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1. M OTIVATION

Schur’s lemma is one of the most basic facts about integral operators, roughly speaking it says
that if the integral kernelK satisfy some a priori integral conditions, then the integral operator
TK is a bounded operator onLp cf. [7, Theo. 1.8] (see also [5, 11]). This result is a very
effective test whenever we want to prove the boundedness of integral operators in Lebesgue
spaces. Moreover, some sophisticated ideas are based on this result, like the Folland-Stein
theorem [8].

The development of this important result started in 1911, when Schur [12] proved a matrix
version of the lemma for a positive decreasing kernel in`2. Afterward, in 1926, Hardy, Little-
wood, and Pólya [6] extended this result toLp for 1 < p < ∞ and a decreasing kernel. For
the case of positive operators, necessary and sufficient conditions for theLp boundedness were
given in 1963 by Aronszajn, Mulla, and Szptycki [1] as well as by Gagliardo [4] in 1965.

On the other hand, Banach function spaces (BFS for short) are a modern tool from analysis
which allow to consider concrete problems in a more abstract framework. This theory began
in the 1950’s with the works of Ellis and Halperin [3], Luxemburg [9], and Zaanen [13]. We
can see the theory of BFS as a useful way to characterize and understand spaces of measurable
functions in a unified manner. We mention the following important function spaces in harmonic
analysis which are BFS: Lebesgue, Lorentz, Orlicz, and Musielak–Orlicz, to name a few. The
fundamentals of this class of spaces can be found in [2] (cf. [10] for BFS and variable exponent
Lebesgue spaces).

In this note we will show that, under appropriate conditions, we have a Schur’s type lemma
in the framework of BFS.

2. BANACH FUNCTION SPACES

In this section, besides recalling the notion of BFS, for the convenience of the reader and to
make the exposition self-contained, we state and prove some results in the theory of BFS (the
standard reference is Bennett and Sharpley [2]).

Let (Ξ, µ) be a measure space,M(Ξ, µ) the space of extended real-valued measurable func-
tions onΞ andM+(Ξ, µ) the space of measurable functions onΞ with range in[0,∞]. We will
denote the characteristic function of a measurable setE ⊂ Ξ by χE.

Definition 2.1. A mappingρ : M+ −→ [0,∞] is called aBanach function normif, for all
functionsf, g, fn (n ∈ N) in M+, for all constantsa ≥ 0, and for all measurable subsetsE of
Ξ, the following properties hold:

(A1) ρ(f) = 0 ⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) 6 ρ(f) + ρ(g),

(A2) 0 6 g 6 f a.e. ⇒ ρ(g) 6 ρ(f) (the lattice property),

(A3) 0 6 fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) µ(E) < ∞⇒ ρ(χE) < ∞,

(A5) µ(E) < ∞⇒
∫
E

f(x) dµ(x) 6 CEρ(f)

with CE ∈ (0,∞) which may depend onE andρ but is independent off .

Here, functions differing only on a set of measure zero are identified. The setX(Ξ) of all
functionsf ∈ M for whichρ(|f |) < ∞ is called aBanach function space. For eachf ∈ X(Ξ),
the norm off is defined by

(2.1) ‖f‖X := ρ(|f |).
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We are going to show that the setX(Ξ) under the natural linear space operations and under the
norm (2.1) becomes a Banach space. ByM0(Ξ, µ) we denote the class of functions inM(Ξ, µ)
that are finiteµ-a.e.

Theorem 2.1.LetX be a Banach function space generated by a Banach function normρ. Then
(X,‖·‖X) is a linear space. Moreover, the inclusions

(2.2) S ⊂ X ↪→ M0

hold, whereS is the set of simple functions onΞ.

Proof. Sinceµ is aσ-finite measure, locally integrable functions areµ-a.e. finite. Hence,X ⊂
M0. Due to the property (A5) from Definition 2.1, we have forE ⊂ Ξ such thatµ(E) < ∞,∫

E

f dµ 6 CE‖f‖X .

Which means that all functions inX are locally integrable onΞ. Thus, sinceM0 is a vector
space, and the operations are closed onX in virtue of (A1), we conclude thatX is a vector
space. It follows immediately from (A1) thatX is a normed space. By (A4)χE ∈ X for every
setE such thatµ(E) < ∞. Consequently, by the linearity ofX we getS ⊂ X. It remains to
show that the embeddingX ↪→ M0 is continuous. Assume that a sequence{fn}∞n=1 satisfies
fn → f in X. Then by (2.1)ρ(|fn − f |) → 0 asn → ∞. Givenε > 0 and a setE ⊂ Ξ such
thatµ(E) < ∞, we get from (A5) that

µ({x ∈ E : |fn − f | > ε}) 6
1

ε

∫
E

|fn − f | dµ(x) 6
CE

ε
ρ(|fn − f |) → 0

asn → ∞, sinceCE is independent ofn. Therefore,fn → f in measure on every set of finite
measure, in other wordsfn → f in M0.

We shall now show that the Fatou lemma, familiar from the theory of Lebesgue integration,
holds for every BFS. The key ingredient of the proof is the Fatou property (A3).

Lemma 2.2. (Fatou lemma for BFS)LetX be a Banach function space and assume thatfn ∈ X,
n ∈ N andfn → f µ-a.e. for somef ∈ M+. Assume further thatlim infn→∞‖f‖X < ∞. Then
f ∈ X and

‖f‖X 6 lim inf
n→∞

‖fn‖X .

Proof. Denotegn(x) = infm>n |fm(x)|. Then0 6 gn ↑ |f | µ-a.e., whence by (A2) and (A3)

‖f‖X = lim
n→∞

‖gn‖X 6 lim inf
n→∞ m>n

‖fm‖X = lim inf
n→∞

‖fn‖X < ∞.

Hence,f ∈ X and‖f‖X 6 lim infn→∞‖fn‖X.

To prove that every BFS is complete we use the notion of Riesz-Fischer property and Fatou’s
lemma.

Definition 2.2. We say that a normed linear space(X,‖·‖X) has the Riesz-Fischer property if
for each sequence{un}n∈N such that

(2.3)
∞∑

n=1

‖un‖X < ∞,
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there exists an elementu ∈ X such that
∑∞

n=1 un = u in X, that is

lim
n→∞

∥∥∥∥∥∥
n∑

k=1

uk − u

∥∥∥∥∥∥
X

= 0.

Theorem 2.3.A normed linear space is complete if and only if it has the Riesz-Fischer property.

Theorem 2.4.Every Banach function space has the Riesz-Fischer property.

Proof. Let X be a BFS, let{fn}n∈N and suppose that

(2.4)
∞∑

n=1

‖fn‖X < ∞.

We denote, for everyn ∈ N,

gn =
n∑

k=1

|fk| and g =
∞∑

k=1

|fk|,

so thatgn ↑ g. Since

‖gn‖X 6
n∑

k=1

‖fk‖X 6
∞∑

k=1

‖fk‖X , n ∈ N

it follows from (2.4) and Lemma 2.2 thatg belongs toX. By the embeddingX ↪→ M0, the
series

∑∞
n=1 |fn(x)| converges pointwiseµ-a.e. and hence so does

∑∞
n=1 fn(x). We set

f =
∞∑

n=1

fn and hn =
n∑

k=1

fk

then,hn → f µ-a.e. Hence for anym ∈ N, we havehn − hm → f − hm µ-a.e. asn → ∞.
Furthermore,

lim inf
n→∞

‖hn − hm‖X 6 lim inf
n→∞

n∑
k=m+1

‖fk‖X =
∞∑

k=m+1

‖fk‖X → 0

asm → ∞, since
∑∞

n=1‖fn‖X < ∞. Thus, by Fatou’s Lemma, we getf − hm ∈ X, therefore
alsof ∈ X, and‖f − hm‖X → 0 asm →∞. This implies that, for everym ∈ N,

‖f‖X 6‖f − hm‖X +‖hm‖X 6‖f − hm‖X +
∞∑

k=1

‖fk‖X .

By lettingm →∞, we get

‖f‖X 6
∞∑

n=1

‖fn‖X .

If ρ is a Banach function norm, its associate normρ′ is defined onM+ by

(2.5) ρ′(g) := sup


∫
Ξ

f(x)g(x) dµ(x) : f ∈ M+, ρ(f) 6 1

 , g ∈ M+.

Now we prove thatρ′ is itself a Banach function norm.

Theorem 2.5.Letρ be a Banach function norm. Thenρ′ is a Banach function norm.
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Proof. Supposeρ(f) 6 1. Then (2.2) implies thatf(x) < ∞ µ-a.e. If moreoverg = 0 µ-a.e.
then ∫

Ξ

fg dµ = 0,

hence, by (2.5),ρ′(g) = 0. If ρ′(g) = 0, then∫
Ξ

fg dµ = 0, for all f ∈ M+ with ρ(f) ≤ 1.

If E ⊂ Ξ is aµ-measurable set with0 < µ(E) < ∞, then0 < ρ(χE) < ∞ by properties (A1)
and (A4) ofρ. The functionf = χE/ρ(χE) satisfiesρ(f) = 1, therefore(

ρ(χE)
)−1
∫
E

g dµ =

∫
Ξ

fg dµ = 0.

Thusg = 0 µ-a.e. onE. BecauseE was chosen arbitrarily, we get thatg = 0 µ-a.e. The positive
homogeneity and the triangle inequality forρ′ can be easily verified, which shows (A1). The
property (A2) follows from the definition ofρ′.

We shall show (A3). Let{gn}n∈N ⊂ M+ and assume that0 6 gn ↑ g µ-a.e. for some
g ∈ M+. It is clear thatρ′ satisfy (A2). Thus for everym, n ∈ N, m 6 n, ρ′(gm) 6 ρ′(gn) 6
ρ′(g). We can, with no loss of generality, assumeρ′(gn) < ∞ for everyn ∈ N. Let ε be
any number satisfyingε < ρ′(gn). By (2.5), there is a functionf ∈ M+ with ρ(f) 6 1 such
that

∫
fg dµ > ε. Now 0 6 fgn ↑ fg µ-a.e., so the monotone convergence theorem implies∫

fgn ↑
∫

fg. Hence, there isn0 ∈ N such that
∫

fgn > ε for all n > n0. Thus, by (2.5), we
obtain

ρ′(gn) > ε for all n > n0.

Consequently, we getρ′(gn) ↑ ρ′(g), thusρ′ enjoys the property (A3).
In order to verify (A4) forρ′ we use (A5) forρ, and vice versa. LetE ⊂ Ξ satisfying

µ(E) < ∞, then by (A5) forρ, there is a constantCE < ∞ for which∫
Ξ

χEf dµ 6 CEρ(f) (f ∈ M+).

Together with (2.5), this givesρ′(χE) 6 CE < ∞, proving (A4) forρ′.
Finally, letE ⊂ Ξ be such thatµ(E) < ∞. If µ(E) = 0, then

∫
E

g dµ = 0, hence (A5) holds
automatically. Whenµ(E) > 0, we have by (A4) forρ thatρ(χE) < ∞ and by (A1) forρ that
ρ(χE) > 0. We setC ′

E = ρ(χE) andf = χE/ρ(χE). Thenρ(f) = 1, whence, for anyg ∈ M+,
we obtain from (2.5) ∫

E

g dµ = C ′
E

∫
Ξ

fg dµ 6 C ′
Eρ′(g).

Proving (A5) forρ′. The proof is complete.

The Banach function spaceX′(Ξ) determined by the Banach function normρ′ is called the
associate space, also known as theKöthe dual, of the spaceX(Ξ). The celebrated Lorentz-
Luxemburg theorem, cf. [2, Theorem 2.7], states that any Banach function spaceX(Ξ) coincides
with its second associated spaceX′′(Ξ), thus we can define the Banach norm off ∈ X(Ξ) as

(2.6) ‖f‖X = sup
‖g‖X′=1

∫
Ξ

|f(x)g(x)| dµ(x), g ∈ X′(Ξ).
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Lemma 2.6. (Hölder’s inequality)Let X(Ξ) be a Banach function space with associate space
X′(Ξ). If f ∈ X(Ξ) andg ∈ X′(Ξ), thenfg is summable and

(2.7)
∫
Ξ

|f(x)g(x)| dµ(x) 6‖f‖X‖g‖X′ .

Proof. Assume first that‖f‖X = 0, thenf = 0 µ-a.e. onΞ. In this case both side of (2.7) are
zero. When‖f‖X > 0, then ∥∥∥∥∥ f

‖f‖X

∥∥∥∥∥
X

= 1.

Thus, by definition ofX′, we get, by (2.6), that

∫
Ξ

∣∣∣∣∣∣
(

f

‖f‖X

)
g

∣∣∣∣∣∣ dµ(x) 6‖g‖X′ .

And so, ∫
Ξ

|fg| dµ(x) 6‖f‖X‖g‖X′ ,

which ends the proof.

3. SCHUR ’ S TYPE L EMMA

In the sequel, byA . B we mean that there exists some constantk > 0 such thatA 6 kB.

Theorem 3.1. Let (Ξ, µ) be aσ-finite measure space andTK be the integral operator with a
positive andΞ× Ξ measurable kernelK given by

TK : X(Ξ) 3 f 7→
∫
Ξ

K(x, y)f(y) dµ(y) ∈ Y(Ξ),

whereX(Ξ) andY(Ξ) are Banach function spaces. Suppose that there exists a strictly positive
functionh andα ∈ (0, 1) such that

(3.1)
∥∥K(x, ·)αh(·)

∥∥
X′ . h(x)

and

(3.2)
∥∥K(·, y)1−αh(·)

∥∥
Y

. h(y).

ThenTK : X ↪→ Y.

Proof. SinceT is a homogeneous operator, to prove the boundedness of the operator it suffices
to show that‖Tf‖Y . 1 for all f ∈ X with‖f‖X = 1. Using the characterization of the Banach
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function norm via the dual space, the Hölder inequality, Fubini’s theorem and conditions (3.1)-
(3.2), we have

‖Tf‖Y = sup
‖g‖Y′=1

∫
Ξ

|Tf(x)g(x)| dµ(x)

6 sup
‖g‖Y′=1

∫
Ξ

|g(x)| dµ(x)

∫
Ξ

K(x, y)|f(y)| dµ(y)

. sup
‖g‖Y′=1

∫
Ξ

|g(x)|
∥∥K(x, ·)αh(·)

∥∥
X′

∥∥K(x, ·)1−αh(·)−1|f(·)|
∥∥

X
dµ(x)

. sup
‖g‖Y′=1

∫
Ξ

|g(x)|h(x) dµ(x) sup
‖ϕ‖X′=1

∫
Ξ

K(x, y)1−αh(y)−1|f(y)ϕ(y)| dµ(y)

= sup
‖g‖Y′=1

sup
‖ϕ‖X′=1

∫
Ξ

h(y)−1|f(y)ϕ(y)| dµ(y)

∫
Ξ

K(x, y)1−αh(x)|g(x)| dµ(x)

. sup
‖g‖Y′=1

sup
‖ϕ‖X′=1

∫
Ξ

h(y)−1|f(y)ϕ(y)|
∥∥K(·, y)1−αh(·)

∥∥
Y
‖g‖Y′ dµ(y)

. sup
‖g‖Y′=1

sup
‖ϕ‖X′=1

‖g‖Y′

∫
Ξ

|f(y)ϕ(y)| dµ(y)

. sup
‖g‖Y′=1

sup
‖ϕ‖X′=1

‖g‖Y′‖ϕ‖X′‖f‖X

. 1,

which ends the proof.
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