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1. INTRODUCTION

In 1940, Ulam [51] proposed the Ulam stability problem of additive mappings. In 1941,
D. H. Hyers [13] considered the case of approximately additive mappings f : E → E

′ where
E and E ′ are Banach spaces and f satisfies the inequality ‖f(x+ y)− f(x)− f(y)‖ ≤ ε for
all x, y ∈ E. It was shown that the limit L(x) = limn→∞2

−nf(2−nx) exists for all x ∈ E and
that L is the unique additive mapping satisfying ‖f(x)− L(x)‖ ≤ ε. In 1978, Th. M. Rassias
[48] generalized the above result of an approximation involving a sum of powers of norms. In
1982-1994, a generalization of the result of D. H. Hyers was proved via theorems [29]-[31],
[34], [35], using weaker conditions controlled by a product of different powers of norms.
Theorem 1.1 (J. M. Rassias) [29] Let f : E → E

′ be a mapping where E is a real-normed
space and E ′ is a Banach space. Assume that there exists θ > 0 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ ‖x‖p ‖y‖q

for all x, y ∈ E where r = p+ q 6= 1. Then there exists a unique additive mapping L : E → E
′

such that

‖f(x)− L(x)‖ ≤ θ

|2− 2r|
‖x‖r

for all x ∈ E.
However, the case r = 1 in the above inequality is singular. A clever counter-example has

been given by Gavruta [11]. A pertinent interesting paper about the stability of additive map-
pings was presented by Gavruta [10]. The above-mentioned stability involving a product of
different powers of norms is called Ulam-Gavruta-Rassias stability by Bouikhalene and Elqo-
rachi [3], Elqorachi and Sibaha [47] and Nakmahachalasint [24]. Besides, J. M. Rassias [33]
introduced and investigated also the Euler-Lagrange quadratic mappings.

Very recently, K. Ravi and B. V. Senthil Kumar [46] proved some interesting results on Ulam-
Gavruta-Rassias stability of Rassias reciprocal functional equation

(1.1) r(x+ y) =
r(x)r(y)

r(x) + r(y)
.

The reciprocal function r(x) =
1

x
is the solution of the functional equation (1.1).

In this paper, J. M. Rassias introduces the Reciprocal Difference Functional equation (or RDF
equation)

(1.2) r

(
x+ y

2

)
− r(x+ y) =

r(x)r(y)

r(x) + r(y)

and the Reciprocal Adjoint Functional equation (or RAF equation)

(1.3) r

(
x+ y

2

)
+ r(x+ y) =

3r(x)r(y)

r(x) + r(y)

and then we investigate these equations (1.2) and (1.3) controlled by the “Product and the mixed
product-sum of powers of norms" introduced by J. M. Rassias.

2. SOLUTION OF (1.2) AND (1.3)

Theorem 2.1. Let X and Y be sets of non-zero real numbers. A function r : X → Y satisfies
the functional equation (1.1) if and only if r : X → Y satisfies the functional equation (1.2)
if and only if r : X → Y satisfies the functional equation (1.3). Therefore, every solution of
functional equations (1.2) and (1.3) is also a reciprocal function.
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Proof. Let r : X → Y satisfy the functional equation (1.1). Letting y = x in (1.1), we get

(2.1) r(2x) =
1

2
r(x).

Replacing x by x
2

in (2.1), we obtain

(2.2) r
(x
2

)
= 2r(x).

Now, replacing (x, y) by
(
x
2
, x
2

)
in (1.1) and using (2.2), we arrive

(2.3) r

(
x+ y

2

)
=

2r(x)r(y)

r(x) + r(y)
.

Subtracting (1.1) from (2.3), we lead to (1.2). Next, let r : X → Y satisfy the functional
equation (1.2). Letting y = x in (1.2), we arrive

(2.4) r(2x) =
1

2
r(x).

Replacing x by x
2

in (2.4), we obtain

(2.5) r
(x
2

)
= 2r(x).

Applying the result (2.5) in (1.2), we get

(2.6) r(x+ y) =
r(x)r(y)

r(x) + r(y)
.

Now, adding (2.6) with (1.2), we obtain (1.3). Finally, let r : X → Y satisfy the functional
equation (1.3). Putting y = x in (1.3), we obtain

(2.7) r(2x) =
1

2
r(x).

Replacing x by x
2

in (2.7), we obtain

(2.8) r
(x
2

)
= 2r(x).

Using (2.8) in (1.3), we obtain (1.1). This completes the proof of Theorem 2.1.

3. HYERS-ULAM STABILITY OF RDF EQUATION (1.2)

Theorem 3.1. Let X and Y be spaces of non-zero real numbers. Assume in addition that
f :X→Y is a mapping for which there exists a constant c (independent of x,y)≥ 0 such that the
functional inequality

(3.1)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ ε

2

holds for all (x, y) ∈ X2. Then the limit

(3.2) r(x) =lim
n→∞ 2−nf(2−nx)

exists for all x ∈ X , n ∈ N and r:X→Y is the unique mapping satisfying the functional
equation (1.2), such that

(3.3) ‖f(x)− r(x)‖ ≤ ε

for all x ∈ X . Moreover, functional identity r(x) = 2−nr(2−nx) holds for all x ∈ X and
n ∈ N.
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Proof. Replacing (x, y) by (x
2
, x
2
) in (3.1), we obtain

(3.4)
∥∥∥∥12f (x2)− f(x)

∥∥∥∥ ≤ ε

2
.

Replacing x by x
2

in (3.4), dividing by 2 and summing the resulting inequality with (3.4), we get∥∥ 1
22
f
(
x
22

)
− f(x)

∥∥ ≤ ε
(
1− 1

22

)
. Proceeding further and using induction on a positive integer

n, we obtain

(3.5)
∥∥∥∥ 1

2n
f
( x
2n

)
− f(x)

∥∥∥∥ ≤ ε

(
1− 1

2n

)
.

In order to prove the convergence of the sequence {2−nf(2−nx)}, we have if
n > p > 0, then∥∥2−nf(2−nx)− 2−pf(2−px)

∥∥ = 2−p
∥∥2−(n−p)f(2−nx)− f(2−px)∥∥

holds for all x ∈ X and n, p ∈ N. Setting 2−px = y in this relation and using (3.5), we obtain∥∥2−nf(2−nx)− 2−pf(2−px)
∥∥ = 2−p

∥∥2−(n−p)f(2−n+py)− f(y)∥∥
≤ 2−pε

(
1− 1

2n−p

)
(3.6)

or ∥∥2−nf(2−nx)− 2−pf(2−px)
∥∥ ≤ ε(2−p − 2−n) < ε2−p

or
lim
p→∞

∥∥2−nf(2−nx)− 2−pf(2−px)
∥∥ = 0.

This shows that the sequence {2−nf(2−nx)} is a Cauchy sequence and hence the limit (3.2)
exists for all x ∈ X . To show that r satisfies (1.2), replacing (x, y) by (2−nx, 2−ny) in (3.1) and
dividing by 2n, we obtain

(3.7) 2−n
∥∥∥∥f (2−n(x+ y

2

))
− f(2−n(x+ y))− f(2−nx)f(2−ny)

f(2−nx) + f(2−ny)

∥∥∥∥ ≤ 2−n
ε

2
.

Allowing n→∞ in (3.7), we see that r satisfies (1.2) for all (x, y) ∈ X2. To prove r is a unique
reciprocal function satisfying (1.2) subject to (3.3), let us consider an s : X → Y to be another
reciprocal function which satisfies (1.2) and the inequality (3.3). Clearly s(2−nx) = 2ns(x),
r(2−nx) = 2nr(x) and using (3.3), we arrive

‖s(x)− r(x)‖ = 2−n
∥∥s(2−nx)− r(2−nx)∥∥

≤ 2−n
(∥∥s(2−nx)− f(2−nx)∥∥+ ∥∥f(2−nx)− r(2−nx)∥∥)

≤ 2−n2ε = 21−nε(3.8)

for all x ∈ X . Allowing n → ∞ in (3.8), we find that r is unique. Applying (3.2) in (3.5), we
arrive the result (3.3). This completes the proof of Theorem 3.1.

4. HYERS-ULAM STABILITY OF RAF EQUATION (1.3)

Theorem 4.1. Let X and Y be spaces of non-zero real numbers. Assume in addition that
f :X→Y is a mapping for which there exists a constant c (independent of x,y)≥ 0 such that the
functional inequality

(4.1)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ ε

2
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holds for all (x, y) ∈ X2. Then the limit

(4.2) r(x) =lim
n→∞ 2−nf(2−nx)

exists for all x ∈ X , n ∈ N and r:X→Y is the unique mapping satisfying the functional
equation (1.3), such that

(4.3) ‖f(x)− r(x)‖ ≤ ε

for all x ∈ X . Moreover, functional identity r(x) = 2−nr(2−nx) holds for all x ∈ X and
n ∈ N.

Proof. Replacing (x, y) by (x
2
, x
2
) in (4.1), we obtain

(4.4)
∥∥∥∥f(x)− 1

2
f
(x
2

)∥∥∥∥ ≤ ε

2
.

Now replacing x by x
2

in (4.4), dividing by 2 and summing the resulting inequality with (4.4),
we get

∥∥f(x)− 1
22
f
(
x
22

)∥∥ ≤ ε
(
1− 1

22

)
. Proceeding further and using induction on a positive

integer n, we obtain

(4.5)
∥∥∥∥f(x)− 1

2n
f
( x
2n

)∥∥∥∥ ≤ ε

(
1− 1

2n

)
.

The proof of the rest of Theorem 4.1 is similar to that of Theorem 3.1. This completes the proof
of Theorem 4.1.

5. GENERALIZED ULAM STABILITY OF RDF EQUATION (1.2)

The generalized Ulam (or Ulam-Gavruta-Rassias) stability introduced by J. M. Rassias, con-
cerns functional equations controlled by the product of powers of norms.

Theorem 5.1. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
a, b : ρ = a+ b > −1 and c1 ≥ 0 such that

(5.1)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ c1 ‖x‖a ‖y‖b

for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(5.2) ‖r(x)− f(x)‖ ≤ c ‖x‖ρ

holds and r satisfies (1.2), for all x, y ∈ X where c = 2c1
2ρ+1−1 .

Proof. Replacing (x, y) by (x
2
, x
2
) in (5.1), we obtain

(5.3)
∥∥∥∥12f (x2)− f(x)

∥∥∥∥ ≤ c1
2ρ
‖x‖ρ .

Now replacing x by x
2

in (5.3), dividing by 2 and summing the resulting inequality with (5.3),
we get

∥∥ 1
22
f
(
x
22

)
− f(x)

∥∥ ≤ c1
2ρ

∑1
i=0

1
2i(ρ+1) ‖x‖ρ. Proceeding further and using induction on a
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positive integer n, we get∥∥∥∥ 1

2n
f
( x
2n

)
− f(x)

∥∥∥∥ ≤ c1
2ρ

n−1∑
i=0

1

2i(ρ+1)
‖x‖ρ

≤ c1
2ρ

∞∑
i=0

1

2i(ρ+1)
‖x‖ρ

≤ 2c1
2ρ+1 − 1

‖x‖ρ .(5.4)

Setting c = 2c1
2ρ+1−1 then the equation (5.4) reduces to

(5.5)
∥∥∥∥ 1

2n
f
( x
2n

)
− f(x)

∥∥∥∥ ≤ c ‖x‖ρ .

In order to prove the convergence of the sequence {2−nf(2−nx)}, we have if
n > p > 0, then∥∥2−nf(2−nx)− 2−pf(2−px)

∥∥ = 2−p
∥∥2−n+pf(2−nx)− f(2−px)∥∥

holds for all x ∈ X and n, p ∈ N. Setting 2−px = y and using (5.5), we obtain∥∥2−nf(2−nx)− 2−pf(2−px)
∥∥ = 2−p

∥∥2−n+pf(2−n+py)− f(y)∥∥
≤ 2−p(ρ+1)c ‖x‖ρ .(5.6)

As ρ > −1, the right-hand side of (5.6) tends to 0 as p → ∞. This shows that the se-
quence {2−nf(2−nx)} is a Cauchy sequence. To show that r satisfies (1.2), settting r(x) =
limn→∞2

−nf(2−nx), replacing (x, y) by (2−nx, 2−ny) in (5.1) and dividing by 2n, we obtain
(5.7)

2−n
∥∥∥∥f (2−n(x+ y

2

))
− f(2−n(x+ y))− f(2−nx)f(2−ny)

f(2−nx) + f(2−ny)

∥∥∥∥ ≤ c12
−n(ρ+1) ‖x‖a ‖y‖b .

Allowing n→∞ in (5.7), we see that r satisfies (1.2) for all (x, y) ∈ X2. To prove r is a unique
reciprocal function satisfying (1.2) subject to (5.2), let us consider an s : X → Y to be another
reciprocal function which satisfies (1.2) and the inequality (5.2). Clearly s(2−nx) = 2ns(x),
r(2−nx) = 2nr(x) and using (5.2), we arrive

‖s(x)− r(x)‖ = 2−n
∥∥s(2−nx)− r(2−nx)∥∥

≤ 2−n
(∥∥s(2−nx)− f(2−nx)∥∥+ ∥∥f(2−nx)− r(2−nx)∥∥)

≤ 2−n(ρ+1)+1c ‖x‖ρ(5.8)

for all x ∈ X . Allowing n→∞ in (5.8), we find that r is unique. This completes the proof of
the Theorem 5.1.

Theorem 5.2. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
a, b : ρ = a+ b < −1 and c1 ≥ 0 such that

(5.9)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ c1 ‖x‖a ‖y‖b

for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(5.10) ‖f(x)− r(x)‖ ≤ c ‖x‖ρ

and r satisfies (1.2), for all x, y ∈ X where c = 2c1
1−2ρ+1 .
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Proof. Replacing (x, y) by (x, x) in (5.9) and multiplying by 2, we obtain

(5.11) ‖f(x)− 2f(2x)‖ ≤ 2c1 ‖x‖ρ .
Now replacing x by 2x in (5.11), multiplying by 2 and summing the resulting inequality with
(5.11), we get ‖f(x)− 22f(22x)‖ ≤ 2c1

∑1
i=0 2

i(ρ+1) ‖x‖ρ. Proceeding further and using in-
duction on a positive integer n, we get

‖f(x)− 2nf(2nx)‖ ≤ 2c1

n−1∑
i=0

2i(ρ+1) ‖x‖ρ

≤ 2c1

∞∑
i=0

2i(ρ+1) ‖x‖ρ

≤ 2c1
1− 2ρ+1

‖x‖ρ .(5.12)

Setting c = 2c1
1−2ρ+1 then the equation (5.12) reduces to

(5.13) ‖f(x)− 2nf(2nx)‖ ≤ c ‖x‖ρ .
In order to prove the convergence of the sequence {2nf(2nx)}, we have if n > p > 0, then

‖2nf(2nx)− 2pf(2px)‖ = 2p
∥∥2n−pf(2nx)− f(2px)∥∥

holds for all x ∈ X and n, p ∈ N. Setting 2px = y in this relation and using (5.13), we obtain

‖2nf(2nx)− 2pf(2px)‖ = 2p
∥∥2n−pf(2n−py)− f(y)∥∥

≤ 2p(ρ+1)c ‖x‖ρ .(5.14)

As ρ < −1, the right-hand side of (5.14) tends to 0 as p → ∞. This shows that the sequence
{2nf(2nx)} is a Cauchy sequence. To prove r satisfies (1.2) and it is unique, the proof is similar
to that of Theorem 5.1. This completes the proof of the Theorem 5.2.

Theorem 5.3. Let f :X→Y be a mapping for which there exists a constant θ > 0 and f satisfies

(5.15)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ θH(x, y)

where H : X2 → Y be a function such that

(5.16) φ(x) =
∞∑
i=0

1

2i
H
( x

2i+1
,
x

2i+1

)
with the condition

(5.17) lim
n→∞

1

2n
H
( x

2n+1
,
x

2n+1

)
= 0

holds. Then there exists a unique reciprocal mapping A : X → Y which satisfies (1.2) and the
inequality

(5.18) ‖f(x)− A(x)‖ ≤ θφ(x)

for all x ∈ X .

Proof. Replacing (x, y) by (x
2
, x
2
) in (5.15), we obtain

(5.19)
∥∥∥∥12f (x2)− f(x)

∥∥∥∥ ≤ θH
(x
2
,
x

2

)
.
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Again replacing x by x
2

in (5.19), dividing by 2 and summing the resulting inequality with
(5.19), we get

∥∥ 1
22
f
(
x
22

)
− f(x)

∥∥ ≤ θ
∑1

i=0
1
2i
H
(

x
2i+1 ,

x
2i+1

)
. Proceeding further and using

induction on a positive integer n, we get∥∥∥∥ 1

2n
f
( x
2n

)
− f(x)

∥∥∥∥ ≤ θ
n−1∑
i=0

1

2i
H
( x

2i+1
,
x

2i+1

)
≤ θ

∞∑
i=0

1

2i
H
( x

2i+1
,
x

2i+1

)
(5.20)

for all x ∈ X . In order to prove the convergence of the sequence {2−nf(2−nx)}, replace x by
2−px in (5.20) and divide by 2p,we find that for n > p > 0∥∥2−pf(2−px)− 2−n−pf(2−n−px)

∥∥ = 2−p
∥∥f(2−px)− 2−nf(2−n−px)

∥∥
≤ θ

∞∑
i=0

1

2p+i
H
( x

2p+i+1
,

x

2p+i+1

)
.(5.21)

Allow p → ∞ and using (5.17), the right-hand side of the inequality (5.21) tends to 0. Thus
the sequence {2−nf(2−nx)} is a Cauchy sequence. Allowing n → ∞ in (5.20), we arrive
(5.18). To show that A satisfies (1.2), setting A(x) =lim

n→∞ 2−nf(2−nx), replacing (x, y) by
(2−nx, 2−ny) in (5.15) and dividing by 2n, we obtain
(5.22)

2−n
∥∥∥∥f (2−n(x+ y

2

))
− f(2−n(x+ y))− f(2−nx)f(2−ny)

f(2−nx) + f(2−ny)

∥∥∥∥ ≤ 2−nθH(2−nx, 2−ny).

Allowing n → ∞ in (5.22), we see that A satisfies (1.2) for all (x, y) ∈ X2. To prove A is
a unique reciprocal function satisfying (1.2). Let B : X → Y be another reciprocal function
which satisfies (1.2) and the inequality (5.18). ClearlyB(2−nx) = 2nB(x),A(2−nx) = 2nA(x)
and using (5.18), we arrive

‖B(x)− A(x)‖ = 2−n
∥∥B(2−nx)− A(2−nx)

∥∥
≤ 2−n

(∥∥B(2−nx)− f(2−nx)
∥∥+ ∥∥f(2−nx)− A(2−nx)∥∥)

≤ 2θ
∞∑
i=0

1

2n+i
H
( x

2n+i+1
,

x

2n+i+1

)
(5.23)

for all x ∈ X . Allowing n → ∞ in (5.23) and using (5.17), we find that A is unique. This
completes the proof of the Theorem 5.3.

Theorem 5.4. Let f :X→Y be a mapping for which there exists a constant θ > 0 and f satisfies

(5.24)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ θH(x, y)

where H : X2 → Y be a function such that

(5.25) φ(x) =
∞∑
i=0

2iH(2i+1x, 2i+1x)

with the condition

(5.26) lim
n→∞2

nH(2n+1x, 2n+1x) = 0
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holds. Then there exists a unique reciprocal mapping A : X → Y which satisfies (1.2) and the
inequality

(5.27) ‖f(x)− A(x)‖ ≤ θφ(x)

for all x ∈ X .

Proof. Replacing (x, y) by (x, x) in (5.24) and multiplying by 2, we obtain

(5.28) ‖f(x)− 2f(2x)‖ ≤ θH(x, x).

Again replacing x by 2x in (5.28), multiplying by 2 and summing the resulting inequality with
(5.28), we get ‖f(x)− 22f(22x)‖ ≤ θ

∑1
i=0 2

iH(2i+1x, 2i+1x). Proceeding further and using
induction on a positive integer n, we get

‖f(x)− 2nf(2nx)‖ ≤ θ

n−1∑
i=0

2iH(2i+1x, 2i+1x)

≤ θ
∞∑
i=0

2iH(2i+1x, 2i+1x)(5.29)

for all x ∈ X . In order to prove the convergence of the sequence {2nf(2nx)}, replace x by 2px
in (5.29) and multiply by 2p, we find that for n > p > 0∥∥2pf(2px)− 2n+pf(2n+px)

∥∥ = 2p
∥∥f(2px)− 2nf(2n+px)

∥∥
≤ θ

∞∑
i=0

2p+iH(2p+i+1x, 2p+i+1x).(5.30)

Allowing p→∞ and using (5.26), the right-hand side of the inequality (5.30) tends to 0. Thus
the sequence {2nf(2nx)} is a Cauchy sequence. Allowing n → ∞ in (5.29), we arrive (5.27).
To prove A satisfies (1.2) and it is unique, the proof is similar to that of Theorem 5.3. This
completes the proof of the Theorem 5.4.

6. EXTENDED ULAM STABILITY OF RDF EQUATION (1.2)

The extended Ulam(or Rassias) stability introduced by J. M. Rassias, concerns functional
equations controlled by the mixed product-sum of powers of norms.

Theorem 6.1. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
k and α with k > 0 and α > −1

2
such that

(6.1)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ k
(
‖x‖α ‖y‖α +

(
‖x‖2α + ‖y‖2α

))
for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(6.2) ‖r(x)− f(x)‖ ≤ c ‖x‖2α

and r satisfies (1.2), for all x, y ∈ X where c = 6k
22α+1−1 .

Proof. Replacing (x, y) by (x
2
, x
2
) in (6.1), we obtain

(6.3)
∥∥∥∥12f (x2)− f(x)

∥∥∥∥ ≤ 3k

22α
‖x‖2α .
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Now replacing x by x
2

in (6.3), dividing by 2 and summing the resulting inequality with (6.3),
we get

∥∥ 1
22
f
(
x
22

)
− f(x)

∥∥ ≤ 3k
22α

∑1
i=0

1
2i(2α+1) ‖x‖2α. Using induction on a positive integer n,

we get ∥∥∥∥ 1

2n
f
( x
2n

)
− f(x)

∥∥∥∥ ≤ 3k

22α

n−1∑
i=0

1

2i(2α+1)
‖x‖2α

≤ 3k

22α

∞∑
i=0

1

2i(2α+1)
‖x‖2α

≤ 6k

22α+1 − 1
‖x‖2α .(6.4)

Setting c = 6k
22α+1−1 then the equation (6.4) reduces to

(6.5)
∥∥∥∥ 1

2n
f
( x
2n

)
− f(x)

∥∥∥∥ ≤ c ‖x‖2α .

In order to prove the convergence of the sequence {2−nf(2−nx)}, we have if
n > p > 0, then∥∥2−nf(2−nx)− 2−pf(2−px)

∥∥ = 2−p
∥∥2−n+pf(2−nx)− f(2−px)∥∥

holds for all x ∈ X and n, p ∈ N. Setting 2−px = y in this relation and using (6.5), we obtain∥∥2−nf(2−nx)− 2−pf(2−px)
∥∥ = 2−p

∥∥2−n+pf(2−n+py)− f(y)∥∥
≤ 2−p(2α+1)c ‖x‖2α .(6.6)

As α > −1
2
, the right-hand side of (6.6) tends to 0 as p → ∞. This shows that the se-

quence {2−nf(2−nx)} is a Cauchy sequence. To show that r satisfies (1.2), setting r(x) =lim
n→∞

2−nf(2−nx), replacing (x, y) by (2−nx, 2−ny) in (6.1) and dividing by 2n, we obtain

2−n
∥∥∥∥f (2−n(x+ y

2

))
− f(2−n(x+ y))− f(2−nx)f(2−ny)

f(2−nx) + f(2−ny)

∥∥∥∥
≤ 2−n(2α+1)k

(
‖x‖α ‖y‖α +

(
‖x‖2α + ‖y‖2α

))
.(6.7)

Allowing n → ∞ in (6.7), we see that r satisfies (1.2) for all (x, y) ∈ X2. To prove r is
a unique reciprocal function satisfying (1.2) subject to (6.2). Let s : X → Y be another
reciprocal function which satisfies (1.2) and the inequality (6.2). Clearly s(2−nx) = 2ns(x),
r(2−nx) = 2nr(x) and using (6.2), we arrive

‖s(x)− r(x)‖ = 2−n
∥∥s(2−nx)− r(2−nx)∥∥

≤ 2−n
(∥∥s(2−nx)− f(2−nx)∥∥+ ∥∥f(2−nx)− r(2−nx)∥∥)

≤ 2−n(2α+1)+1c ‖x‖2α(6.8)

for all x ∈ X . Allowing n→∞ in (6.8), we find that r is unique. This completes the proof of
the Theorem 6.1.

Theorem 6.2. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
k and α with k > 0 and α < −1

2
such that

(6.9)
∥∥∥∥f (x+ y

2

)
− f(x+ y)− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ k
(
‖x‖α ‖y‖α +

(
‖x‖2α + ‖y‖2α

))
for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(6.10) ‖f(x)− r(x)‖ ≤ c ‖x‖2α
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and r satisfies (1.2) for all x, y ∈ X where c = 6k
1−22α+1 .

Proof. Replacing (x, y) by (x, x) in (6.9) and multiplying by 2 , we obtain

(6.11) ‖f(x)− 2f(2x)‖ ≤ 6k ‖x‖2α .

Now replacing x by 2x in (6.11), multiplying by 2 and summing the resulting inequality with
(6.11),we get ‖f(x)− 22f(22x)‖ ≤ 6k

∑1
i=0 2

i(2α+1) ‖x‖2α. Using induction on a positive
integer n, we get

‖f(x)− 2nf(2nx)‖ ≤ 6k
n−1∑
i=0

2i(2α+1) ‖x‖2α

≤ 6k
∞∑
i=0

2i(2α+1) ‖x‖2α

≤ 6k

1− 22α+1
‖x‖2α .(6.12)

Setting c = 6k
1−22α+1 then the equation (6.12) reduces to

(6.13) ‖f(x)− 2nf(2nx)‖ ≤ c ‖x‖2α .

In order to prove the convergence of the sequence {2nf(2nx)}, we have if n > p > 0, then

‖2nf(2nx)− 2pf(2px)‖ = 2p
∥∥2n−pf(2nx)− f(2px)∥∥

holds for all x ∈ X and n, p ∈ N. Setting 2px = y in this relation and using (6.13), we obtain

‖2nf(2nx)− 2pf(2px)‖ = 2p
∥∥2n−pf(2n−py)− f(y)∥∥

≤ 2p(2α+1)c ‖x‖2α .(6.14)

As α < −1
2
, the right-hand side of (6.14) tends to 0 as p → ∞. This shows that the sequence

{2nf(2nx)} is a Cauchy sequence. To prove r satisfies (1.2) and it is unique, the proof is similar
to that of Theorem 6.1. This completes the proof of the Theorem 6.2.

7. GENERALIZED ULAM STABILITY OF RAF EQUATION (1.3)

Theorem 7.1. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
a, b : ρ = a+ b > −1 and c1 ≥ 0 such that

(7.1)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ c1 ‖x‖a ‖y‖b

for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(7.2) ‖f(x)− r(x)‖ ≤ c ‖x‖ρ

holds and r satisfies (1.3), for all x, y ∈ X where c = 2c1
2ρ+1−1 .

Proof. Replacing (x, y) by (x
2
, x
2
) in (7.1), we obtain

(7.3)
∥∥∥∥f(x)− 1

2
f
(x
2

)∥∥∥∥ ≤ c1
2ρ
‖x‖ρ .
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Now replacing x by x
2

in (7.3), dividing by 2 and summing the resulting inequality with (7.3),we
get
∥∥f(x)− 1

22
f
(
x
22

)∥∥ ≤ c1
2ρ

∑1
i=0

1
2i(ρ+1) ‖x‖ρ. Proceeding further and using induction on a

positive integer n, we get∥∥∥∥f(x)− 1

2n
f
( x
2n

)∥∥∥∥ ≤ c1
2ρ

n−1∑
i=0

1

2i(ρ+1)
‖x‖ρ

≤ c1
2ρ

∞∑
i=0

1

2i(ρ+1)
‖x‖ρ

≤ 2c1
2ρ+1 − 1

‖x‖ρ .(7.4)

Setting c = 2c1
2ρ+1−1 then the equation (7.4) reduces to

(7.5)
∥∥∥∥f(x)− 1

2n
f
( x
2n

)∥∥∥∥ ≤ c ‖x‖ρ .

The proof of the rest of Theorem 7.1 goes through the same way as in Theorem 5.1. This
completes the proof of the Theorem 7.1.

Theorem 7.2. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
a, b : ρ = a+ b < −1 and c1 ≥ 0 such that

(7.6)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ c1 ‖x‖a ‖y‖b

for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(7.7) ‖r(x)− f(x)‖ ≤ c ‖x‖ρ

and r satisfies (1.3), for all x, y ∈ X where c = 2c1
1−2ρ+1 .

Proof. Replacing (x, y) by (x, x) in (7.6) and multiplying by 2, we obtain

(7.8) ‖2f(2x)− f(x)‖ ≤ 2c1 ‖x‖ρ .

Now replacing x by 2x in (7.8), multiplying by 2 and summing the resulting inequality with
(7.8), we get ‖22f(22x)− f(x)‖ ≤ 2c1

∑1
i=0 2

i(ρ+1) ‖x‖ρ. Proceeding further and using induc-
tion on a positive integer n, we get

‖2nf(2nx)− f(x)‖ ≤ 2c1

n−1∑
i=0

2i(ρ+1) ‖x‖ρ

≤ 2c1

∞∑
i=0

2i(ρ+1) ‖x‖ρ

≤ 2c1
1− 2ρ+1

‖x‖ρ .(7.9)

Setting c = 2c1
1−2ρ+1 then the equation (7.9) reduces to

(7.10) ‖2nf(2nx)− f(x)‖ ≤ c ‖x‖ρ .

The proof of the rest of Theorem 7.2 can be done by similar arguments as in Theorem 5.2. This
completes the proof of the Theorem 7.2.
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Theorem 7.3. Let f :X→Y be a mapping for which there exists a constant θ > 0 and f satisfies

(7.11)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ θH(x, y)

where H : X2 → Y be a function such that

(7.12) φ(x) =
∞∑
i=0

1

2i
H
( x

2i+1
,
x

2i+1

)
with the condition

(7.13) lim
n→∞

1

2n
H
( x

2n+1
,
x

2n+1

)
= 0

holds. Then there exists a unique reciprocal mapping A : X → Y which satisfies (1.3) and the
inequality

(7.14) ‖f(x)− A(x)‖ ≤ θφ(x)

for all x ∈ X .

Proof. Replacing (x, y) by (x
2
, x
2
) in (7.11), we obtain

(7.15)
∥∥∥∥f(x)− 1

2
f
(x
2

)∥∥∥∥ ≤ θH
(x
2
,
x

2

)
.

Again replacing x by x
2

in (7.15), dividing by 2 and summing the resulting inequality with
(7.15), we get

∥∥f(x)− 1
22
f
(
x
22

)∥∥ ≤ θ
∑1

i=0
1
2i
H
(

x
2i+1 ,

x
2i+1

)
. Proceeding further and using

induction on a positive integer n, we get∥∥∥∥f(x)− 1

2n
f
( x
2n

)∥∥∥∥ ≤ θ
n−1∑
i=0

1

2i
H
( x

2i+1
,
x

2i+1

)
≤ θ

∞∑
i=0

1

2i
H
( x

2i+1
,
x

2i+1

)
(7.16)

for all x ∈ X . The proof of the rest of Theorem 7.3 goes through the same way as in Theorem
5.3. This completes the proof of the Theorem 7.3.

Theorem 7.4. Let f :X→Y be a mapping for which there exists a constant θ > 0 and f satisfies

(7.17)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ θH(x, y)

where H : X2 → Y be a function such that

(7.18) φ(x) =
∞∑
i=o

2iH(2i+1x, 2i+1x)

with the condition

(7.19) lim
n→∞2

nH(2n+1x, 2n+1x) = 0

holds. Then there exists a unique reciprocal mapping A : X → Y which satisfies (1.2) and the
inequality

(7.20) ‖A(x)− f(x)‖ ≤ θφ(x)

for all x ∈ X .
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Proof. Replacing (x, y) by (x, x) in (7.17) and multiplying by 2, we obtain

(7.21) ‖2f(2x)− f(x)‖ ≤ θH(x, x).

Again replacing x by 2x in (7.21), multiplying by 2 and summing the resulting inequality with
(7.21), we get ‖22f(22x)− f(x)‖ ≤ θ

∑1
i=0 2

iH(2i+1x, 2i+1x). Proceeding further and using
induction on a positive integer n, we get

‖2nf(2nx)− f(x)‖ ≤ θ

n−1∑
i=0

2iH(2i+1x, 2i+1x)

≤ θ
∞∑
i=0

2iH(2i+1x, 2i+1x)(7.22)

for all x ∈ X . The proof of the rest of Theorem 7.4 is similar to that of Theorem 5.4. This
completes the proof of the Theorem 7.4.

8. EXTENDED ULAM STABILITY OF RAF EQUATION (1.3)

Theorem 8.1. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
k and α with k > 0 and α > −1

2
such that

(8.1)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ k
(
‖x‖α ‖y‖α +

(
‖x‖2α + ‖y‖2α

))
for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(8.2) ‖f(x)− r(x)‖ ≤ c ‖x‖2α

and r satisfies (1.3), for all x, y ∈ X where c = 6k
22α+1−1 .

Proof. Replacing (x, y) by (x
2
, x
2
) in (8.1), we obtain

(8.3)
∥∥∥∥f(x)− 1

2
f
(x
2

)∥∥∥∥ ≤ 3k

22α
‖x‖2α .

Now replacing x by x
2

in (8.3), dividing by 2 and summing the resulting inequality with (8.3),
we get

∥∥f(x)− 1
22
f
(
x
22

)∥∥ ≤ 3k
22α

∑1
i=0

1
2i(2α+1) ‖x‖2α. Using induction on a positive integer n,

we get ∥∥∥∥f(x)− 1

2n
f
( x
2n

)∥∥∥∥ ≤ 3k

22α

n−1∑
i=0

1

2i(2α+1)
‖x‖2α

≤ 3k

22α

∞∑
i=0

1

2i(2α+1)
‖x‖2α

≤ 6k

22α+1 − 1
‖x‖2α .(8.4)

Setting c = 6k
22α+1−1 then the equation (8.4) reduces to

(8.5)
∥∥∥∥f(x)− 1

2n
f
( x
2n

)∥∥∥∥ ≤ c ‖x‖2α .

The proof of the rest of Theorem 8.1 is similar to that of Theorem 6.1. This completes the proof
of the Theorem 8.1.
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Theorem 8.2. Let f :X→Y be a mapping on the spaces of non-zero real numbers. If there exist
k and α with k > 0 and α < −1

2
such that

(8.6)
∥∥∥∥f (x+ y

2

)
+ f(x+ y)− 3f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ k
(
‖x‖α ‖y‖α +

(
‖x‖2α + ‖y‖2α

))
for all x, y ∈ X , then there exists a unique reciprocal mapping r:X→Y such that

(8.7) ‖r(x)− f(x)‖ ≤ c ‖x‖2α

and r satisfies (1.3), for all x, y ∈ X where c = 6k
1−22α+1 .

Proof. Replacing (x, y) by (x, x) in (8.6) and multiplying by 2 , we obtain

(8.8) ‖2f(2x)− f(x)‖ ≤ 6k ‖x‖2α .
Now replacing x by 2x in (8.8), multiplying by 2 and summing the resulting inequality with
(8.8),we get ‖22f(22x)− f(x)‖ ≤ 6k

∑1
i=0 2

i(2α+1) ‖x‖2α. Using induction on a positive inte-
ger n, we get

‖2nf(2nx)− f(x)‖ ≤ 6k
n−1∑
i=0

2i(2α+1) ‖x‖2α

≤ 6k
∞∑
i=0

2i(2α+1) ‖x‖2α

≤ 6k

1− 22α+1
‖x‖2α .(8.9)

Setting c = 6k
1−22α+1 then the equation (8.9) reduces to

(8.10) ‖2nf(2nx)− f(x)‖ ≤ c ‖x‖2α .
The proof of the rest of Theorem 8.2 is similar to that of Theorem 6.2. This completes the proof
of the Theorem 8.2.
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