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2 M. BUSTOS GONZALEZ AND A. I. STAN

1. INTRODUCTION

The Hölder and Stolarsky means of two positive numbers a and b, with a < b, are obtained
by taking a probability measure µ, whose support contains the set {a, b} and is contained in
the interval [a, b], integrating the function x 7→ xp, for some p ∈ [−∞, ∞], with respect
to that probability measure, and then taking the 1/p power of that integral. Of course, this
definition does not make sense for p ∈ {−∞, 0, ∞}, but it can be made rigorous by the
process of taking a limit. In other words, for p ≥ 1, these two means are Lp-norms of the
function f(x) = x, with respect to certain probability measures µ, whose supports S satisfy the
condition {a, b} ⊆ S ⊆ [a, b]. There is another way to understand these means, namely through
the mean value theorem for integrals. Thus, for any p ∈ R \ {0}, there exists c ∈ [a, b], such
that given a probability measure µ supported on [a, b], we have:

cp =
1

b− a

∫ b

a

xpdµ(x).(1.1)

Since this number c is unique, we define it to be the (µ, p)-mean of a and b.
For the Hölder means, the probability measure µH is chosen to be the simplest possible sym-
metric one, with respect to the midpoint of [a, b], whose support satisfies the above conditions,
namely

µH :=
1

2
δa +

1

2
δb,(1.2)

where δa and δb denote the Dirac probability measures that concentrate all the mass at the point
a and b, respectively.
In opposition to the way that the Hölder means are defined, by concentrating all the mass in
a symmetric way at the margins a and b of the interval [a, b], the Stolarsky means are defined
using the probability measure µS that spreads the mass uniformly along the entire interval
[a, b], namely:

dµS :=
1

b− a
1[a,b]dx,(1.3)

where 1[a,b] is the characteristic function of the interval [a, b], and dx the Lebesgue measure.
Since both family of means, Hölder and Stolarsky, are defined via probability measures µ, that
means µ([a, b]) = 1, Lyapunov inequality (which is derived from Hölder inequality) implies
that if we increase the index p, then the p-mean of a and b, increases, too. Let Hp(a, b) and
Sp(a, b) be the p-Hölder mean and p-Stolarsky mean, respectively, of a and b, for p ∈ [−∞,
∞]. It is natural to ask the following question:

Question 1. Given a number n ∈ [−∞, ∞], what are the greatest p(n) and the least q(n) in
[−∞,∞] such that, for all a and b positive numbers, we have:

Hp(n)(a, b) ≤ Sn(a, b) ≤ Hq(n)(a, b)?(1.4)

We are not the first people to ask and answer this question. It is known for example, that, for
n = 0, S0(a, b) becomes the logarithmic mean of a and b, and the answer was given for the first
time in [8], and later on in [6]. For n = 0, the answer is p(0) = 0 and q(0) = 1/3, that means,
for all 0 < a < b, we have:

√
ab ≤ b− a

ln(b)− ln(a)
≤
(
a1/3 + b1/3

2

)3

.(1.5)
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HÖLDER–STOLARSKY MEANS 3

A weaker inequality, for all 0 < a < b, we have:
√
ab ≤ b− a

ln(b)− ln(a)
≤ a+ b

2
,(1.6)

was obtained in [3], [9], and [11] (actually, in [3], q = 1 was improved to q = 1/2). For other
inequalities concerning the Stolarsky means see also [4].
The paper is structured as follows:
In section 2, we review the definitions of the Hölder and Stolarsky means of two positive num-
bers. In section 3, we introduce some mathematical language and vocabulary that will be useful
later in treating many cases of our proof in a unitary way. We formulate the main result of this
paper in section 4, and prove it in section 5. Finally, in section 6, we present an application
of these inequalities, by formulating two geometric inequalities involving the Fermat-Torricelli
point of a triangle, in which the measure of each angle is at most 120◦.

2. HÖLDER AND STOLARSKY MEANS FOR TWO POSITIVE NUMBERS

In this section we review the definitions of the Hölder and Stolarsky means of two positive
numbers. Let a and b be two positive numbers. Without loss of generality we may assume that
a ≤ b. For any p ∈ [−∞,∞], we define, the p-Hölder mean of a and b, as:

Hp(a, b) :=


(
ap+bp

2

)1/p
if p ∈ R \ {0}

limp→0

(
ap+bp

2

)1/p
=
√
ab if p = 0

limp→∞
(
ap+bp

2

)1/p
= max{a, b} = b if p =∞

limp→−∞
(
ap+bp

2

)1/p
= min{a, b} = a if p = −∞

.(2.1)

Let us observe that for all p ∈ R \ {0}, we have:

Hp(a, b) =

(∫
R
|x|pdµH(x)

)1/p

= ‖ f ‖p,(2.2)

where µH := (1/2)δa + (1/2)δb and f(x) := x. Here, for any point c ∈ R, δc denotes the
Dirac delta measure concentrated at c. Since µH is a probability measure, Lyapunov inequality
implies that the function p 7→ Hp(a, b) is an increasing function. Thus, as p increases from−∞
to∞, the p-Hölder mean of a and b takes in a continuous and increasing way all real numbers
in between a and b. If a < b and p < q, then Hp(a, b) < Hq(a, b); that means in this case the
function p 7→ Hp(a, b) is also injective.
For 0 < a < b, we define the p-Stolarsky mean of a and b, as:

Sp(a, b) :=



(
bn−an
n(b−a)

)1/(n−1)
if n ∈ R \ {0, 1}

limn→0

(
bn−an
n(b−a)

)1/(n−1)
= b−a

ln(b)−ln(a) if n = 0

limn→1

(
bn−an
n(b−a)

)1/(n−1)
= 1

e

(
bb

aa

)1/(b−a)
if n = 1

limn→∞

(
bn−an
n(b−a)

)1/(n−1)
= max{a, b} = b if n =∞

limn→−∞

(
bn−an
n(b−a)

)1/(n−1)
= min{a, b} = a if n = −∞

.(2.3)

If a = b, then for all p ∈ [−∞,∞], we define:

Sp(a, a) := lim
b→a+

Sp(a, b)

= a.(2.4)
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4 M. BUSTOS GONZALEZ AND A. I. STAN

In fact, for all 0 < a < b, and all n ∈ R \ {1}, we have:

Sn(a, b) =

(∫
R
|x|n−1dµS(x)

)1/(n−1)

= ‖ f ‖n−1,(2.5)

where dµS/dx := [1/(b − a)]1[a,b]. Here dx denotes the Lebesgue measure on R and 1[a,b]

the characteristic function of the interval [a, b], and f(x) = x. Since µS is also a probability
measure on R, Lyapunov inequality implies again that the function n 7→ Sn(a, b) is increasing.

3. MATHEMATICAL LANGUAGE VOCABULARY

In this section we organize our thoughts, in order to prove our main theorem in an efficient
way. We introduce the following notations.

Notation . We denote by:
• “(−1)er" the comparative adjective-conjunction group “less than" or “smaller than",
• “(−1)ereq" the expression “less than or equal to",
• “(0)er" the comparative adjective-conjunction group “equal to",
• “(0)ereq" the comparative adjective-conjunction group “equal to",
• “(+1)er" the comparative adjective-conjunction group “greater than" or “bigger than",
• “(+1)ereq" the expression “greater than or equal to".

Notation . We denote by:
• “(−1)creasing" the adjective “decreasing",
• “(0)creasing" the adjective “constant",
• “(+1)creasing" the adjective “increasing".

Notation . We denote by:
• “(−1)vex" the expression “strictly concave" or “strictly concave downward",
• “(0)vex" the adjective “linear",
• “(+1)vex" the expression “strictly convex" or “strictly concave upward".

Notation . We denote by:
• “(−1)est" the adjective “the least" or “the smallest",
• “(+1)est" the adjective “the greatest" or “the biggest".

Notation . We denote by:
• “(−1)mum" the “infimum",
• “(+1)mum" the “supremum".

We consider the following two monoids with respect to the multiplication operation:

M−,+ := {−1, 1}(3.1)

and

M−,0,+ := {−1, 0, 1}.(3.2)

We also consider the sets of order relations, words, or expressions:

Arel = {<,=, >},(3.3)

Areleq = {≤,=,≥},(3.4)
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Aer = {less than, equal to, greater than}
= {(−1)er, (0)er, (+1)er},(3.5)

Acreasing = {decreasing, constant, increasing}
= {(−1)creasing, (0)creasing, (+1)creasing},(3.6)

Avex = {strictly concave, linear, stricty convex}
= {(−1)vex, (0)vex, (+1)vex},(3.7)

Aest = {the least, the greatest}
= {(−1)est, (+1)est},(3.8)

and

Amum = {infimum, supremum}
= {(−1)mum, (+1)mum}.(3.9)

We define the action of the monoid M−,0,+ on the set Arel, (m, x) 7→ mx, by the following
table:

· < = >
−1 > = <

0 = = =
+1 < = >

To make sure that no confusion arises later on, in this paper, we put a box around the product
(action) of an element from a monoid and an element from the set upon which that monoid is
acting. Thus, for example, we write:

(−1) > = < .(3.10)

It is not hard to see that this is indeed an action of the monoid (M−,0,+, ·) on the set Arel, which
means:

• ∀m1, m2 ∈M−,0,+ and x ∈ Arel, we have:

m1 m2x = (m1m2)x(3.11)

• ∀x ∈ Arel, we have:

(+1)x = x.(3.12)

We define the action of the monoid M−,0,+ on the set Areleq, (m, x) 7→ mx = m · x, by the
following table:

· ≤ = ≥
−1 ≥ = ≤

0 = = =
+1 ≥ = ≤

We also define the actions of the monoid (M−,0,+, ·) on the sets Aer, Acreasing, and Avex, in
the following way:
For all ε, δ ∈ {−1, 0, +1} and each suffix ∈ {er, creasing, vex},

ε ((δ)suffix) := (ε · δ) suffix.(3.13)
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Finally, we define the actions of the monoid (M−,+, ·) on the sets Aest and Amum, in the follow-
ing way:
For all ε, δ ∈ {−1, +1} and each suffix ∈ {est, mum},

ε ((δ)suffix) := (ε · δ) suffix.(3.14)

With these notations and actions, we can restate Jensen inequality, in the following way:

Proposition 3.1. (Jensen inequality) Let I ⊆ R be an interval, and ϕ : I → R an (ε)vex
function, for some ε ∈ {−1, 0, +1}. Let L : I → R be a linear function. We assume that the
graphs of ϕ and L intersect at two distinct points (x1, y1) and (x1, y2). Then for all x ∈ I , we
have:

ϕ(x) sgn(ε)sgn(x− x1)sgn(x− x2)· > L(x).(3.15)

Proof. We have three cases:
Case 1. If ε = +1, then ϕ is convex and sgn(ε) = +1. Thus, the portion(s) of the graph of
ϕ, corresponding to values of x outside the interval [x1, x2], is(are) above the corresponding
portion(s) of the secant line joining the points (x1, ϕ(x1)) and (x2, ϕ(x2)) which is the graph
of the linear function L, the graph of ϕ coincides with the graph of L at the points x1 and x2,
and the portion of the graph of ϕ corresponding to the values of x inside the interval (x1, x2)
is below the corresponding graph of L. We can also observe that x ∈ I \ [x1, x2] is equivalent
to sgn(x − x1)sgn(x − x2) > 0, x ∈ {x1, x2} means sgn(x − x1)sgn(x − x2) = 0, and
x ∈ (x1, x2) is the same as sgn(x− x1)sgn(x− x2) < 0. Remembering that (+1)· > = >,

0· > = =, and (−1)· > = < inequality (3.15) follows.
Case 2. If ε = 0, then ϕ is linear and sgn(ε) = 0. Since the graphs of both ϕ and L are straight
lines, and these two lines have two distinct common points (x1, y1) and (x2, y2), the two graphs
must coincide. Thus (3.15) becomes the equality:

ϕ(x) = L(x),(3.16)

for all x ∈ I , which agrees with the definition 0· > = =.
Case 3. If ε = −1, then the proof is similar to the proof of Case 1.

4. SHARP INEQUALITY ABOUT THE HÖLDER AND STOLARSKY MEANS

In this section we answer the following question:
Question: Given a number n ∈ [−∞, ∞], find the greatest number p = p(n) and the least
number q = q(n), such that for all positive numbers a and b, we have:

Hp(a, b) ≤ Sn(a, b) ≤ Hq(a, b).(4.1)

To answer this question we need the following lemma, for an inequality between two functions,
whose graphs touch at one point, to hold, see [12].

Lemma 4.1. Let I ⊆ R be an interval, and let I̊ := {x ∈ I | ∃r > 0, (x − r, x + r) ⊂ I} be
the set of the interior points of I . Suppose f and g are two real valued functions, such that:

(1) f(x) ≤ g(x), for all x ∈ I .
(2) f and g are continuous on I .
(3) f and g are twice differentiable on I̊ .
(4) There exists x0 ∈ I̊ , such that f(x0) = g(x0).
(5) f ′′ is continuous at x0.

Then, we must have f ′(x0) = g′(x0) and f ′′(x0) ≤ g′′(x0).

We present below a proof slightly different from the one from [12].
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Proof. Let h(x) := f(x)− g(x). For all x ∈ I , we have:

h(x) ≤ 0

= h (x0) .(4.2)

Therefore, h has an absolute maximum value at x0. Since x0 is a point in the interior of I ,
Fermat theorem implies h′(x0) = 0. That means, f ′(x0) = g′(x0).
Since x0 ∈ I̊ , there exists δ > 0, such that (x0 − δ, x0 + δ) ⊂ I . Applying Taylor formula with
Lagrange remainder, for each t ∈ (0, δ), there exists ξt ∈ (x0, x0 + t), such that:

h (x0 + t) = h (x0) + h′ (x0) t+
1

2
h′′ (ξt) t

2.(4.3)

Since h(x0 + t) ≤ 0, h(x0) = 0, and h′(x0) = 0, we conclude from the last equation that
h′′(ξt) ≤ 0, for all t ∈ (0, δ). Letting t → 0+, since x0 < ξt < x0 + t, we conclude that
ξt → x0. Because h′′ is continuous at x0, we obtain:

h′′ (x0) = lim
t→0+

h′′ (ξt)

≤ 0.(4.4)

The last inequality is equivalent to f ′′(x0) ≤ g′′(x0).

We will also need the following proposition.

Proposition 4.2. The function L : (0,∞)→ (0,∞), defined by:{
x−1
ln(x)

if x 6= 1

limx→1
x−1
ln(x)

= 1 if x = 1
(4.5)

is increasing and concave on (0,∞). In fact, L(x) is the logarithmic mean of 1 and x, for all
x > 0.

Proof. Indeed, L is continuous on (0,∞). Its derivative is:

L′(x) =
ln(x)− (x− 1)/x

ln2(x)

=
x ln(x)− x+ 1

x ln2(x)
,(4.6)

for all x > 0, x 6= 1. Since we have:

lim
x→1

L′(x) = lim
x→1

1

x
· lim
x→1

x ln(x)− x+ 1

ln2(x)

= 1 · lim
x→1

(x ln(x)− x+ 1)′(
ln2(x)

)′ by L′Hôpital rule

= lim
x→1

ln(x)

2 ln(x)/x

= lim
x→1

x

2

=
1

2
,(4.7)

a consequence of Lagrange Mean Value Theorem implies that L is differentiable at 1, and:

L′(1) =
1

2
.(4.8)
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8 M. BUSTOS GONZALEZ AND A. I. STAN

For the same reason L is twice differentiable on (0,∞). The only differentiability problem is
at x = 1, but in fact, L is analytic on the interval (0, 2), which is a neighborhood of 1.
The derivative of L is:

L′(x) =
ln(x)− (x− 1)/x

ln2(x)

=
ln(x)− 1 + (1/x)

ln2(x)

=
(1/x)− 1− ln(1/x)

ln2(x)

=
s− 1− ln(s)

ln2(s)
for s := 1/x

≥ 0,(4.9)

since for all s > 0, s 6= 1, we have ln(s) < s+ 1, due to the fact that the function s 7→ ln(s) is
concave on (0,∞), and so its graph is below its tangent line at the point (1, 0).
Thus L is increasing on (0,∞).
Let us compute now the second derivative of L. Since:

L′(x) =
ln(x)− 1 + (1/x)

ln2(x)

=
1

ln(x)
− 1

ln2(x)
+

1

x ln2(x)
,(4.10)

we have:

L′′(x) = − 1

x ln2(x)
+

2

x ln3(x)
− 1

x2 ln2(x)
− 2

x2 ln3(x)

=
2x− x ln(x)− ln(x)− 2

x2 ln3(x)

=
2x− x ln(x)− ln(x)− 2

ln(x)
· 1

x2 ln2(x)
,(4.11)

for all x > 0, x 6= 1. Since 1/(x2 ln2(x)) > 0, in order to show that L′′(x) < 0, for x 6= 1, we
need to show that the function:

u(x) := 2x− x ln(x)− ln(x)− 2(4.12)

is positive for 0 < x < 1, and negative for x > 1.
This can be done in the following way:

u(x) = (x− 1)(x+ 1)

[
2

x+ 1
− 1

x− 1

∫ x

1

1

t
dt

]
= (x− 1)(x+ 1)

[
1

(x+ 1)/2
− 1

x− 1

∫ x

1

1

t
dt

]
.(4.13)

Since the function t 7→ 1/t is convex on (0,∞), if x > 1, then Hermite-Hadamard inequality
tells us that the average value of this function, 1/(x − 1) ·

∫ x

1
(1/t)dt, on the interval [1, x], is

greater than or equal to the value of the function, 2/(x + 1), at the midpoint, (x + 1)/2, of the
interval [1, x]. Because the factors x− 1 and x+ 1 are both positive, we can see that u(x) < 0,
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for all x > 1.
If 0 < x < 1, we can write:

u(x) = (x− 1)(x+ 1)

[
1

(x+ 1)/2
− 1

1− x

∫ 1

x

1

t
dt

]
,(4.14)

and Hermite-Hadamard inequality and the fact that the factor x− 1 is now negative imply that
u(x) > 0.
Thus L is concave.

Corollary 4.3. The following inequalities hold:
• For all x ∈ (1/2, 2), we have:

(x− 1) ln(2)

ln(x)
>

x+ 1

3
.(4.15)

• For all x ∈ (0, 1/2) ∪ (2,∞), we have:

(x− 1) ln(2)

ln(x)
<

x+ 1

3
.(4.16)

• For all x ∈ (0, 1/2), we have:

(x− 1) ln(2)

ln(x)
> x.(4.17)

• For all x ∈ (1/2,∞), we have:

(x− 1) ln(2)

ln(x)
< x.(4.18)

Proof. Let g(x) := (x− 1) ln(2)/ ln(x) and f(x) := (x+ 1)/3. Then we have:

g

(
1

2

)
= f

(
1

2

)
=

1

2
and g(2) = f(2) = 1.(4.19)

Since g is strictly concave and f is linear, the graphs of g and f have no other common points
except (1/2, 1/2) and (2, 1). Moreover, on the interval (1/2, 2) the graph of g is above the
graph of f , while outside of this interval the graph of g is below the graph of f . These facts
prove inequalities (4.15) and (4.16).
On the other hand, if we define i(x) = x, for all x ∈ R, then we have:

g(0) := lim
x→0+

(x− 1) ln(2)

ln(x)

= 0

= i(0)(4.20)

and

g

(
1

2

)
=

1

2

= i

(
1

2

)
.(4.21)

Again since g is concave and i is linear, the points (0, 0) and (1/2, 1/2) are the only common
points of the graphs of g and i. Moreover, on the interval (0, 1/2) the graph of g is above the
graph of i, while on the interval (1/2, ∞) the graph of g is below the graph on i. These two
facts prove inequalities (4.17) and (4.18).
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We present now the answer to our question.

Theorem 4.4. Let f , g : [−∞,∞]→ [−∞,∞] be the continuous and nondecreasing functions
defined by:

f(x) =
x+ 1

3
(4.22)

and

g(x) =

{ (x−1) ln(2)
ln(x)

if x > 0

0 if x ≤ 0
.(4.23)

Then, for all n ∈ [−∞,∞], the greatest number p = p(n) and the least number q = q(n), such
that, for all a and b positive we have:

Hp(a, b) ≤ Sn(a, b) ≤ Hq(a, b),(4.24)

are:

p(n) = min{f(n), g(n)}(4.25)

and

q(n) = max{f(n), g(n)}.(4.26)

More precisely, the above statement means:
• For n =∞, we have:

p(∞) = q(∞) =∞.(4.27)

• For 2 < n <∞, we have:

p(n) =
(n− 1) ln(2)

ln(n)
and q(n) =

n+ 1

3
.(4.28)

• For n = 2, we have:

p(2) = q(2) = 1.(4.29)

• For 1/2 < n < 2, we have:

p(n) =
n+ 1

3
and q(n) =

(n− 1) ln(2)

ln(n)
.(4.30)

• For n = 1/2, we have:

p

(
1

2

)
= q

(
1

2

)
=

1

2
.(4.31)

• For 0 < n < 1/2, we have:

p(n) =
(n− 1) ln(2)

ln(n)
and q(n) =

n+ 1

3
.(4.32)

• For −1 < n ≤ 0, we have:

p(n) = 0 and q(n) =
n+ 1

3
.(4.33)

• For n = −1, we have:

p(−1) = q(−1) = 0.(4.34)

• For −∞ < n < −1, we have:

p(n) =
n+ 1

3
and q(n) = 0.(4.35)
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• For n = −∞, we have:

p(−∞) = q(−∞) = −∞.(4.36)

We restate this theorem using our mathematical language and vocabulary.

Theorem 4.5. With the notations from the last theorem, for all n ∈ [−∞,∞],
the sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) est number p = p(n) and

the (−1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) est number q = q(n), such that, for all for all a
and b positive we have:

Hp(a, b) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≤ Sn(a, b)(4.37)

and

Sn(a, b) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≤ Hq(a, b)(4.38)

are:

p(n) = g(n)(4.39)

and

q(n) = f(n).(4.40)

To prove this theorem, we are going to study first the order relation between Sn(a, b) and
Hh(n)(a, b), for an arbitrary function h. Of course, for a = b, we have Sn(a, b) = Hh(n)(a, b) =
a = b. So without loss of generality, we may assume that a < b. Then for anyR ∈ {<, =, >},
we have:

Sn(a, b)RHh(n)(a, b) ⇔
1

b− a
Sn(a, b)R 1

b− a
Hh(n)(a, b)

⇔ Sn

(
a

b− a
,

b

b− a

)
RHh(n)

(
a

b− a
,

b

b− a

)
.(4.41)

If we define now:

x :=
a

b− a
,(4.42)

then
b

b− a
= x+ 1,(4.43)

and x ∈ (0,∞).
Thus, for a certain n ∈ R, there exists R ∈ {<, =, >}, such that, for all 0 < a < b, we have
Sn(a, b)RHh(n)(a, b), if and only if, for all x ∈ (0,∞), we have: Sn(x, x+1)RHh(n)(x, x+1).
The last statement is equivalent to, for all x > 0, ln(Sn(x, x+ 1))R ln(Hh(n)(x, x+ 1)).
We will pursue the following steps:
Step 1. Find the derivative of the function:

F1(x)

= ln (Sn (x, x+ 1))− ln
(
Hh(n) (x, x+ 1)

)
= ln

((
(x+ 1)n − xn

n

)1/(n−1)
)
− ln

((
(x+ 1)h(n) + xh(n)

2

)1/h(n)
)

=
1

n− 1
ln (|(x+ 1)n − xn|)− ln(|n|)

n− 1
− 1

h(n)
ln
(
xh(n) + (x+ 1)h(n)

)
+

ln(2)

h(n)
,
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for n ∈ R \ {0, 1}.
For n = 0, we have:

F1(x)

= ln (S0 (x, x+ 1))− ln
(
Hh(0) (x, x+ 1)

)
= ln

(
x+ 1− x

ln(x+ 1)− ln(x)

)
− ln

((
(x+ 1)h(0) + xh(0)

2

)1/h(0)
)

= − ln (ln(x+ 1)− ln(x))− 1

h(0)
ln
(
xh(0) + (x+ 1)h(0)

)
+

ln(2)

h(0)
.

For n = 1, we have:

F1(x)

= ln (S1 (x, x+ 1))− ln
(
Hh(1) (x, x+ 1)

)
= ln

(
1

e

(x+ 1)x+1

xx

)
− ln

((
(x+ 1)h(1) + xh(1)

2

)1/h(1)
)

= −1 + (x+ 1) ln(x+ 1)− x ln(x)− 1

h(1)
ln
(
(x+ 1)h(1) + xh(1)

)
+

ln(2)

h(1)
.

We have:

F ′1(x) =
n

(x+ 1)n − xn
· (x+ 1)n−1 − xn−1

n− 1
− (x+ 1)h(n)−1 + xh(n)−1

(x+ 1)h(n) + xh(n)
.(4.44)

The above expression for F ′1(x) makes sense even for n = 0 and n = 1, by the process of
passing to a limit, and even though the fraction 1/h(n) was not defined for h(n) = 0, the
formula for F ′1(x) is defined for all x > 0, even in the case h(n) = 0. Let us define the function:

G1(x) := (n− 1) [(x+ 1)n − xn]
[
(x+ 1)h(n) + xh(n)

]
F ′1(x),(4.45)

for n 6= 0 and n 6= 1. The function G1 was defined in such a way that we get rid of all
denominators of the fractions from the formula of F ′1(x).
We purposely avoid n = 0, since in that case G1(x) = 0, for all x > 0, due to the presence of
the factor (x + 1)n − xn. We also intentionally avoid n = 1, since in that case G1(x) = 0, due
to the factor n− 1.
Since, for n = 0, we have:

F ′1(x) =
1

ln(x+ 1)− ln(x)

(
1

x
− 1

x+ 1

)
− (x+ 1)h(0)−1 + xh(0)−1

(x+ 1)h(0) + xh(0)
,(4.46)

in order to get rid of the denominators of F ′1(x), we define:

G1(x) := x(x+ 1) [ln(x+ 1)− ln(x)]
[
(x+ 1)h(0) + xh(0)

]
F ′1(x).(4.47)

Since, for n = 1, we have:

F ′1(x) = ln(x+ 1)− ln(x)− (x+ 1)h(1)−1 + xh(1)−1

(x+ 1)h(1) + xh(1)
,(4.48)

in order to get rid of the denominators of F ′1(x), we define:

G1(x) :=
[
(x+ 1)h(1) + xh(1)

]
F ′1(x).(4.49)
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Then, for all n ∈ R \ {0, 1}, we have:

G1(x) = n
[
(x+ 1)n−1 − xn−1

] [
xh(n) + (x+ 1)h(n)

]
−(n− 1) [(x+ 1)n − xn]

[
xh(n)−1 + (x+ 1)h(n)−1

]
= (x+ 1)n+h(n)−1 − xn+h(n)−1 + n(x+ 1)n−1xh(n) − nxn−1(x+ 1)h(n)

−(n− 1)(x+ 1)nxh(n)−1 + (n− 1)xn(x+ 1)h(n)−1

= xn+h(n)−1

[(
x+ 1

x

)n+h(n)−1

− 1 + n

(
x+ 1

x

)n−1

− n
(
x+ 1

x

)h(n)

−(n− 1)

(
x+ 1

x

)n

+ (n− 1)

(
x+ 1

x

)h(n)−1
]

= xn+h(n)−1K1(t),(4.50)

where:

t :=
x+ 1

x
∈ (1,∞),(4.51)

and

K1(t) := tn+h(n)−1 − 1 + ntn−1 − nth(n) − (n− 1)tn + (n− 1)th(n)−1.(4.52)

For n = 0, we have:

G1(x) = (x+ 1)h(0) + xh(0) − x(x+ 1)
[
(x+ 1)h(0)−1 + xh(0)−1

]
ln

(
x+ 1

x

)
= xh(0)+1

{
1

x

[(
x+ 1

x

)h(0)

+ 1

]

−x+ 1

x

[(
x+ 1

x

)h(0)−1

+ 1

]
ln

(
x+ 1

x

)}
= xh(0)+1K1(t),(4.53)

where

t :=
x+ 1

x
∈ (1,∞),(4.54)

and

K1(t) := (t− 1)
(
th(0) + 1

)
− t
(
th(0)−1 + 1

)
ln(t).(4.55)

For n = 1, we have:

G1(x) =
[
(x+ 1)h(1) + xh(1)

]
ln

(
x+ 1

x

)
−
[
(x+ 1)h(1)−1 + xh(1)−1

]
= xh(1)

{[(
x+ 1

x

)h(1)

+ 1

]
ln

(
x+ 1

x

)
− 1

x

[(
x+ 1

x

)h(1)−1

+ 1

]}
= xh(1)K1(t),(4.56)

where:

t :=
x+ 1

x
∈ (1,∞),(4.57)
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and

K1(t) :=
(
th(1) + 1

)
ln(t)− (t− 1)

(
th(1)−1 + 1

)
.(4.58)

Step 2. Find the derivative of K1 with respect to t.
For n ∈ R \ {0, 1}, we have:

K ′1(t) = [n+ h(n)− 1] tn+h(n)−2 + n(n− 1)tn−2 − nh(n)th(n)−1

−n(n− 1)tn−1 + (n− 1) [h(n)− 1] th(n)−2

= th(n)−2K2(t),(4.59)

where:

K2(t) := [n+ h(n)− 1] tn + n(n− 1)tn−h(n) − nh(n)t

−n(n− 1)tn−h(n)+1 + (n− 1) [h(n)− 1] .(4.60)

For n = 0, we have:

K ′1(t) = [h(0) + 1] th(0) − h(0)th(0)−1 + 1

−
[
h(0)th(0)−1 + 1

]
ln(t)− th(0)−1 − 1

= th(0)−1
{

[h(0) + 1] (t− 1)−
[
h(0) + t1−h(0)

]
ln(t)

}
= th(0)−1K2(t),(4.61)

where:

K2(t) := [h(0) + 1] (t− 1)−
[
h(0) + t1−h(0)

]
ln(t).(4.62)

For n = 1, we have:

K ′1(t) := h(1)th(1)−1 ln(t) + th(1)−1 + t−1 − h(1)th(1)−1 − 1 + [h(1)− 1] th(1)−2

= h(1)th(1)−1 ln(t) + [1− h(1)] th(1)−1 + t−1 − 1 + [h(1)− 1] th(1)−2

=: K2(t).(4.63)

Step 3. Find the derivative of K2 with respect to t.
For n ∈ R \ {0, 1}, we have:

K ′2(t) = n [n+ h(n)− 1] tn−1 + n(n− 1) [n− h(n)] tn−h(n)−1 − nh(n)

−n(n− 1) [n− h(n) + 1] tn−h(n)

= nK3(t),(4.64)

where:

K3(t) := [n+ h(n)− 1] tn−1 + (n− 1) [n− h(n)] tn−h(n)−1 − h(n)

−(n− 1) [n− h(n) + 1] tn−h(n).(4.65)

For n = 0, we have:

K ′2(t) = h(0) + 1 + [h(0)− 1] t−h(0) ln(t)− h(0)t−1 − t−h(0)

=: K3(t).(4.66)

For n = 1, we have:

K ′2(t) = h(1) [h(1)− 1] th(1)−2 ln(t) + h(1)th(1)−2 − [h(1)− 1]2 th(1)−2

−t−2 + [h(1)− 1] [h(1)− 2] th(1)−3

= th(1)−3K3(t),(4.67)
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where:

K3(t) = h(1) [h(1)− 1] t ln(t) +
[
−h(1)2 + 3h(1)− 1

]
t− t1−h(1)

+ [h(1)− 1] [h(1)− 2] .(4.68)

Step 4. Find the derivative of K3 with respect to t.
For all n ∈ R \ {0, 1}, we have:

K ′3(t) = [n+ h(n)− 1] (n− 1)tn−2 + (n− 1) [n− h(n)] [n− h(n)− 1] tn−h(n)−2

−(n− 1) [n− h(n) + 1] [n− h(n)] tn−h(n)−1

= (n− 1)tn−h(n)−2K4(t),(4.69)

where:

K4(t) := [n+ h(n)− 1] th(n) + [n− h(n)] [n− h(n)− 1]

− [n− h(n) + 1] [n− h(n)] t.(4.70)

For n = 0, we have:

K ′3(t) = −h(0) [h(0)− 1] t−h(0)−1 ln(t) + [h(0)− 1] t−h(0)−1 + h(0)t−2

+h(0)t−h(0)−1

= −h(0) [h(0)− 1] t−h(0)−1 ln(t) + [2h(0)− 1] t−h(0)−1 + h(0)t−2

= t−2K4(t),(4.71)

where

K4(t) := h(0) [1− h(0)] t1−h(0) ln(t) + [2h(0)− 1] t1−h(0) + h(0).(4.72)

For n = 1, we have:

K ′3(t) = h(1) [h(1)− 1] ln(t) + h(1) [h(1)− 1] +
[
−h(1)2 + 3h(1)− 1

]
+ [h(1)− 1] t−h(1)

= h(1) [h(1)− 1] ln(t) + [2h(1)− 1] + [h(1)− 1] t−h(1)

=: K4(t).(4.73)

Step 5. Find the derivative of K4 with respect to t.
For all n ∈ R \ {0, 1}, we have:

K ′4(t) = [n+ h(n)− 1]h(n)th(n)−1 − [n− h(n) + 1] [n− h(n)] .(4.74)

Let us define the function:

K5(t) := K ′4(t),(4.75)

for all t > 1.
For n = 0, we have:

K ′4(t) := h(0) [1− h(0)]2 t−h(0) ln(t) + h(0) [1− h(0)] t−h(0)

+ [2h(0)− 1] [1− h(0)] t−h(0)

= [1− h(0)] t−h(0)K5(t),(4.76)

where

K5(t) := h(0) [1− h(0)] ln(t) + [3h(0)− 1] .(4.77)

AJMAA, Vol. 18 (2021), No. 1, Art. 8, 42 pp. AJMAA

https://ajmaa.org


16 M. BUSTOS GONZALEZ AND A. I. STAN

For n = 1, we have:

K ′4(t) := h(1) [h(1)− 1] t−1 − h(1) [h(1)− 1] t−h(1)−1

= h(1) [h(1)− 1] t−h(1)−1K5(t),(4.78)

where

K5(t) := th(1) − 1.(4.79)

Step 6. Find the derivative of K5 with respect to t.
For all n ∈ R \ {0, 1}, we have:

K ′5(t) = [n+ h(n)− 1]h(n) [h(n)− 1] th(n)−2,(4.80)

for all t > 1.
For n = 0, we have:

K ′5(t) = h(0) [1− h(0)] t−1,(4.81)

for all t > 1.
For n = 1, we have:

K ′5(t) = h(1)th(1)−1,(4.82)

for all t > 1.

We can see that given any number n, the number K ′5(t) has the same sign, for all t > 1.
Let us remember the definition of the signum function:

sgn(x) :=

 −1 if x < 0
0 if x = 0
1 if x > 0

.(4.83)

We extend the signum function by continuity at −∞ and +∞, by defining:

sgn(−∞) := −1 and sgn(∞) := 1.(4.84)

We are going to apply these six steps in reverse order to the functions h := f and h := g, from
the text of our theorem.
Since, for any positive numbers a and b, we have:

S−∞(a, b) = H−∞(a, b),(4.85)
S−1(a, b) = H0(a, b),(4.86)
S1/2(a, b) = H1/2(a, b),(4.87)
S2(a, b) = H1(a, b),(4.88)
S∞(a, b) = H∞(a, b),(4.89)

we must clearly have:

p(−∞) = q(−∞) = −∞,(4.90)
p(−1) = q(−1) = 0,(4.91)

p

(
1

2

)
= q

(
1

2

)
=

1

2
,(4.92)

p(2) = q(2) = 1,(4.93)
p(∞) = q(∞) = ∞.(4.94)
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For this reason, we may assume that n ∈ R \ {−1, 1/2, 2}.
Let us introduce the following notation:

R−1,1/2,2 := R \ {−1, 1/2, 2}.(4.95)

5. PROOF OF THE MAIN THEOREM

We have the following propositions and observations:

Proposition 5.1. If h := g, where g is the function from the text of Theorem 4.4, and n > 0,
then the signum function of K ′5(t), for t > 1, depends on n is the following way:

sgn (K ′5(t)) =



1 if 0 < n < 1/2
0 if n = 1/2
−1 if 1/2 < n < 1

1 if n = 1
−1 if 1 < n < 2

0 if n = 2
1 if n > 2

,(5.1)

for all t > 1. That implies, for all t > 1, and all n ∈ (0,∞) \ {1}, we have:

sgn (K ′5(t)) = sgn

(
n− 1

2

)
sgn(n− 2).(5.2)

Proof. Let us assume first that n > 0 and n 6= 1. We can see now that the factors tg(n)−2 and
g(n) = (n− 1) ln(2)/ ln(n), from formula (4.80), which becomes now:

K ′5(t) = [n+ g(n)− 1] g(n) [g(n)− 1] tg(n)−2,(5.3)

are both positive. Thus to find the signum of K ′5(t), we need to find out the sign of n+ g(n)−1
and of g(n)− 1.
We have:

n+ g(n)− 1 = n− 1 +
(n− 1) ln(2)

ln(n)

=
n− 1

ln(n)
· ln(2n).(5.4)

Since (n − 1)/ ln(n) > 0, for all n > 0, we conclude that the signum of n + g(n) − 1 is the
same as the signum of ln(2n), that means:

sgn (n+ g(n)− 1) :=

 −1 if 0 < n < 1/2
0 if n = 1/2
1 if n > 1/2

.(5.5)

On the other hand, since we proved that for n > 0, the function g(n) = (n− 1) ln(2)/ ln(n) is
increasing and g(2) = 1, we conclude that for all 0 < n < 2, g(n) < 1, while for all n > 2,
g(n) > 1. Thus, we have:

sgn (g(n)− 1) :=

 −1 if 0 < n < 2
0 if n = 2
1 if n > 2

.(5.6)
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Therefore, for n > 0, n 6= 1, we have:

sgn (K ′5(t)) = sgn (n+ g(n)− 1) · sgn (g(n)− 1)

=


1 if 0 < n < 1/2
0 if n = 1/2
−1 if 1/2 < n < 2

0 if n = 2
1 if n > 1/2

,(5.7)

for all t > 1.
For n = 1, we can see from formula (4.82) that:

sgn (K ′5(t)) = sgn (h(1))

= sgn (g(1))

= 1,(5.8)

since g(1) is defined as:

g(1) = lim
n→1

(n− 1) ln(2)

ln(n)

= ln(2).(5.9)

Proposition 5.2. If h := g, where g is the function from the text of Theorem 4.4, then for any
n ∈ (0,∞) \ {1/2, 2}, we have:

sgn (K4(1)) =

 −1 if 0 < n < 1/2
1 if 1/2 < n < 2
−1 if n > 2

,(5.10)

that means:

sgn (K4(1)) = (−1)sgn(n+ 1)sgn

(
n− 1

2

)
sgn(n− 2),(5.11)

and

sgn (K4(∞)) =

 1 if 0 < n < 1/2
−1 if 1/2 < n < 2

1 if n > 2
,(5.12)

that means:

sgn (K4(∞)) = sgn(n+ 1)sgn

(
n− 1

2

)
sgn(n− 2),(5.13)

where the factor sgn(n+ 1) may be omitted, since n+ 1 > 0, for all n > 0.
Hence, for all n ∈ (0,∞) \ {1/2, 2}, we have:

sgn (K4(1)) · sgn (K4(∞)) = −1.(5.14)

Proof. We can see from formula (4.70), that, for all n ∈ R \ {0, 1}, we have:

K4(1) = [n+ h(n)− 1] + [n− h(n)] [n− h(n)− 1]

− [n− h(n) + 1] [n− h(n)]

= 3h(n)− n− 1.(5.15)
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We analyze four cases:
Case 1. If 0 < n < 1/2, then we have:

K4(1) = 3h(n)− n− 1

= 3

[
h(n)− n+ 1

3

]
= 3

[
(n− 1) ln(2)

ln(n)
− n+ 1

3

]
< 0,(5.16)

due to the result from Corollary 4.3. Since, we have g = ln(2) · L, on (0,∞), it follows from
Proposition 4.2, that g is increasing on (0,∞), and thus for all 0 < n < 2, we have:

h(n) = g(n)

< g(2)

= 1.(5.17)

Thus, we have:

K4(∞) = lim
t→∞

{
[n+ h(n)− 1] th(n) + [n− h(n)] [n− h(n)− 1]

− [n− h(n) + 1] [n− h(n)] t}
= − lim

t→∞
{[n− h(n) + 1] [n− h(n)] t}

= −sgn ([n− h(n) + 1] [n− h(n)])∞.(5.18)

We can see that:

n− h(n) + 1 > −h(n) + 1

> 0.(5.19)

On the other hand, since h = g is concave on [0, 1/2], and g(0) = 0 and g(1/2) = 1/2, due
to the fact that the portion of the graph of g, in between the points (0, g(0)) and (1/2, g(1/2)),
is above the chord (line segment) joining these points, we conclude that for 0 < n < 1/2, we
have n < h(n). Thus, we obtain:

K4(∞) = ∞.(5.20)

Case 2. If 1/2 < n < 2, n 6= 1, then it follows from Corollary 4.3 that:

K4(1) = 3

[
(n− 1) ln(2)

ln(n)
− n+ 1

3

]
> 0.(5.21)

Since g is increasing, we have as before g(n) < g(2) = 1. Thus:

K4(∞) = lim
t→∞

{
[n+ h(n)− 1] th(n) + [n− h(n)] [n− h(n)− 1]

− [n− h(n) + 1] [n− h(n)] t}
= − lim

t→∞
{[n− h(n) + 1] [n− h(n)] t}

= −sgn ([n− h(n) + 1] [n− h(n)])∞.(5.22)

As before, we have n−h(n)+1 > −h(n)+1 > 0, while the concavity of the function g, on the
interval [0,∞) implies that the portion of the graph of g to the right of the point (1/2, g(1/2))
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is below the line segment joining the points (0, g(0)) and (1/2, g(1/2)). Hence, n− h(n) > 0,
and thus:

K4(∞) = −∞.(5.23)

Case 3. If n = 1, then h(1) = g(1) = ln(2), and formula (4.73) implies:

K4(1) = 3h(1)− 2

= 3

[
h(1)− 2

3

]
= 3 [g(1)− f(1)]

> 0.(5.24)

On the other hand, we have:

K4(∞) = lim
t→∞

K4(t)

= lim
t→∞

{
h(1) [h(1)− 1] ln(t) + 2h(1)− 1 + [h(1)− 1] t−h(1)

}
= lim

t→∞
{h(1) [h(1)− 1] ln(t)}

= lim
t→∞
{ln(2) [ln(2)− 1] ln(t)}

= −∞.(5.25)

Case 4. If n > 2, then we have:

K4(1) = 3

[
(n− 1) ln(2)

ln(n)
− n+ 1

3

]
< 0,(5.26)

due to the result of Corollary 4.3.
In this case we have h(n) > h(2) = 1. Thus:

K4(∞) = lim
t→∞

{
[n+ h(n)− 1] th(n) + [n− h(n)] [n− h(n)− 1]

− [n− h(n) + 1] [n− h(n)] t}
= lim

t→∞

{
[n+ h(n)− 1] th(n)

}
= ∞,(5.27)

since n+ h(n)− 1 > n− 1 > 0.

Observation 1. For all functions h, we have:

K1(1) = 0,(5.28)
K2(1) = 0,(5.29)
K3(1) = 0.(5.30)

Proof. We can see from formula (4.52) that, for all n ∈ R \ {0, 1}, we have:

K1(1) = 1n+h(n)−1 − 1 + n1n−1 − n1h(n) − (n− 1)1n + (n− 1)1h(n)−1.

= 0.

For n = 0, formula (4.55) implies:

K1(1) = 0.

For n = 1, formula (4.58) implies:

K1(1) = 0.
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We can also see from formula (4.60) that, for all n ∈ R \ {0, 1}, we have:

K2(1) = [n+ h(n)− 1] 1n + n(n− 1)1n−h(n) − nh(n)1

−n(n− 1)1n−h(n)+1 + (n− 1) [h(n)− 1]

= 0.

For n = 0, formula (4.62) implies:

K2(1) = 0.

For n = 1, formula (4.63) implies:

K2(1) = 0.

Finally, we can see from formula (4.65) that, for all n ∈ R \ {0, 1}, we have:

K3(1) = [n+ h(n)− 1] 1n−1 + (n− 1) [n− h(n)] 1n−h(n)−1 − h(n)

−(n− 1) [n− h(n) + 1] 1n−h(n)

= 0.

For n = 0, formula (4.66) implies:

K3(1) = 0.

For n = 1, formula (4.68) implies:

K3(1) = 0.

Proposition 5.3. Let h := g. Then, for all n ∈ (0,∞) \ {1/2, 2}, the sign of K3(∞) depends
on n in the following way:

sgn (K3(∞)) =


−1 if 0 < n < 1/2

1 if 1/2 < n < 1
−1 if 1 ≤ n < 2

1 if n > 2

,(5.31)

that means, for all n ∈ (0,∞) \ {1/2, 2}, we have:

sgn (K3(∞)) = sgn

(
n− 1

2

)
sgn+(n− 1)sgn(n− 2),(5.32)

where sgn+(u) := limv→u+ sgn(v), for all v ∈ R.

Proof. For n > 0 and n 6= 1, using formula (4.65), we have:

K3(t) := [n+ h(n)− 1] tn−1 + (n− 1) [n− h(n)] tn−h(n)−1 − h(n)t0

−(n− 1) [n− h(n) + 1] tn−h(n).

This means that the behavior of K3 at ∞ is given by the term that contains t to the highest
power in the above formula. We call this term the leading term.

• If 0 < n < 1/2, then according to inequality (4.17), we have h(n) = g(n) > n. Thus
all the powers of t in formula (4.65), n− 1, n− h(n)− 1, and n− h(n), are negative.
Hence, we conclude that:

lim
t→∞

K3(t) = −h(n)

< 0.(5.33)
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• If 1/2 < n < 1, then since h = g is increasing, we have h(n) < h(2) = 1. Thus the
leading term of K3(t) is −(n− 1)[n− h(n) + 1]tn−h(n). The exponent of t in this term
n − h(n) = n − g(n) is positive due to inequality (4.18). The coefficient of this term
−(n− 1)[n− h(n) + 1] is positive, since n− 1 < 0 and n + [1− h(n)] > 0 + 0 = 0.
Thus we have:

lim
t→∞

K3(t) > 0.(5.34)

• If 1 < n < 2, then h(n) < h(2) = 1 and, according to inequality (4.18), n− h(n) > 0.
Thus the leading term ofK3(t) is again−(n−1)[n−h(n)+1]tn−h(n). This time though,
the leading coefficient −(n− 1)[n− h(n) + 1] is negative. Hence, we have:

lim
t→∞

K3(t) < 0.(5.35)

• If n > 2, then h(n) > h(2) = 1. Thus the leading term of K3(t) is [n+ h(n)− 1]tn−1,
which clearly has a positive coefficient, n+ h(n)− 1. Therefore, sgn(K3(∞)) = 1.

For n = 1, in formula (4.68), the dominant term is h(1)[h(1)− 1]t ln(t). Since we have
h(1)[h(1)− 1]t ln(t) = ln(2)[ln(2)− 1]t ln(t) < 0, we conclude that:

K3(∞) = lim
t→∞

K3(t)

= −∞.(5.36)

Proposition 5.4. Let h := g. Then, for all n ∈ (0,∞) \ {1/2, 2}, the sign of K2(∞) depends
on n in the following way:

sgn (K2(∞)) =


−1 if 0 < n < 1/2

1 if 1/2 < n < 1
−1 if 1 ≤ n < 2

1 if n > 2

.(5.37)

That means, for all for all n ∈ (0,∞) \ {1/2, 2}, we have:

K2(∞) sgn(n+ 1)sgn(n− 1/2)sgn+(n− 1)sgn(n− 2) > 0,(5.38)

where sgn+(u) := limv→u+ sgn(v), for all u ∈ R.

Proof. For n > 0 and n 6= 1, using formula (4.60), we have:

K2(t) := [n+ h(n)− 1] tn + n(n− 1)tn−h(n) − nh(n)t

−n(n− 1)tn−h(n)+1 + (n− 1) [h(n)− 1] t0.

We see from here that we have the following:
• If 0 < n < 1/2, then according to inequality (4.17), h(n) = g(n) > n. This implies
n−h(n)+1 < 1. Therefore, the leading term ofK2(t) is−nh(n)t, which has a negative
coefficient −nh(n) = −n(n− 1) ln(2)/ ln(n). Thus, in this case, we have:

lim
t→∞

K2(t) < 0.(5.39)

• If 1/2 < n < 1, then we have n − h(n) + 1 > n and n − h(n) + 1 > 1. Thus, the
leading term inK2(t) is−n(n−1)tn−h(n)+1, which has a positive coefficient−n(n−1).
Therefore,

lim
t→∞

K2(t) = +∞

> 0.(5.40)
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• If 1 < n < 2, then we have n−h(n)+1 > n and n−h(n)+1 > 1. Thus, the leading term
in K2(t) is−n(n− 1)tn−h(n)+1, which has a negative coefficient−n(n− 1). Therefore,

lim
t→∞

K2(t) = −∞

< 0.(5.41)

• If n > 2, then the leading term in K2(t) is [n + h(n) − 1]tn, which has a positive
coefficient n+ h(n)− 1. Therefore, we have:

lim
t→∞

K2(t) = +∞

> 0.(5.42)

For n = 1, we can see that, in formula (4.63), the leading term is −1. Hence,

K2(∞) = lim
t→∞

K2(t)

= −1

< 0.(5.43)

Proposition 5.5. Let h := g. Then, for all n ∈ (0,∞) \ {1/2, 2}, the sign of K1(∞) depends
on n in the following way:

sgn (K1(∞)) =


−1 if 0 < n < 1/2

1 if 1/2 < n < 1
−1 if 1 ≤ n < 2

1 if n > 2

.(5.44)

Thus, for all n > 0 and n 6= 1, we have:

sgn (K1(∞)) = sgn(n− 1/2)sgn(n− 1)sgn(n− 2).(5.45)

Proof. For n > 0 and n 6= 1, using formula (4.52), we have:

K1(t) = tn+h(n)−1 − 1 + ntn−1 − nth(n) − (n− 1)tn + (n− 1)th(n)−1.

We have the following cases:
• If 0 < n < 1/2, then the leading term of K1(t) is−nth(n) since, according to inequality

(4.17), h(n) > n. Thus, we have:

K1(∞) = lim
t→∞

K1(t)

= sgn(−n) lim
n→∞

th(n)

= −∞
< 0.(5.46)

• If 1/2 < n < 1, then the leading term of K1(t) is −(n − 1)tn, which has a positive
coefficient −(n− 1). Thus, we have:

K1(∞) = +∞
> 0.(5.47)

• If 1 < n < 2, then the leading term of K1(t) is −(n − 1)tn, which has a negative
coefficient −(n− 1). Thus, we have:

K1(∞) = −∞
< 0.(5.48)
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• If n > 2, then the leading term of K1(t) is tn+h(n)−1. Thus, we have:

K1(∞) = +∞
> 0.(5.49)

If n = 1, then we can see that in formula (4.58), the leading term is −t. Hence,

K1(∞) = −∞.(5.50)

Observation 2. For all n ∈ R and all real values of h(n), we have:

lim
x→∞

F1(x) = 0.(5.51)

Proof. We analyze the following cases:
Case 1. If n /∈ {0, 1} and h(n) 6= 0, then for all x > 0, applying Lagrange Mean Value
Theorem on the interval [x, x+ 1], to ϕ(t) := tn, there exists cx ∈ (x, x+ 1), such that:

(x+ 1)n − xn = ncn−1x .(5.52)

Since, for all x > 0, we also have:

2xh(n) sgn (h(n)) < xh(n) + (x+ 1)h(n) sgn (h(n)) < 2(x+ 1)h(n),

applying the Intermediate Value Property (Darboux Property) to the continuous function φ(t) =
2tn, there exists dx ∈ (x, x+ 1), such that:

xh(n) + (x+ 1)h(n) = 2dh(n)x .(5.53)

Thus, we obtain:

F1(∞) = lim
x→∞

[
1

n− 1
ln

(
(x+ 1)n − xn

n

)
− 1

h(n)
ln

(
xh(n) + (x+ 1)h(n)

2

)]
= lim

x→∞

[
1

n− 1
ln

(
ncn−1x

n

)
− 1

h(n)
ln

(
2d

h(n)
x

2

)]

= lim
x→∞

ln

(
cx
dx

)
= ln(1)

= 0,(5.54)

since we have:

x

x+ 1
<
cx
dx

<
x+ 1

x
,(5.55)

due to the fact that for all x > 0, x < cx < x+ 1 and x < dx < x+ 1, and both x/(x+ 1) and
(x+ 1)/x converge to 1, as x→∞.
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Case 2. If n /∈ {0, 1} and h(n) = 0, then we have:

F1(∞) = lim
x→∞

[
1

n− 1
ln

(
(x+ 1)n − xn

n

)
− ln

(√
x(x+ 1)

)]
= lim

x→∞

[
1

n− 1
ln

(
ncn−1x

n

)
− ln

(√
x(x+ 1)

)]
= lim

x→∞
ln

(
cx√

x(x+ 1)

)
= ln(1)

= 0,(5.56)

since we have: √
x

x+ 1
<

cx√
x(x+ 1)

<

√
x+ 1

x
,(5.57)

due to the fact that for all x > 0, x < cx < x+ 1.
Case 3. If n = 0 and h(n) 6= 0, then:

F1(∞) = lim
x→∞

[
ln

(
x+ 1− x

ln(x+ 1)− ln(x)

)
− 1

h(n)
ln

(
xh(n) + (x+ 1)h(n)

2

)]
= lim

x→∞

[
− ln

(
ln

(
x+ 1

x

))
− 1

h(n)
ln

(
2d

h(n)
x

2

)]

= − lim
x→∞

ln

(
ln

([
x+ 1

x

]dx))

= − ln

(
ln

(
lim
x→∞

[
1 +

1

x

]dx))
= − ln (ln(e))

= 0,(5.58)

since, for all x > 0, we have:(
1 +

1

x

)x

<

(
1 +

1

x

)dx

<

(
1 +

1

x

)x+1

(5.59)

and both (1 + 1/x)x and (1 + 1/x)x+1 converge to e, as x→∞.
Case 4. If n = 0 and h(n) = 0, then:

F1(∞) = lim
x→∞

[
ln

(
1

ln(x+ 1)− ln(x)

)
− ln

(√
x(x+ 1)

)]

= − lim
x→∞

ln

ln

[x+ 1

x

]√x(x+1)


= − ln

ln

 lim
x→∞

[
1 +

1

x

]√x(x+1)


= − ln (ln(e))

= 0,(5.60)
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since, for all x > 0, we have:(
1 +

1

x

)x

<

(
1 +

1

x

)√x(x+1)

<

(
1 +

1

x

)x+1

.(5.61)

Case 5. If n = 1 and h(n) 6= 0, then:

F1(∞) = lim
x→∞

[
ln

(
1

e

(x+ 1)x+1

xx

)
− 1

h(n)
ln

(
xh(n) + (x+ 1)h(n)

2

)]
= −1 + lim

x→∞

[
ln

(
(x+ 1)x+1

xx

)
− 1

h(n)
ln

(
2d

h(n)
x

2

)]

= −1 + lim
x→∞

ln

(
(x+ 1)x+1

xxdx

)
= −1 + ln

(
lim
x→∞

(x+ 1)x+1

xxdx

)
= −1 + ln(e)

= 0,(5.62)

since for all x > 0, we have:

(x+ 1)x

xx
<

(x+ 1)x+1

xxdx
<

(x+ 1)x+1

xx+1
.(5.63)

Case 6. If n = 1 and h(n) = 0, then:

F1(∞) = lim
x→∞

[
ln

(
1

e

(x+ 1)x+1

xx

)
− ln

(√
x(x+ 1)

)]
= −1 + lim

x→∞

[
ln

(
(x+ 1)x+1

xx

)
− ln

(√
x(x+ 1)

)]
= −1 + lim

x→∞
ln

(
(x+ 1)x+(1/2)

xx+(1/2)

)
= −1 + ln

(
lim
x→∞

(
1 +

1

x

)x+(1/2)
)

= −1 + ln(e)

= 0.(5.64)

Proposition 5.6. For all n ∈ R\{−1, 1/2, 2}, the ((−1)sgn(n+1)sgn(n−1/2)sgn(n−2))est
q = q(n), such that for all a and b positive numbers, we have:

Sn(a, b) (sgn(n+ 1)sgn(n− 1/2)sgn(n− 2)) ≤ Hq(a, b),(5.65)

is q = f(n), where f(n) = (n+ 1)/3.

Proof. We show first that, for all a and b positive numbers, we have:

Sn(a, b) (sgn(n+ 1)sgn(n− 1/2)sgn(n− 2)) ≤ Hf(n)(a, b).(5.66)
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Using formula (4.70), for h(n) := f(n) = (n+ 1)/3, where n ∈ R−1,1/2,2 \ {0, 1}, we have:

K4(t) := [n+ h(n)− 1] th(n) + [n− h(n)] [n− h(n)− 1]

− [n− h(n) + 1] [n− h(n)] t

=

(
n+

n+ 1

3
− 1

)
t(n+1)/3 +

(
n− n+ 1

3

)(
n− n+ 1

3
− 1

)
t0

−
(
n− n+ 1

3
+ 1

)(
n− n+ 1

3

)
t1

= 2 · 2n− 1

3
t(n+1)/3 +

2n− 1

3
· 2 · n− 2

3
t0 − 2 · n+ 1

3
· 2n− 1

3
t1

=
2(2n− 1)

9

[
3t(n+1)/3 + (n− 2)t0 − (n+ 1)t1

]
=

2(2n− 1)

9
· (n+ 1)

[
3

n+ 1
t(n+1)/3 +

n− 2

n+ 1
t0 − t1

]
.(5.67)

Since for any t > 1, the function x 7→ tx is strictly convex, and 3/(n+ 1) and (n− 2)/(n+ 1)
are non-zero weights that add up to 1, and are both positive if and only if n > 2 (this is the case
when the number 3/(n+1) ·(n+1)/3+(n−2)/(n+1) ·0 is in between the numbers (n+1)/3
and 0), Jensen inequality, written in the language of our action of the monoid M−,0,+ on the set
{<, =, >}, multiplied by 2(2n− 1)/9 · (n+ 1), implies that:

K4(t)

=
2(2n− 1)

9
· (n+ 1)

×
[

3

n+ 1
t(n+1)/3 +

n− 2

n+ 1
t0 − t1

]
sgn ((2n− 1)(n+ 1)) sgn(n− 2) >

2(2n− 1)

9
· (n+ 1)

×
[
t3/(n+1)·(n+1)/3+(n−2)/(n+1)·0 − t1

]
=

2(2n− 1)

9
· (n+ 1)(t− t)

= 0.(5.68)

Therefore, K4(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0, for all t > 0.
If n = 0, then h(0) = f(0) = (0 + 1)/3 = 1/3, and formula (4.72) becomes:

K4(t) = h(0) [1− h(0)] t1−h(0) ln(t) + [2h(0)− 1] t1−h(0) + h(0)

=
2

9
t2/3 ln(t)− 1

3
t2/3 +

1

3

=
1

3
t2/3

[
− ln

(
t−2/3

)
− 1 + t−2/3

]
=

1

3
t2/3 [s− 1− ln(s)]

> 0,(5.69)

where s := t−2/3 > 0, due to the well-known inequality ln(s) ≤ s− 1, for all s > 0.
Let us observe that for n = 0, (n+ 1)(n− 1/2)(n− 2) = 1 > 0.
Therefore, K4(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0, for all t > 1.
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If n = 1, then h(1) = f(1) = (1 + 1)/3 = 2/3, and formula (4.73) becomes now:

K4(t) = h(1) [h(1)− 1] ln(t) + 2h(1)− 1 + [h(1)− 1] t−h(1)

= −2

9
ln(t) +

1

3
− 1

3
t−2/3

=
1

3

[
ln
(
t−2/3

)
+ 1− t−2/3

]
=

1

3
[ln(s) + 1− s]

< 0,(5.70)

where s := t−2/3 > 0.
Therefore, K4(t) < 0, for all t > 1.
Let us observe that for n = 1, (n+ 1)(n− 1/2)(n− 2) = −1 < 0.
Therefore, K4(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0, for all t > 1.
For n ∈ R−1,1/2,2 \ {0, 1}, formula (4.69):

K ′3(t) = (n− 1)tn−h(n)−2K4(t)

implies now:

K ′3(t) sgn(n− 1) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.71)

for all t > 0. The last inequality is equivalent to:

K ′3(t) sgn(n− 1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.72)

for all t > 1. Since the function K3 is continuous on [1, ∞), we conclude that K3 is strictly
sgn(n − 1)sgn(n + 1)sgn(n − 1/2)sgn(n − 2)creasing on [1, ∞). Because we know from
Observation 1 that K3(1) = 0, we conclude that for all t > 1, we have:

K3(t) sgn(n− 1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > K3(1)

= 0.(5.73)

For n = 0, since for all t > 1, according to formula (4.71),

K ′3(t) = t−2K4(t),

we conclude that K ′3(t) > 0. Thus, K3 is strictly increasing on [1,∞), and since according to
Observation 1, K3(1) = 0, we conclude that for all t > 1, we have:

K3(t) > K3(1)

= 0.(5.74)

For n = 1, since for all t > 1, according to formula (4.73),

K ′3(t) = K4(t),

we conclude that K ′3(t) < 0. Thus, K3 is strictly decreasing on [1,∞), and since according to
Observation 1, K3(1) = 0, we conclude that for all t > 1, we have:

K3(t) < K3(1)

= 0.(5.75)

Therefore, if n ∈ {0, 1}, then for all t > 1, we have:

K3(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0.(5.76)
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For n ∈ R−1,1/2,2 \ {0, 1}, formula (4.64):

K ′2(t) = nK3(t)

implies now that, for all t > 1, we have:

K ′2(t) sgn(n) sgn(n− 1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0.(5.77)

Therefore, for all t > 1, we have:

K ′2(t) sgn(n)sgn(n− 1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0.(5.78)

For n = 0, formula (4.66):

K ′2(t) = K3(t),(5.79)

and for n = 1, formula (4.67):

K ′2(t) = th(1)−3K3(t)(5.80)

imply that for all n ∈ {0, 1}, we have:

K ′2(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.81)

for all t > 1.
We conclude from here that, for any n ∈ R \ {−1, 0, 1/2, 1, 2}, the function K2 is
sgn(n)sgn(n − 1)sgn(n + 1)sgn(n − 1/2)sgn(n − 2)creasing on the interval [1,∞); while
for n ∈ {0, 1}, K2 is sgn(n+1)sgn(n−1/2)sgn(n−2)creasing on [1,∞). SinceK2(1) = 0,
it follows that for all n /∈ {0, 1}, we have:

K2(t) sgn(n)sgn(n− 1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.82)

while for all n ∈ {0, 1}, we have:

K2(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.83)

for all t > 1.
Formula (4.59):

K ′1(t) = th(n)−2K2(t),(5.84)

for n /∈ {0, 1}, formula (4.61):

K ′1(t) = th(0)−1K2(t),(5.85)

for n = 0, and formula (4.63):

K ′1(t) = K2(t),(5.86)

for n = 1, and the fact that K1(1) = 0, imply now that, for all n /∈ {0, 1}, we have:

K1(t) sgn(n)sgn(n− 1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.87)

while for all n ∈ {0, 1}, we have:

K1(t) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,(5.88)

for all t > 1.
Formulas (4.50), (4.53), and (4.56) tell us that the sign ofG1(x) is the same as the sign of F1(t),
where t = (x+ 1)/x, for all x > 0, in all three cases n /∈ {0, 1}, n = 0, and n = 1.
For n /∈ {0, 1}, formula (4.45):

G1(x) := (n− 1) [(x+ 1)n − xn]
[
(x+ 1)h(n) + xh(n)

]
F ′1(x),
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implies that:

sgn (F ′1(x)) = sgn(n− 1)sgn ((x+ 1)n − xn) sgn (G1(x)) .(5.89)

Since, for all x > 0, x+ 1 > x, we have:

sgn ((x+ 1)n − xn) = sgn(n).(5.90)

Thus, since G1(x) has the same sign as K1(t), for t = (x + 1)/x, formulas (5.87), (5.89), and
(5.90) imply:

F ′1(x) sgn ((n− 1)n) sgn ((n− 1)n(n+ 1)(n− 1/2)(n− 2)) > 0.

This is equivalent to:

F ′1(x) sgn
(
(n− 1)2

)
sgn

(
n2
)
sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0.

Since n2 > 0 and (n− 1)2 > 0, for n /∈ {0, 1}, we conclude that, for all x > 0, we have:

F ′1(x) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0.

For n ∈ {0, 1}, formulas (4.47) and (4.49) imply that F ′1(x) and G1(x) have the same sign, for
all x > 0. Since the sign of G1(x) is the same as the sign of K1(t), for t = (x+ 1)/x, formula
(5.88) implies:

F ′1(x) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0,

for all x > 0.
Therefore, in both cases n /∈ {0, 1} and n ∈ {0, 1}, for all x > 1, we have:

F ′1(x) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) > 0.(5.91)

Thus, for all n ∈ R\{−1, 1/2, 2}, the function F1 is sgn(n+1)sgn(n−1/2)sgn(n−2)creasing
on (0,∞). Since, according to Observation 2, F1(∞) = 0, for all x > 1, we have:

F1(x) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) < F (∞)

= 0.(5.92)

Because F1(x) = Sn(x, x+ 1)−Hh(n)(x, x+ 1), we conclude that
Sn(x, x + 1) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) < Hh(n)(x, x + 1), for all x > 0. This
proves that for all a and b positive numbers, a 6= b, we have
Sn(a, b) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) < Hh(n)(a, b).
Therefore, the (−1)sgn(n + 1)sgn(n − 1/2)sgn(n − 2)est q = q(n) such that for all a and b
positive numbers, we have:

Sn(a, b) ≤ Hq(a, b)

satisfies the inequality:

q(n) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≤ f(n) =
n+ 1

3
.(5.93)

We will show now the opposite inequality:

q(n) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≥ f(n) =
n+ 1

3
.(5.94)

Indeed, suppose that q is a real number, such that, for all a and b positive numbers, we have:

Sn(a, b) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≤ Hq(a, b).
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Case 1. If n 6= 1, then choosing a = 1 and b = x arbitrarily positive, and raising both sides of
the above inequality to the power n− 1, we obtain:

xn − 1

n(x− 1)
sgn(n− 1) sgn ((n+ 1)(n− 1/2)(n− 2)) ≤

(
xq + 1

2

)(n−1)/q

.(5.95)

We define the functions:

u(x) :=
xn − 1

n(x− 1)
(5.96)

and

v(x) :=

(
xq + 1

2

)(n−1)/q

.(5.97)

These functions are defined on (0, ∞), since even though the formula of u(x) seems to not
make sense for x = 1, we can see that the function z 7→ (zn − 1)/(n(z − 1)) has an analytic
extension at z = 1. Moreover, for n = 0, u(x) := ln(x)/(x − 1), extended by continuity at
x = 1, as u(1) = 1.
For all x ∈ (0,∞), we have:

u(x) sgn ((n− 1)(n+ 1)(n− 1/2)(n− 2)) ≤ v(x).(5.98)

Moreover, we have:

u(1) = lim
x→1

xn − 1

n(x− 1)

=
1

n

d

dx |x=1
(xn)

=
1

n
· nxn−1|x=1

= 1(5.99)
= v(1).(5.100)

Since 1 is in the interior of (0,∞), applying Lemma 4.1, we conclude that:

u′′(1) sgn ((n− 1)(n+ 1)(n− 1/2)(n− 2)) ≤ v′′(1).(5.101)

Writing x = 1 + t, for t ∈ (−1, 1), and using the binomial expansion, we have:

u(x) = u(1 + t)

=
(1 + t)n − 1

nt
(5.102)

=
1

nt

[
1 + nt+

n(n− 1)

2
t2 +

n(n− 1)(n− 2)

3!
t3 + · · · − 1

]
= 1 +

n− 1

2
t+

(n− 1)(n− 2)

6
t2 + · · ·

= 1 +
n− 1

2
(x− 1) +

(n− 1)(n− 2)

6
(x− 1)2 + · · · .(5.103)

We can see from here that:

u′′(1) =
(n− 1)(n− 2)

3
.(5.104)
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On the other hand, for all x > 0, we have:

v′(x) =
(n− 1)

q

(
xq + 1

2

)(n−1−q)/q

· q
2
xq−1

=
(n− 1)

2(n−1)/qx
q−1 (xq + 1)(n−1−q)/q .(5.105)

Differentiating one more time, for all x > 0, we have:

v′′(x) =
(n− 1)

2(n−1)/q

[
(q − 1)xq−2 (xq + 1)(n−1−q)/q

+(n− 1− q)x2(q−1)(xq + 1)(n−1−2q)/q
]
.(5.106)

Setting x = 1, we obtain:

v′′(1) =
(n− 1)

2(n−1)/q

(
(q − 1)2(n−1−q)/q + (n− 1− q)2(n−1−2q)/q)

=
(n− 1)

2(n−1)/q · 2
(n−1−2q)/q [2(q − 1) + n− 1− q]

=
n− 1

4
(n+ q − 3).(5.107)

Inequality u′′(1) sgn ((n− 1)(n+ 1)(n− 1/2)(n− 2)) ≤ v′′(1) becomes now:

(n− 1)(n− 2)

3
sgn ((n− 1)(n+ 1)(n− 1/2)(n− 2)) ≤ (n− 1)(n+ q − 3)

4
.

Multiplying both sides of this inequality by the number 12/(n− 1), we obtain:

4(n− 2) sgn(n− 1) sgn ((n− 1)(n+ 1)(n− 1/2)(n− 2)) ≤ 3(n+ q − 3).

That means,

4(n− 2) sgn ((n+ 1)(n− 1/2)(n− 2)) ≤ 3(n+ q − 3).(5.108)

Solving this inequality for q, we obtain:

q sgn ((n+ 1)(n− 1/2)(n− 2)) ≥ n+ 1

3
.(5.109)

Therefore, we have proved that the (−1)sgn((n+ 1)(n− 1/2)(n− 2)) est q = q(n) is:

q(n) =
n+ 1

3
.(5.110)

Case 2. If n = 1, then sgn(n + 1)sgn(n− 1/2)sgn(n− 2) = −1, and we know that for all a
and b positive numbers, we have:

S1(a, b) ≥ Hq(a, b).(5.111)

Choosing a = 1 and b = x arbitrarily positive, the above inequality becomes:

1

e

(
xx

11

)1/(x−1)

≥
(

1q + xq

2

)1/q

.(5.112)

Applying ln to both sides, we conclude that for all x > 0, we have:

−1 +
x

x− 1
· ln(x) ≥ 1

q
ln (xq + 1)− ln(2)

q
.(5.113)
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Writing x/(x− 1) = 1 + [1/(x− 1)], we obtain:

−1 + ln(x) +
ln(x)

x− 1
≥ 1

q
ln (xq + 1)− ln(2)

q
,(5.114)

for all x > 0, where the value of ln(x)/(x− 1) at x = 1, is understood as:

lim
x→1

ln(x)

x− 1
= 1.(5.115)

In fact, using the Taylor expansion of the function x 7→ ln(x) around the point x = 1, we have:

ln(x)

x− 1
= 1− (x− 1)

2
+

(x− 1)2

3
− (x− 1)3

4
+ · · · ,(5.116)

for all x ∈ (1, 2), from which we can see that:

d2

dx2 |x=1

[
ln(x)

x− 1

]
=

2

3
.(5.117)

Defining the functions u, v : (0,∞)→ R

u(x) := −1 + ln(x) +
ln(x)

x− 1
(5.118)

and

v(x) :=
1

q
ln (xq + 1)− ln(2)

q
,(5.119)

we have that, for all x > 0, u(x) ≥ v(x). Since u(1) = v(1) = 0, Lemma 4.1 implies:

u′′(1) ≥ v′′(1).(5.120)

We have:

u′′(1) =
d2

dx2 |x=1
(ln(x)) +

d2

dx2 |x=1

(
ln(x)

x− 1

)
= − 1

x2 |x=1
+

2

3

= −1 +
2

3

= −1

3
.(5.121)

On the other hand, we have:

v′′(1) =
1

q

d2

dx2 |x=1
(ln (xq + 1))

=
1

q

q(q − 1)xq−2(xq + 1)− q2x2q−1

(xq + 1)2 |x=1

=
q − 2

4
.(5.122)

The inequality u′′(1) ≥ v′′(1) becomes now:

−1

3
≥ q − 2

4
.(5.123)
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Solving this inequality, we obtain:

q ≤ 2

3

=
1 + 1

3
= f(1).(5.124)

Therefore, we obtain:

q(1) ≤ f(1),(5.125)

which together with the previous inequality q(1) ≥ f(1), imply the fact that the optimal (the
greatest) q = q(1), for which:

S1(a, b) ≥ Hq(a, b),(5.126)

for all positive numbers a and b, is

q(1) = f(1) =
2

3
.(5.127)

The proof of our proposition is now complete. Moreover, we have proven that for every
n ∈ R \ {−1, 1/2, 2}, the equality:

Sn(a, b) = Hf(n)(a, b)(5.128)

occurs if and only if:

a = b.(5.129)

Proposition 5.7. For all n ∈ R \ {−1, 1/2, 2}, the (sgn(n + 1)sgn(n − 1/2)sgn(n − 2))est
p = p(n), such that for all a and b positive numbers, we have:

Sn(a, b) (sgn(n+ 1)sgn(n− 1/2)sgn(n− 2)) ≥ Hp(a, b),(5.130)

is p = g(n), where:

g(n) =


(n−1) ln(2)

ln(n)
if n > 0, n 6= 1

ln(2) if n = 1
0 if n ≤ 0

.

Proof. Let h(n) := g(n) = (n − 1) ln(2)/ ln(n) for n > 0, n 6= 1, extended by continuity at
n = 1 and defined to be identically zero for n ≤ 0.
We prove first that p(n) (sgn(n+ 1)sgn(n− 1/2)sgn(n− 2)) ≥ g(n).
Case 1. If n > 0 and n 6= 1, then it follows from Proposition 5.1 and formula (4.80), that for
all t > 1, we have:

K ′5(t) = [n+ h(n)− 1]h(n) [h(n)− 1] th(n)−2

sgn(n− 1/2)sgn(n− 2) > 0.(5.131)

If n = 1, we have K ′5(t) = ln(2)tln(2)−1 > 0, for all t > 1.
Since K ′5 = K ′′4 , we conclude that:
If n > 0 and n 6= 1, then K4 is strictly sgn(n− 1/2)sgn(n− 1) vex on [1,∞).
If n = 1, then K4 is strictly convex on [1,∞).
If n > 0 and n 6= 1, then since, according to Proposition 5.2, we have
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K4(1) sgn(n− 1/2)sgn(n− 2) < 0 and K4(∞) sgn(n− 1/2)sgn(n− 2) > 0, and K4 is
continuous on [1,∞), by the Intermediate Value Theorem, there exists t4 ∈ (1,∞), such that:

K4 (t4) = 0.(5.132)

Moreover, since K4 is strictly sgn(n− 1/2)sgn(n− 1) vex on [1,∞), the point t4 is unique
with the above property. Indeed, assuming that there exists t′4 6= t4 in (1,∞), such that:

K4 (t′4) = 0,

then the graph ofK4 will be either completely below or completely above the line y = 0 joining
the points (t4, 0) and (t′4, 0), for t in between t4 and t′4, and the other way around the same line
outside of the interval (t4, t′4) or (t′4, t4) (it depends on which of t4 and t′4 is greater). Since 1
and∞ (here by∞, we mean a sufficiently large t) are for sure outside of this interval, this will
imply that K4(1)K4(∞) > 0, which is false.
The uniqueness of t4, and the fact that K4(1) sgn(n− 1/2)sgn(n− 2) < 0 and

K4(∞) sgn(n− 1/2)sgn(n− 2) > 0, imply that:

• For all t ∈ (1, t4), K4(t) sgn(n− 1/2)sgn(n− 2) < 0.

• For all t ∈ (t4,∞), K4(t) sgn(n− 1/2)sgn(n− 2) > 0.

If n = 1, then since, according to Proposition 5.2, we have K4(1) > 0 and K4(∞) < 0, there
exists a point t4 ∈ (1, ∞), such that K4(t4) = 0. Since K4 is strictly convex on [1, ∞), t4 is
unique and we have;

• For all t ∈ (1, t4), K4(t) > 0.
• For all t ∈ (t4,∞), K4(t) < 0.

For n > 0 and n 6= 1, formula (4.69),

K ′3(t) = (n− 1)tn−h(n)−2K4(t),

implies now that K ′3(t) has the same sign as (n− 1)K4(t), for all t > 1. Hence,

• For all t ∈ (1, t4), K ′3(t) sgn(n− 1) sgn(n− 1/2)sgn(n− 2) < 0.

• For all t ∈ (t4,∞), K ′3(t) sgn(n− 1) sgn(n− 1/2)sgn(n− 2) > 0.

Thus, the function K3 is (−1)sgn(n− 1)sgn(n− 1/2)sgn(n− 2)creasing on the interval
[1, t4] and sgn(n− 1)sgn(n− 1/2)sgn(n− 2)creasing on [t4,∞).
Since we know from Observation 1, that K3(1) = 0, we conclude that
K3(t) (−1)sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > K3(1) = 0, for all t ∈ (1, t4]. That means,

K3(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0, for all t ∈ (1, t4].
We also know from Proposition 5.3 that
K3(∞) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0. Thus K3(t4) and K3(∞) have opposite
signs. This combined with the fact that K3 is continuous and strictly monotone on [t4, ∞)
imply that there exists a unique t3 ∈ (t4,∞), such that K3(t3) = 0. Moreover, we have:

• For all t ∈ [t4, t3), K3(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0.

• For all t ∈ (t3,∞), K3(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0.

If n = 1, then since, according to formula (4.73), K ′3(t) = K4(t), we conclude that K ′3(t)
has the same sign as K4(t), for all t > 1. Thus K3 is strictly increasing on [1, t4] and strictly
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decreasing on [t4,∞). Since K3(1) = 0 we have K3(t4) > K3(1) = 0. Since sgn(K3(∞)) =
−1, there exists a unique t3 ∈ (t4,∞), such that K3(t3) = 0. Moreover, we have:

• For all t ∈ (1, t3), K3(t) > 0.
• For all t ∈ (t3,∞), K3(t) < 0.

If n > 0 and n 6= 1, then since formula (4.64) says that K ′2(t) = nK3(t), we conclude that for
all t > 1, K ′2(t) has the same sign as K3(t). Thus K2 is strictly
(−1)sgn(n− 1)sgn(n− 1/2)sgn(n− 2) creasing on [1, t3], and

strictly sgn(n− 1)sgn(n− 1/2)sgn(2) creasing on [t3,∞). Since, according to Observation
1, K2(1) = 0, we conclude that
K2(t3) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0. Now, due to Proposition 5.4, we have

K2(∞) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0. Since K2(t3) and K2(∞) have opposite
signs and K2 is continuous and strictly monotone on [t3,∞), there exists a unique t2 ∈ (t3,∞),
such that K2(t2) = 0. Moreover, we have:

• For all t ∈ (1, t2), K3(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0.

• For all t ∈ (t2,∞), K3(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0.

If n = 1, then according to formula(4.67), K ′2(t) and K3(t) have the same sign for all t > 1.
Thus, K2 is strictly increasing on [1, t3] and strictly decreasing on [t3,∞). Since, according to
Observation 1, K2(1) = 0, we conclude that K2(t3) > K2(1) = 0. Proposition 5.4 tells us that
K2(∞) < 0. Since K2 is continuous and strictly monotone on [t3, ∞), the Darboux Property
implies that there exists a unique t2 ∈ (t3,∞), such that K2(t2) = 0. Moreover, we have:

• For all t ∈ (1, t2), K2(t) > 0.
• For all t ∈ (t2,∞), K2(t) < 0.

If n > 0 and n 6= 1, then according to formula (4.59), K ′1(t) has the same sign as K2(t). Thus,
K1 is strictly (−1)sgn(n− 1)sgn(n− 1/2)sgn(n− 2) creasing on [1, t2], and strictly

sgn(n− 1)sgn(n− 1/2)sgn(n− 2) creasing on [t2,∞). Since, according to Observation 1,
K1(1) = 0, we conclude that:
K1(t2) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0. However, we know from Proposition 5.5,

that: K1(∞) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0. The continuity of K1 and its strict
monotonicity on [t3, ∞) imply that there exists a unique t1 ∈ (t2, ∞), such that K1(t1) = 0.
Moreover, we have:

• For all t ∈ (1, t1), K1(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0.

• For all t ∈ (t2,∞), K1(t) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0.

If n = 1, formula (4.63) implies that for all t > 1, K ′1(t) has the same sign as K2(t). ThusK1 is
strictly increasing on [1, t2], and strictly decreasing on [t2,∞). Since, according to Observation
1, K2(1) = 0, we conclude that K2(t2) > K2(1) = 0. On the other hand, Proposition 5.5 tells
us that K1(∞) < 0. The continuity and strict monotonicity of K1 on [t2,∞) imply that there
exists a unique t1 ∈ (t2,∞), such that K1(t1) = 0. Moreover, we have:

• For all t ∈ (1, t1), K1(t) > 0.
• For all t ∈ (t1,∞), K1(t) < 0.

If n > 0 and n 6= 1, according to formula (4.50), for all x > 0, G1(x) has the same sign
as K1(t), where t := (x + 1)/x, or equivalently x = 1/(t − 1). Since for t ∈ (1, t1), we
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have x ∈ (1/(t1 − 1), ∞), while for t ∈ (t1, ∞), we have x ∈ (0, 1/(t1 − 1)), defining
x1 := 1/(t1 − 1), we conclude that:

• For all x ∈ (0, x1), G1(x) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0.

• For all x ∈ (x1,∞), G1(x) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0.

If n = 1, then according to formula (4.56), G1(x) has the same sign as K1(t), where t :=
(x+ 1)/x > 1. Doing the same reasoning as before, we conclude that:

• For all x ∈ (0, x1), G1(x) < 0.
• For all x ∈ (x1,∞), G1(x) > 0.

If n > 0 and n 6= 1, the according to formula (4.45), for all x > 0, we have:

G1(x) = (n− 1) [(x+ 1)n − xn]
[
(x+ 1)h(n) + xh(n)

]
F ′1(x).

Since x + 1 > x > 0 and n > 0, we conclude that (x + 1)n − xn > 0, for all x > 0. Thus, for
all x > 0, F ′1(x) has the same sign as (n− 1)G1(x). Therefore, we have:

• For all x ∈ (0, x1),

G1(x) sgn(n− 1) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) > 0.

• For all x ∈ (x1,∞),

G1(x) sgn(n− 1) sgn(n− 1)sgn(n− 1/2)sgn(n− 2) < 0.

Since, sgn2(n− 1) = +1, we conclude that:

• For all x ∈ (0, x1), G1(x) sgn(n− 1/2)sgn(n− 2) > 0.

• For all x ∈ (x1,∞), G1(x) sgn(n− 1/2)sgn(n− 2) < 0.

Thus, F1 is strictly sgn(n− 1/2)sgn(n− 2) creasing on (0, x1), and strictly

(−1)sgn(n− 1/2)sgn(n− 2) creasing on (x1,∞).
Since n > 0, we have n+ 1 > 0, so sgn(n+ 1) = +1. Thus we can include sgn(n+ 1) in our
inequalities without affecting the inequality symbols.
This implies that for all x ∈ (0,∞), we have:

(−1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) mum{F1(x) | x > 0}

=

{
lim
x→0+

F1(x), lim
x→∞

F1(x)

}
= (−1)sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) mum

{
lim
x→0+

F1(x), 0

}
,(5.133)

since we saw in Observation 2 that, for every function h, we have limx→∞ F1(x) = 0.
Therefore, the statement:

F1(x) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≥ 0,(5.134)

for all x > 0, holds true if and only if:

F1(0) := lim
x→0+

F1(x)

sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≥ 0.(5.135)
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Since for n > 0, n 6= 1, h(n) > 0, we have:

F1(0) = lim
x→0+

{
1

n− 1
ln ((x+ 1)n − xn)− ln(n)

n− 1

}
− lim

x→0+

{
1

h(n)
ln
(
(x+ 1)h(n) + xh(n)

)
− ln(2)

h(n)

}
= 0− ln(n)

n− 1
− 0 +

ln(2)

h(n)
.(5.136)

Because for all n > 0, n 6= 1, we have (n− 1)/ ln(n) > 0, we can see from here that
F1(0) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≥ 0 if and only if:

h(n) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2) ≤ (n− 1) ln(2)

ln(n)
(5.137)

= g(n).

If n = 1, then according to formula (4.49), we have:

G1(x) =
[
(x+ 1)h(1) + xh(1)

]
F ′1(x).

This implies that for all x > 0, F ′1(x) has the same sign as G1(x). Thus F1 is strictly decreasing
on [1, x1], and strictly increasing on [x1,∞). Therefore, we have:

sup{F1(x) | x > 0} = max{F1(0), F1(∞)}
= max{F1(0), 0}.(5.138)

It follows from here that the statement:

F1(x) ≤ 0,(5.139)

for all x > 0, holds true if and only if:

F1(0) := lim
x→0+

F1(x)

≤ 0.(5.140)

Since, if h(n) > 0, then

F1(0) = lim
x→0+

{
ln

(
1

e
· (x+ 1)x+1

xx

)}
− 1

h(n)
lim
x→0+

{
ln

(
(x+ 1)h(n) + xh(n)

2

)}
= −1 + lim

x→0+
[(x+ 1) ln(x+ 1)]− lim

x→0+
[x ln(x)] +

ln(2)

h(n)

= −1 +
ln(2)

h(n)
,(5.141)

while if h(n) ≤ 0, we have:

F1(0) = ∞,(5.142)

we conclude that F1(0) ≤ 0 if and only if

h(n) ≥ ln(2)(5.143)
= g(1).
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Thus, for all n > 0, the sgn(n+ 1)sgn(n− 1/2)sgn(n− 2)) est p = p(n), such that for all a
and b positive, we have:

Sn(a, b) sgn(n+ 1)sgn(n− 1/2)sgn(n− 2)) ≥ Hp(a, b)(5.144)

is p(n) = g(n) = (n− 1) ln(2)/ ln(n). The equality in the above inequality holds if and only if
a = b.
If −1 < n ≤ 0, then for all a and b positive, we have:

Sn(a, b) ≥ S−1(a, b)

= H0(a, b).(5.145)

The equality happens if and only if a = b. Thus p(n) ≥ 0.
To show that p(n) ≤ 0, we show that if p > 0, then the inequality:

Sn(a, b) ≥ Hp(a, b)(5.146)

cannot hold for all a and b positive. Indeed, assuming that it holds for all a and b positive, then
let a = 1 and b = x > 0. Letting x→ 0+, we obtain:

lim
x→0+

Sn(1, x) ≥ lim
x→0+

Hp(1, x).(5.147)

For n = 0, the above inequality becomes:

lim
x→0+

1− x
ln(1)− ln(x)

≥ lim
x→0+

(
1 + xp

2

)1/p

.(5.148)

That means:

0 ≥ 1

21/p
,(5.149)

which is clearly a contradiction.
For −1 < n < 0, the inequality (5.147) becomes:

lim
x→0+

(
1− xn

n(1− x)

)1/(n−1)

≥ lim
x→0+

(
1 + xp

2

)1/p

.(5.150)

Since n < 0, xn → ∞, as x → 0+, and since n − 1 < 0, the limit from the left is 0, while the
limit from the right is a strictly positive number. Thus, the above inequality is impossible.
If n < −1, the for all a and b positive, we have:

Sn(a, b) ≤ S−1(a, b)

= H0(a, b).(5.151)

The equality happens if and only if a = b. Thus p(n) ≤ 0.
To show that p(n) ≥ 0, we show that if p < 0, then the inequality:

Sn(a, b) ≤ Hp(a, b)(5.152)

cannot hold for all a and b positive. Indeed, assuming that it holds for all a and b positive, then
let a = 1 and b = x > 0. Letting x→∞, we obtain:

lim
x→∞

Sn(1, x) ≤ lim
x→∞

Hp(1, x).(5.153)

This inequality becomes:

lim
x→∞

(
xn − 1

n(x− 1)

)1/(n−1)

≤ lim
x→∞

(
xp + 1

2

)1/p

.(5.154)

That means∞ ≤ 2−1/p, which is a contradiction. The proof is now complete.
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Figure 1: M1

6. APPLICATION TO THE FERMAT-TORRICELLI POINT OF A TRIANGLE

We end the paper with an application.
Let us consider a triangle ABC in which the measure of each interior angle is less than or equal
to 120◦. Then the point T , for which the sum of the distances |TA|+ |TB|+ |TC| is minimum
possible, is the Fermat-Torricelli point. This point is denoted byX(13) in [7] and is constructed
in the following way:
Step 1. Construct equilateral triangles A1BC, B1CA, and C1AB on the sides of the triangle
ABC, in the exterior of the triangle.
Step 2. The circles circumscribed to the triangles A1BC, B1CA, and C1AB are concurrent at
a point T , which is the Fermat-Torricelli point.
Alternatively, the lines AA1, BB1, and CC1 are concurrent at one point T , which is the Fermat-
Torricelli point. See Figure 1 above.
Let us observe that since the quadrilateral TBA1C is cyclic, we have:

m(^BTC) = 180◦ − 60◦

= 120◦.(6.1)
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Denoting the length of the sides |BC|, |CA|, and |AB|, of the triangle ABC, by a, b, and c,
respectively, and applying the Law of Cosines in the triangle TBC, we obtain:

a2 = |BC|2

= |TB|2 + |TC|2 − 2|TB||TC| cos(^BTC)

= |TB|2 + |TC|2 − 2|TB||TC| cos (120◦)

= |TB|2 + |TC|2 + |TB||TC|

=
|TC|3 − |TB3|
|TC| − |TB|

= 3 [S3(|TB|, |TC|)]2 .(6.2)

Thus we obtain,

a = S3(|TB|, |TC|)
√

3.(6.3)

Applying the inequality that we just proved, for n = 3, we obtain:

H2 ln(2)/ ln(3)(|TB|, |TC|)
√

3 ≤ a ≤ H4/3(|TB|, |TC|)
√

3.(6.4)

Raising both sides of the inequality:

Hlog3(4)(|TB|, |TC|) ≤ 3−1/2a(6.5)

to the positive power log3(4), and both sides of

3−1/2a ≤ H4/3(|TB|, |TC|)(6.6)

to the positive power 4/3, we obtain:

|TB|log3(4) + |TC|log3(4)

2
≤ 1

2
alog3(4),(6.7)

and

|TB|4/3 + |TC|4/3

2
≥

3
√

3

3
a4/3,(6.8)

with the equality if and only if |TB| = |TC|, which is equivalent to b = c. The last statement
follows from the fact that since |A1B| = |A1C| (as sides of the equilateral triangle A1BC), A1

belongs to the perpendicular bisector d of the segment |BC|. Therefore, we have |TB| = |TC|,
if and only if the perpendicular bisector of |BC| is the line TA1, which is the same as the line
AA1 (since A, T , and A1 are collinear). This is equivalent to the fact that the vertex A of the
triangle ABC belongs to the perpendicular bisector of |BC|. That means |AC| = |AB|.
Similarly, we obtain the inequalities:

|TC|log3(4) + |TA|log3(4)

2
≤ 1

2
blog3(4), ,(6.9)

|TC|4/3 + |TA|4/3

2
≥

3
√

3

3
b4/3,(6.10)

|TA|log3(4) + |TB|log3(4)

2
≤ 1

2
clog3(4),(6.11)

and

|TA|4/3 + |TB|4/3

2
≥

3
√

3

3
c4/3.(6.12)
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Summing up inequalities (6.7), (6.9), and (6.11), and inequalities (6.8), (6.10), and (6.12), we
obtain the following:

Lemma 6.1. In any triangle ABC, in which each interior angle has a measure less than or
equal to 120◦, the following two inequalities hold:

|TA|log3(4) + |TB|log3(4) + |TC|log3(4) ≤ 1

2

(
alog3(4) + blog3(4) + clog3(4)

)
and

|TA|4/3 + |TB|4/3 + |TC|4/3 ≥
3
√

3

3

(
a4/3 + b4/3 + c4/3

)
.

The equality happens in any one of these two inequalities if and only if a = b = c.
Here T is the Fermat-Torricelli point, and a, b, and c are the length of the sides of the triangle
ABC.
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