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ABSTRACT. In this small note, in a self contained presentation, we show the validity of Schur’s
type lemma in the framework of Banach function spaces.

Key words and phrasesSchur’'s Lemma; Banach Function Spaces.

2010Mathematics Subject Classificat/orPrimary 26D15. Secondary 46E30.

ISSN (electronic): 1449-5910

(© 2021 Austral Internet Publishing. All rights reserved.

The research of H. Rafeiro was supported by a Start-up Grant of United Arab Emirates University, Al Ain, United Arab Emirates via Grant
G00002994.


https://ajmaa.org/
mailto: R.E. Castillo <recastillo@unal.edu.co>
mailto: H. Rafeiro <rafeiro@uaeu.ac.ae>
mailto: E.M. Rojas <emrojass@unal.edu.co >
https://www.ams.org/msc/

2 R.E. CASTILLO, H. RAFEIRO AND E.M. R0OJAS

1. MOTIVATION

Schur’s lemma is one of the most basic facts about integral operators, roughly speaking it says
that if the integral kernek satisfy some a priori integral conditions, then the integral operator
Tk is a bounded operator ob¥ cf. [7, Theo. 1.8] (see also[[5, 11]). This result is a very
effective test whenever we want to prove the boundedness of integral operators in Lebesgue
spaces. Moreover, some sophisticated ideas are based on this result, like the Folland-Stein
theorem|([8].

The development of this important result started in 1911, when Schur [12] proved a matrix
version of the lemma for a positive decreasing kernéhinAfterward, in 1926, Hardy, Little-
wood, and Pdlya [6] extended this resultfié for 1 < p < oo and a decreasing kernel. For
the case of positive operators, necessary and sufficient conditions fbf ttindedness were
given in 1963 by Aronszajn, Mulla, and Szptycki [1] as well as by Gagliardo [4] in 1965.

On the other hand, Banach function spaces (BFS for short) are a modern tool from analysis
which allow to consider concrete problems in a more abstract framework. This theory began
in the 1950’s with the works of Ellis and Halperin [3], Luxemburg [9], and Zaaheh [13]. We
can see the theory of BFS as a useful way to characterize and understand spaces of measurable
functions in a unified manner. We mention the following important function spaces in harmonic
analysis which are BFS: Lebesgue, Lorentz, Orlicz, and Musielak—Orlicz, to name a few. The
fundamentals of this class of spaces can be found in [2]/(cf. [10] for BFS and variable exponent
Lebesgue spaces).

In this note we will show that, under appropriate conditions, we have a Schur’s type lemma
in the framework of BFS.

2. BANACH FUNCTION SPACES

In this section, besides recalling the notion of BFS, for the convenience of the reader and to
make the exposition self-contained, we state and prove some results in the theory of BFS (the
standard reference is Bennett and Sharpley [2]).

Let (=, ) be a measure spacBi(=, i) the space of extended real-valued measurable func-
tions on= andMM* (=, 1) the space of measurable functionsmwith range in[0, co]. We will
denote the characteristic function of a measurablé’set= by .

Definition 2.1. A mappingp : 9T — [0, 0] is called aBanach function nornif, for all
functionsf, g, ., (n € N) in 9+, for all constants. > 0, and for all measurable subséisof
=, the following properties hold:

p(f) =0« f=0ae, plaf)=ap(f), p(f+g)<p(f)+p(9)
0<g< fae. = p(g) <p(f) (the lattice property)

(A1)
(A2)
(A3) 0< fu1 fae. = p(fn) T p(f) (the Fatou property)
(A4) u(E) < oo = p(xg) < oo,

(A5)

W(E) < 00 = / f(2) du(z) < Cup(f)

with Cg € (0, co) which may depend o’ andp but is independent of.

Here, functions differing only on a set of measure zero are identified. The(Sgtof all
functionsf € 9t for which p(| f|) < oo is called aBanach function spacd-or eachf € X(=),
the norm off is defined by

(2.1) 1 fllx = o f])-
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We are going to show that the s€t=) under the natural linear space operations and under the
norm (2.1) becomes a Banach space 9By(=, i) we denote the class of functionsiR(=, 1)
that are finiteu-a.e.

Theorem 2.1.LetX be a Banach function space generated by a Banach function pofinen
(X,]]|lx) is a linear space. Moreover, the inclusions

(2.2) S CX—=M,
hold, whereS is the set of simple functions &n

Proof. Sinceyp is aco-finite measure, locally integrable functions ara.e. finite. HenceX C
9,. Due to the property (A5) from Definitidn 3.1, we have férC = such thay(E) < oo,

/fdﬂ < Callflly

E

Which means that all functions K are locally integrable o&. Thus, sincel, is a vector
space, and the operations are closedXom virtue of (Al), we conclude thaX is a vector
space. It follows immediately from (Al) thatis a normed space. By (A4), € X for every
setF such thatu(E) < oco. Consequently, by the linearity of we getS C X. It remains to
show that the embedding — 90, is continuous. Assume that a sequerg¢g}> , satisfies
fn — finX. Then by [2.1)(|f. — f|) — 0asn — oco. Givene > 0 and a sefy’ C = such
thatu(E) < oo, we get from (A5) that

1 C
pla € £ |fo = f1> ) < 2 [ U= Fldute) € Epllfa~ ) 0
E
asn — oo, sinceCy is independent of. Therefore,f,, — f in measure on every set of finite
measure, in other wordg, — f in 9i,. 1

We shall now show that the Fatou lemma, familiar from the theory of Lebesgue integration,
holds for every BFS. The key ingredient of the proof is the Fatou property (A3).

Lemma 2.2. (Fatou lemma for BFS)et X be a Banach function space and assume that X,
n € Nandf, — f u-a.e. for some € M*. Assume further thdim inf,, .|| f||x < co. Then
f € Xand

Il < im inl| full
Proof. Denotey,,(z) = inf,,>, | fm(x)|. Theno < g, T |f| n-a.e., whence by (A2) and (A3)
£ = lim flgall < lminf [|full = liminf| £l < oo
Hence,f € X and||f||y < liminf, .oo|fnllx- N

To prove that every BFS is complete we use the notion of Riesz-Fischer property and Fatou’s
lemma.

Definition 2.2. We say that a normed linear spacg||-||,) has the Riesz-Fischer property if
for each sequencu, },en such that

(2.3) D lunllx < o0,
n=1
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there exists an elemente X suchtha " u, = win X, thatis

lim Z ur —u|| =0.
Theorem 2.3.A normed linear space is complete if and only if it has the Riesz-Fischer property.

Theorem 2.4. Every Banach function space has the Riesz-Fischer property.
Proof. Let X be a BFS, le{ f,,}.en and suppose that

(2.4) S Ml < oo,
n=1

We denote, for every € N,

gn:Z|ka‘ and QZZ’ka
k=1 k=1
so thatg,, T g. Since
lgallx <D _Ifullx <D llfellx, neN
k=1 k=1

it follows from (2.4) and Lemma 2|2 that belongs toX. By the embedding — 91, the
seriesy ~ | f.(z)| converges pointwisg-a.e. and hence so do®3 >~ | f.(z). We set

F=>f and h,=> fi
n=1 k=1

then,h, — f p-a.e. Hence for anyn € N, we haveh,, — h,, — f — h,, p-a.e. as — oo.
Furthermore,

lim inf||f, — hlly < liminf > [ filly = > Ifillx =0

k=m+1 k=m+1
asm — oo, sinced >~ || f.llx < oo. Thus, by Fatou’s Lemma, we gét— h,,, € X, therefore
alsof € X, and||f — hy|lx — 0 asm — oo. This implies that, for every: € N,

1Fllx SIF = Bmllx + 1 mlix I = Pl + Y1 fallx -
k=1
By lettingm — oo, we get
fllx < Dl fullx - m
n=1
If pis a Banach function norm, its associate ngrris defined oM™ by

(2.5) p'(g) = sup /f(x)g(w) du(z) « fe€MT, p(f) <1y, geM'

Now we prove thap' is itself a Banach function norm.

Theorem 2.5. Let p be a Banach function norm. Thehis a Banach function norm.
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Proof. Supposey(f) < 1. Then [2.2) implies thaf(z) < co p-a.e. If moreovey = 0 u-a.e.

then
/fg du =0,

hence, by[(Z)5)'(g) = 0. If p'(g) =0, t

/fgd,u =0, forall f € M+ with p(f) < 1.

(1]

If £ C =is au-measurable set with < x(E) < oo, then0 < p(xg) < oo by properties (A1)
and (A4) ofp. The functionf = x/p(x ) satisfie(f) = 1, therefore

p(Xg)) /gdu /fgdu—O

Thusg = 0 p-a.e. onE. Because” was chosen arbitrarily, we get that= 0 u-a.e. The positive
homogeneity and the triangle inequality f@rcan be easily verified, which shows (Al). The
property (A2) follows from the definition of'.

We shall show (A3). Let{g,}.en € 9MMT and assume that < ¢, T g p-a.e. for some
g € MT. Itis clear thaty’ satisfy (A2). Thus for everyn,n € N, m < n, p'(gm) < p'(gn) <
p'(g). We can, with no loss of generality, assumi€y,,) < oo for everyn € N. Lete be
any number satisfying < p'(g,). By (2.8), there is a functiorf € 9t with p(f) < 1 such
that [ fgdu > . Now 0 < fg, 1 fg p-a.e., so the monotone convergence theorem implies
[ f9. 1 [ fg. Hence, there is, € N such that/ fg,, > ¢ for all n > n,. Thus, by [[2.5), we
obtain

p'(gn) >¢ foralln > n,.

Consequently, we get(g,) 1 p'(g), thusy’ enjoys the property (A3).
In order to verify (A4) forp’ we use (A5) forp, and vice versa. LeE C = satisfying
u(E) < oo, then by (A5) forp, there is a constardty < oo for which

/ el du < Cop(f)  (f € ah).

Together with[(2.5), this gives (x ) < Cr < oo, proving (A4) fory'.

Finally, let £ C = be such that(F) < oco. If (E) = 0, then [, gdu = 0, hence (A5) holds
automatically. Whem(E) > 0, we have by (A4) fop thatp(x ;) < oo and by (Al) forp that
p(xg) > 0. We setC, = p(xg) andf = xx/p(xg). Thenp(f) = 1, whence, for any € M+,
we obtain from|[(Z2.p)

/gdu = C;;/fg dp < Cpp'(9).

E =
Proving (A5) forp’. The proof is completeg

The Banach function spac€(=) determined by the Banach function noghis called the
associate space, also known as th&othe dual, of the spaceX(Z). The celebrated Lorentz-
Luxemburg theorem, cfl_[2, Theorem 2.7], states that any Banach function)S@):eoincides
with its second associated spaté=), thus we can define the Banach normfof X(=) as

(2.6) Ifl = sup / F@)g(@)| dp(z), g € X (E).

g\x/ 1
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Lemma 2.6. (Holder's inequality)Let X(=) be a Banach function space with associate space
X'(2). If f € X(E) andg € X'(E), thenfg is summable and

2.7) / F(@)g(@)] du(x) <1 llxlglle -

Proof. Assume first thaff||, = 0, thenf = 0 p-a.e. on=. In this case both side df (2.7) are
zero. Whet( f ||, > 0, then

‘ 171
Thus, by definition o', we get, by[(2.B), that

/ (Hfjlc|x) 9] du(@) <llglhe -

X

And so,

/ Foldu(@) <1 Fligllgle

which ends the proofy

3. SCHUR’S TYPE LEMMA

In the sequel, byl < B we mean that there exists some constant 0 such thatd < kB

Theorem 3.1. Let (Z, 1) be ac-finite measure space arfd; be the integral operator with a
positive ancE x = measurable kernek given by

Ty :X(E) 3 f — / K () f(4) dpuly) € V().

whereX(Z) andY (=) are Banach function spaces. Suppose that there exists a strictly positive
functionh anda € (0,1) such that

(31) ||K($, )ah<> X! 5 h([L’)
and
(3.2) 1K) =)y S hy).

ThenTy : X — Y.

Proof. SinceT is a homogeneous operator to prove the boundedness of the operator it suffices
to show thal T f ||, <
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function norm via the dual space, the Holder inequality, Fubini's theorem and condijtions (3.1)-

(3.2), we have
ITflly = sup / T (2)g(x)| dpa(z)
llglly,=1
\lgilyl,pl/lg x)| dp(z /Kw Y| f(y)| du(y)

< suwp [ [g(@)l[|K(x,)*h(")]

K(z, ) *h() Ol du@)

lolly=1/ X
< sup /|g Jh(z) du(z) sup /K:cy“"h()1|f() ()| duly)
llgllyr=1 Hsol\x/ 1

= sup sup /h(y)_llf(y)w(y)ldu(y)/K(ﬂf,y)l_“h(ﬂf)lg(iv)ldu(x)

gllys=Lllellx =1/

S swp s / o) FO | ') gl o)

HQHY/:l HSOH)(/ 1

< sup sup gl / FW)e()] duy)

llgllys=1ll¢llx=1

S sup - sup ||g||w||90|\></\|f!|x
llgllyr=11lellx =1

S L

which ends the proofy
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