fN,N .

7. For j = 1 and 2 ≤ i ≤ N − 1, σ1 is boundary edge,

(2.32) −τ i−1,1
11,ε uε

i−1,1− τ i+1,1
11,ε uε

i+1,1− τ i,222,εu
ε
i,2+

(
τ i−1,1
11,ε + τ i,122,ε + τ i+1,1

11,ε + τ i,222,ε
)
uε
i,1 = h2fi,1.

8. For j = N and 2 ≤ i ≤ N − 1, σ3 is boundary edge,
(2.33)
−τ i−1,N

11,ε uε
i−1,N−τ i,N−1

22,ε uε
i,N−1−τ i+1,N

11,ε uε
i+1,N+

(
τ i−1,N
11,ε + τ i,N−1

22,ε + τ i+1,N
11,ε + τ i,N22,ε

)
uε
i,N = h2fi,N .

From (2.20)-(2.33) we get (see [3] and [4]) the following linear equation.

(2.34) Kεh uεh = fh,
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where

(2.35) uεh =


uε
1,1

uε
2,1
...

uε
N−1,N

uε
N,N

 , fh = h2


f1,1
f2,1

...
fN−1,N

fN,N

 ,

Kε h is a square matrix of order N2.

Note. Throughout the paper, we will denote by c generic constants, even if they take dif-
ferent values at different places. For simplification reasons we adapt the following notations:
V and W designate one or the other of the volumes Vi,j(1 ≤ i, j ≤ N) .
When V designates one of the volumes Vi,j(1 ≤ i, j ≤ N): (xV , yV ) designates (xi, yj). For
any function v, v(xV , yV ) designates v(xi, yj) and vV designates vij.

Theorem 2.1. Let Ωh be an admissible an uniform mesh of Ω, in the sens of Definition 2.1,
such that:
1) The discontinuities of tensor Kε coincide with the interfaces of volumes V of Ωh,
2) Kll ∈ C1

(
V
)

and f ∈ C1
(
V
)
, for all V ∈ Ωh, l = 1, 2.

Let eεV = uε(xV , yV ) − uεh
V , eε,∗V = u(xV , yV ) − uε

V , where uε is the solution of Problem
(2.1), u is the solution of Problem (2.2) and uεh is the solution of (2.34). Then there exists a
constant c independent of ε and h such that:

(2.36)
∑

σ∈∂Ωh

(Dσe
ε)2

dσ
m(σ) ≤ ch2

ε
,

(2.37)
∑
V ∈Ωh

(eεV )
2m (V ) ≤ ch2

ε
,

(2.38)
∑
σ∈Ωh

(eε,∗V )
2
m (V ) ≤ ch2

ε
+ cε,

where: Dσe
ε = |eεV − eεW | for σ ∈ ∂Ωint

h , σ = W |V, and Dσe
ε = |eεW | for σ ∈ ∂Ωext

h ∩ ∂W,

∂Ωint
h and ∂Ωext

h denote respectively the set of interior and exterior edges of ∂Ωh.

Proof. To prove the theorem 2.1 we use the same approach as in [13] (Theorem 3.8, p.83, and
Theorem 2.3) and [20] (Theorem 1, p. 37). We notice:

(2.39) F ∗,ε
W,σ = τ εσ (u

ε(xV )− uε(xW )) for σ ∈ ∂Ωint
h , σ = W |V,

(2.40) F ∗,ε
W,σ = τ εσ (−uε(xW )) for σ ∈ ∂Ωext

h ∩ ∂W,

where τ εσ designates one or the other of the coefficients τ i,jll,ε(l = 1, 2, 1 ≤ i, j ≤ N).
By using Taylor expansions and the same technique as in the 1D (see [20], Theorem 1, p. 37

AJMAA, Vol. 21 (2024), No. 1, Art. 13, 20 pp. AJMAA

https://ajmaa.org


8 J. D. BAMBI PEMBA AND B. ONDAMI

and [13], Theorem 3.8, p.83) and by using ([2]) (Theorem 2, inequalities (15)-(17) ) and [18]
(lemma 7.1, p. 163), on can shows that, there exists c such that

(2.41) F ∗,ε
W,σ −

∫
σ

−Kε
W∇uε(x).nW,σdγ(x) = Rε

W,σ, with |Rε
W,σ| ≤

ch2

ε
.

By integrating the first equation of (2.1) over each control volume, subtracting to (2.5) and using
(2.41), one obtains

(2.42) −
∑
σ∈∂W

Gε
W,σ =

∑
σ∈∂W

Rε
W,σ, ∀ ∈ Ωh.

where

(2.43) Gε
W,σ = τ εσ (e

ε
V − eεW ) for σ ∈ ∂Ωint

h , σ = W |V,

(2.44) Gε
W,σ = τ εσ (−eεW ) for σ ∈ ∂Ωext

h ∩ ∂W.

To use the same technique as in [13] (Theorem 3.3, p.52), let us multiply (2.44) by eεW , sum
over W ∈ Ωh, and use the conservativity of the scheme, which yields that if then σ = W |V
Rε

W,σ = −Rε
V,σ. A reordering of the summation over σ ∈ Ωh yields the estimate (2.36). From

the following discrete Poincaré inequality (see [13]),

∑
V ∈Ωh

(eεV )
2m (V ) ≤ c

∑
σ∈∂Ωh

(Dσe
ε)2

dσ
m(σ),

yields the L2 estimate (2.37).
Theory from [6] and [17] on the estimate of the difference uε − u with u homogenized solution
(Problem 2.2) implies

(2.45) ∥uε − u∥L2(Ω) ≤ cε.

From (2.37) and (2.45) one gets (2.38).

3. NUMERICAL SIMULATIONS

In this section, we are going to present numerical experiments obtained by solving linear
system (2.34), and compare them with the solution of homogenized problem (2.2). Two test
problems (isotropic and anisotropic cases)will be considered and the source functions f(x, y)
will be chosen so as to have an analytical solution of the homogenized problem.

3.1. Test Problem 1: isotropic case . The first series of tests was carried out with an isotropic
distribution of heterogeneities (see figure 2 below).
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2D ELLIPTIC EQUATION WITH DISCONTINUOUS AND HIGHLY OSCILLATING COEFFICIENTS 9

Figure 2: Test Problem 1: typical cell (on left) and an example of periodic heterogeneous porous medium for
ε = 1/4 (on right)

The data are:

Table 3.1: Test Problem 1 data.

Medium_1 Medium_2
K11 = K22 = k (k > 1) K11 = K22 = 1
K12 = 0 K12 = 0

3.1.1. Test 1. The first test involves simulations with k = 10, the effective tensor is [1]: K∗ =
6.52 I , where I is the unit matrix. f (x, y) = (K∗

11 +K∗
22) π

2 sin(πx) sin(πy), (x, y) ∈ ]0, 1[×
]0, 1[ . So the homogenized solution is: u(x, y) = sin(πx) sin(πy).

AJMAA, Vol. 21 (2024), No. 1, Art. 13, 20 pp. AJMAA
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10 J. D. BAMBI PEMBA AND B. ONDAMI

Figure 3: Test Problem 1: L2-error for ε = 1
4 , k = 10

Figure 3 is the error curve obtained by making h tend to 0 and fixing to ε = 1
4
.

Figure 4: Test problem 1, ε = 1
4 .

Figure 4 is the representation of uε,h and the homogenized solution for the indicated data. It
clearly shows that when ε = 1

4
, Problem (2.1) can be not remplaced by Problem (2.2).
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Figure 5: Test problem 1: L2-error for ε = 1
8 and k = 10.

Figure 5 is the error curve obtained by letting h tend to 0, for ε = 1
8
.

Figure 6: Test problem 1: ε = 1
8 .

Figure 6 is the representation of uε,h and the homogenized solution for the indicated data. It
clearly shows that when ε decreases the solution of Problem (2.1) approaches the solution of
Problem (2.2).
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Table 3.2: Test Problem 1: k = 10, h = 1
128 .

h = 1
128

ε = 1
2

ε = 1
4

ε = 1
8

ε = 1
16∥∥uεh − u

∥∥
0,Ωh

7.625592e-02 3.384378e-02 1.802047e-02 1.621357e-02

Table 3.2 is obtained by fixing h and making ε tend to 0. The goal is to see how the estimate
(2.38) behaves numerically.

Figure 7: Test problem 1: ε = 1
2 .

Figure 8: Test problem 1: ε = 1
32 .

Figures 7 and 8, confirm what when ε decreases the solution of Problem (2.1) approaches the
solution of Problem (2.2).

3.1.2. Test 2. The second test involves simulations with k = 100. In this case the effective
tensor is: K∗ = 59.23 I ([1]). The source function f and the homogenized solution remain the
same as the paragraph 3.1.1. The results obtained (see Figures 9, 10 & 11) are similar to those
obtained in paragraph 3.1.1 with however an impact of the discontinuity jump (see Table 3.3 vs
3.2).
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Figure 9: Test problem 1: L2-error for ε = 1
4 , k = 100

Table 3.3: Test Problem 1: k = 100, h = 1
128 .

h = 1
128

ε = 1
2

ε = 1
4

ε = 1
8

ε = 1
16∥∥uεh − u

∥∥
0,Ωh

7.089443e-01 1.862146e-01 5.594215e-02 3.252017e-02

Figure 10: Test problem 1: ε = 1
8
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Figure 11: Test problem 1: ε = 1
32

3.2. Test problem 2: anisotropic case. The second series of tests was carried out with an
anisotropic distribution of heterogeneities (see Figure 12 & Table 3.4 below). The results ob-
tained are globally similar to the isotropic case (see Figure 13 - Figure 18 and Table 3.5 - Table
3.6) with, however a certain impact of the anisotropy ratio on the numerical solution, which is a
known phenomenon on methods such as that of finite volumes or finite elements (see e.g. [19]).

Figure 12: Test problem 2: typical cell (on left) and an example of periodic heterogeneous porous medium for
ε = 1/5 (on right)

Table 3.4: Test Problem 2 data.

Medium_1 Medium_2
K11 = K22 = 1 K11 = K22 = k (k > 1)
K12 = 0 K12 = 0
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3.2.1. Test 1. The first test involves simulations with k = 10, the effective tensor is [1]:

K∗ =

(
1.49 −0.08

−0.08 1.89

)
,

f (x, y) = (K∗
11 +K∗

22) π
2 sin(πx) sin(πy)− 2K∗

12π
2 cos(πx) cos(πy) (x, y) ∈ ]0, 1[× ]0, 1[ .

So the homogenized solution is: u(x, y) = sin(πx) sin(πy).

Figure 13: Test problem 2: L2-error for ε = 1
8 , k = 10

Table 3.5: Table 3 : Test Problem 2: k = 10, and h = 1
128 .

h = 1
128

ε = 1
2

ε = 1
4

ε = 1
8

ε = 1
16∥∥uεh − u

∥∥
0,Ωh

1.038531e-01 5.763713e-02 2.922571e-02 1.957557e-02
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Figure 14: Test problem 2: ε = 1
2

Figure 15: Test problem 2: ε = 1
32

3.2.2. Test 2. The second test involves simulations with k = 100. In this case the effective
tensor is [1]:

K∗ =

(
1.66 −0.2
−0.2 2.57

)
.

The source function f and the homogenized solution remain the same as the test 1.
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Table 3.6: Table 4: Test Problem 2: k = 100 and h = 1
128

h = 1
128

ε = 1
2

ε = 1
4

ε = 1
8

ε = 1
16∥∥uεh − u

∥∥
0,Ωh

2.275707e-01 1.160337e-01 5.561410e-02 3.630976e-02

Figure 16: Test problem 2: L2-error for ε = 1
8 , k = 100

Figure 17: Test problem 2: ε = 1
2 .
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Figure 18: Test problem 2: ε = 1
8 .

4. CONCLUDING REMARKS

The aim of this paper was to solve a class of second-order elliptic problems with discon-
tinuous and strongly oscillating coefficients in two dimensions using a finite volume method.
For simplicity, the study was limited to the piecewise constant diagonal matrix. The extension
of these results to the complete matrix with piecewise continuous coefficients is currently in
progress (see [4]). In contrast to the one-dimensional case, which has an analytical solution
(see [20] and [22]), enabling a comparison between the approximate and analytical solutions,
we used the homogenized solution as a reference solution for the numerical simulations. Conse-
quently, confirming the numerical optimality of the estimate (2.36) remains extremely difficult,
particularly in terms of its dependence on ε. However, the results obtained in this article demon-
strate, on one hand, the need to directly solve the problem in cases where ε is not small enough
because, in these cases, problem (2.1) cannot be replaced by problem (2.2), and on the other
hand, the suitability of the finite volume approach for solving the problem.
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