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1. INTRODUCTION

Consider the fourth degree cyclic homogeneous polynomial

(1.1) f4(x, y, z) =
∑

x4 + A
∑

x2y2 +Bxyz
∑

x+ C
∑

x3y +D
∑

xy3,

where A,B,C,D are real constants, and
∑

denotes a cyclic sum over x, y and z.
The following theorem expresses the necessary and sufficient condition that the inequality

f4(x, y, z) ≥ 0 holds for any real numbers x, y, z in the particular case when f4(1, 1, 1) = 0
(see [3] and [4]):

Theorem 1.1. If
1 + A+B + C +D = 0,

then the cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if and only if

3(1 + A) ≥ C2 + CD +D2.

The corollary below gives only sufficient conditions to have f4(x, y, z) ≥ 0 for any real
numbers x, y, z (see [3]):

Corollary 1.2. If
1 + A+B + C +D ≥ 0

and
2(1 + A) ≥ B + C +D + C2 + CD +D2,

then the cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z.

In this paper, we generalize the results in Theorem 1.1 to the case where

1 + A+B + C +D ≥ 0,

which is equivalent to the necessary condition f4(1, 1, 1) ≥ 0.

2. MAIN RESULTS

We establish two theorems which give necessary and sufficient conditions to have

f4(x, y, z) ≥ 0

for any real numbers x, y, z, where f4(x, y, z) is a fourth degree cyclic homogeneous polynomial
having the form (1.1).

Theorem 2.1. The inequality
f4(x, y, z) ≥ 0

holds for all real numbers x, y, z if and only if

f4(t+ k, k + 1, kt+ 1) ≥ 0

for all real t, where k ∈ [0, 1] is a root of the polynomial

f(k) = (C −D)k3 + (2A−B − C + 2D − 4)k2 − (2A−B + 2C −D − 4)k + C −D.

Remark 2.1. For C = D, the polynomial f(k) has the roots 0 and 1, while for C 6= D, f(k)
has three real roots, but only one in [0, 1]. To prove this assertion, we see that f(0) = −f(1) =
C −D. If C > D, then

f(−∞) = −∞, f(0) > 0, f(1) < 0, f(∞) =∞,
and if C < D, then

f(−∞) =∞, f(0) < 0, f(1) > 0, f(∞) = −∞.
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From the proof of Theorem 2.1, we get immediately the equality cases of the inequality
f4(x, y, z) ≥ 0.

Proposition 2.2. The inequality f4(x, y, z) ≥ 0 in Theorem 2.1 becomes an equality if
x

t+ k
=

y

k + 1
=

z

kt+ 1

(or any cyclic permutation), where k ∈ (0, 1] is a root of the equation

(C −D)k3 + (2A−B − C + 2D − 4)k2 − (2A−B + 2C −D − 4)k + C −D = 0

and t ∈ R is a root of the equation

f4(t+ k, k + 1, kt+ 1) = 0.

Theorem 2.3. The inequality
f4(x, y, z) ≥ 0

holds for all real numbers x, y, z if and only if g4(t) ≥ 0 for all t ≥ 0, where

g4(t) = 3(2 + A− C −D)t4 − Ft3 + 3(4−B + C +D)t2 + 1 + A+B + C +D,

F =
√

27(C −D)2 + E2, E = 8− 4A+ 2B − C −D.

Remark 2.2. In the special case f4(1, 1, 1) = 0, when

1 + A+B + C +D = 0,

from Theorem 2.3 we get Theorem 1.1. The condition g4(t) ≥ 0 in Theorem 2.3 becomes

(2 + A− C −D)t4 + (5 + A+ 2C + 2D)t2 ≥
√

(2− 2A− C −D)2 + 3(C −D)2 t3,

and it holds for all t ≥ 0 if and only if

2 + A− C −D ≥ 0,

5 + A+ 2C + 2D) ≥ 0,

2
√

(2 + A− C −D)(5 + A+ 2C + 2D) ≥
√

(2− 2A− C −D)2 + 3(C −D)2.

The last inequality is equivalent to

3(1 + A) ≥ C2 +D2 + CD,

which involves

2 + A− C −D ≥ 1− (C +D) +
(C +D)2

3
− CD

3

≥ 1− (C +D) +
(C +D)2

3
− (C +D)2

12
=

(
1− C +D

2

)2

≥ 0

and

5 + A+ 2C + 2D ≥ 4 + 2(C +D) +
(C +D)2

3
− CD

3

≥ 4 + 2(C +D) +
(C +D)2

3
− (C +D)2

12
=

(
2 +

C +D

2

)2

≥ 0.

Thus, we obtained the necessary and sufficient condition in Theorem 1.1, namely

3(1 + A) ≥ C2 + CD +D2.

The following proposition gives the equality cases of the inequality f4(x, y, z) ≥ 0 for F = 0.
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Proposition 2.4. For F = 0, assume that the inequality f4(x, y, z) ≥ 0 in Theorem 2.3 becomes
an equality for at least a real triple (x, y, z) 6= (0, 0, 0). Then, the inequality f4(x, y, z) ≥ 0 in
Theorem 2.3 has the following three possible forms:

(x+ y + z)2[x2 + y2 + z2 + k(xy + yz + zx)] ≥ 0, k ∈ [−1, 2],
or

[x2 + y2 + z2 + k(xy + yz + zx)]2 ≥ 0, k ∈ (−1, 2),
or

(x2 + y2 + z2 − xy − yz − zx)[x2 + y2 + z2 + k(xy + yz + zx)] ≥ 0, k ∈ [−1, 2).
The following proposition gives the equality cases of the inequality f4(x, y, z) ≥ 0 for F > 0.

Proposition 2.5. For F > 0, the inequality f4(x, y, z) ≥ 0 in Theorem 2.3 becomes an equality
if and only if x, y, z satisfy

(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0

and are proportional to the roots w1, w2 and w3 of the polynomial equation

w3 − 3w2 + 3(1− α2)w +
2E

F
α3 + 3α2 − 1 = 0,

where α is any double nonnegative real root of the polynomial g4(t).

Remark 2.3. The polynomial

f(w) = w3 − 3w2 + 3(1− α2)w +
2E

F
α3 + 3α2 − 1

in Proposition 2.5 has three real roots for any given α ≥ 0. This is true if f(w′1) ≥ 0 and
f(w′2) ≤ 0, where w′1 = 1−α and w′2 = 1+α are the roots of the derivative f ′(w). Indeed, we
have

f(w′1) = 2

(
1 +

E

F

)
α3 ≥ 0,

f(w′2) = −2
(
1− E

F

)
α3 ≤ 0.

Thus, for F > 0, the number of distinct non-zero triples (x, y, z) which satisfy f4(x, y, z) = 0
is equal to the number of distinct nonnegative roots of the polynomial g4(t). Since this number
is less than or equal to 2, the equality f4(x, y, z) = 0 holds for x = y = z = 0 and for at most
two distinct triples (x, y, z).

In the special case f4(1, 1, 1) = 0, when 1 + A + B + C + D = 0, from Theorem 2.3
and Remark 2.2 it follows that 3(1 + A) = C2 + CD + D2 is a necessary condition to have
f4(x, y, z) ≥ 0 for all real x, y, z, with equality for at least a real triple (x, y, z) with x 6= y or
y 6= z or z 6= x. Thus, by Proposition 2.5 we get the following corollary.

Corollary 2.6. Let f4(x, y, z) be a fourth degree cyclic homogeneous polynomial such that
f4(1, 1, 1) = 0 and f4(x, y, z) ≥ 0 for all real numbers x, y, z. Let us denote

E = 12− 3(C +D)− 2(C2 + CD +D2), F =
√
27(C −D)2 + E2,

α =

√
3(C +D + 4)2 + (C −D)2

3(C +D − 2)2 + (C −D)2
.

For F > 0, the inequality f4(x, y, z) ≥ 0 becomes an equality when x = y = z, and also when
x, y, z satisfy

(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0
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and are proportional to the roots w1, w2 and w3 of the polynomial equation

w3 − 3w2 + 3(1− α2)w +
2E

F
α3 + 3α2 − 1 = 0.

A new special case is the one in whichC = D, when the homogeneous polynomial f4(x, y, z)
is symmetric. Since

F = |E| = 2|4− 2A+B − C|,
the polynomial

f(w) = w3 − 3w2 + 3(1− α2)w +
2E

F
α3 + 3α2 − 1

in Proposition 2.5 becomes either

f(w) = w3 − 3w2 + 3(1− α2)w + 2α3 + 3α2 − 1 = (w − α− 1)2(w + 2α− 1),

or

f(w) = w3 − 3w2 + 3(1− α2)w − 2α3 + 3α2 − 1 = (w + α− 1)2(w − 2α− 1).

In both cases, two of the real roots w1, w2 and w3 are equal. Setting y = z = 1, the equation
f4(x, y, z) = 0 becomes

x4 + 2Cx3 + (2A+B)x2 + 2(B + C)x+ A+ 2C + 2 = 0.

So, the following corollary holds.

Corollary 2.7. Let

f4(x, y, z) =
∑

x4 + A
∑

x2y2 +Bxyz
∑

x+ C
∑

xy(x2 + y2)

be a fourth degree symmetric homogeneous polynomial such that 4 − 2A + B − C 6= 0 and
f4(x, y, z) ≥ 0 for all real numbers x, y, z. The inequality f4(x, y, z) ≥ 0 becomes an equality
when x/w = y = z (or any cyclic permutation), where w is a double real root of the equation

w4 + 2Cw3 + (2A+B)w2 + 2(B + C)w + A+ 2C + 2 = 0.

With regard to the distinct nonnegative roots of the polynomial g4(t), the following statement
holds.

Proposition 2.8. Assume that F > 0 and g4(t) ≥ 0 for all t ≥ 0. The polynomial g4(t) in
Theorem 2.3 has the following nonnegative real roots:

(i) two pairs of nonnegative roots, namely

t1 = t2 = 0, t3 = t4 ≥ 0,

if and only if
1 + A+B + C +D = 0, 3(1 + A) = C2 + CD +D2;

(ii) only one pair of zero roots,
t1 = t2 = 0,

if and only if
1 + A+B + C +D = 0, 3(1 + A) > C2 + CD +D2;

(iii) only one pair of positive roots,

t1 = t2 > 0,

if and only if

a =
2
√
2(2b+

√
b2 + 12c)

3
√
b+
√
b2 + 12c

,
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where

a =
F

3(2 + A− C −D)
≥ 0, b =

4−B + C +D

2 + A− C −D
, c =

1 + A+B + C +D

3(2 + A− C −D)
> 0.

Remark 2.4. It is much easier to make a thorough study of a cyclic homogeneous polynomial
inequality of degree four f4(x, y, z) ≥ 0 by applying Theorem 2.3 than by applying Theorem
2.1, especially in the case where f4(1, 1, 1) 6= 0. For this reason, Theorem 2.1 is more useful for
the study of the inequality f4(x, y, z) ≥ 0 by means of a computer. For example, let us prove
by both Theorems 2.1 and 2.3 the well known inequality ([1], [2])

(x2 + y2 + z2)2 ≥ 3(x3y + y3z + z3x), x, y, z ∈ R.
We have

f4(x, y, z) = (x2 + y2 + z2)2 − 3(x3y + y3z + z3x);

that is,
A = 2, B = 0, C = −3, D = 0.

According to Theorem 2.1, we need to show that f4(t + k, k + 1, kt + 1) ≥ 0 for all real t,
where k ≈ 0.445042 satisfies the equation

k3 − k2 − 2k + 1 = 0.

After many calculation, we get

f4(t+ k, k + 1, kt+ 1) = (t− 1)2[(1− k)(3− 2k)t2 + 2(1− k)(3k − 1)t+ 2− k − 8k2]

= (1− k)(3− 2k)(t− 1)2
(
t+

3k − 1

3− 2k

)2

≥ 0.

By Proposition 2.2, equality holds for
x

t+ k
=

y

k + 1
=

z

kt+ 1

(or any cyclic permutation), where t ∈
{
1,

1− 3k

3− 2k

}
; that is, for x = y = z, and also for

x

1− 2k2
=

y

(1 + k)(3− 2k)
=

z

3− k − 3k2

(or any cyclic permutation).
According to Theorem 2.3, we need to show that g4(t) ≥ 0 for all t ≥ 0. Indeed, we have

E = 3, F = 6
√
7, and hence

g4(t) = 3t2(
√
7 t− 1)2 ≥ 0.

Since f4(1, 1, 1) = 0, we apply Corollary 2.6 to find the other equality cases. We get α = 1/
√
7,

and the equality conditions

(x+ y + z)(x− y)(y − z)(z − x) ≤ 0

and
w3 − 3w2 +

18

7
w − 27

49
= 0,

which lead to the equality case
x

sin2 4π

7

=
y

sin2 2π

7

=
z

sin2 π

7

(or any cyclic permutation).
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3. PROOF OF THEOREM 2.1

The main idea is to use the linear cyclic substitution

x = a+ kb, y = b+ kc, z = c+ ka,

in order to convert the cyclic polynomial f4(x, y, z) to a fourth degree symmetric homogeneous
polynomial

h4(a, b, c) = f4(a+ kb, b+ kc, c+ ka).

If this is possible for a real constant k ∈ [0, 1], then the inequality f4(x, y, z) ≥ 0 holds for all
real numbers x, y, z if and only if the inequality h4(a, b, c) ≥ 0 holds for all real numbers a, b, c.
According to Lemma 3.1 below, the inequality h4(a, b, c) ≥ 0 holds for all real a, b, c if and
only if h4(t, 1, 1) ≥ 0 for all real t; that is, if and only if

h4(t, 1, 1) = f4(t+ k, 1 + k, 1 + kt)

for all real t. So, we only need to show that the polynomial h4(a, b, c) is symmetric if k is a real
root of the polynomial f(k).

For C = D and k = 0, the polynomial h4(a, b, c) is clearly symmetric. Consider now that
C 6= D. It is easy to show that the expressions

∑
x4,
∑
x2y2, xyz

∑
x,
∑
x3y and

∑
xy3

contain respectively the following cyclic expressions
∑
a3b and

∑
ab3:∑

x4 : 4k
∑

a3b+ 4k3
∑

ab3,∑
x2y2 : 2k3

∑
a3b+ 2k

∑
ab3,

xyz
∑

x : (k2 + k)
∑

a3b+ (k3 + k2)
∑

ab3,∑
x3y : (k4 + 1)

∑
a3b+ (3k2 + k)

∑
ab3,∑

xy3 : (k3 + 3k2)
∑

a3b+ (k4 + 1)
∑

ab3.

Therefore, h4(a, b, c) contains the expression

E
∑

a3b+ F
∑

ab3,

where
E = 4k + 2Ak3 +B(k2 + k) + C(k4 + 1) +D(k3 + 3k2),

F = 4k3 + 2Ak +B(k3 + k2) + C(3k2 + k) +D(k4 + 1).

Obviously, if E = F , then h4(a, b, c) is a symmetric homogeneous polynomial. From

E − F = (C −D)k4 + (2A−B +D − 4)k3 − 3(C −D)k2

−(2A−B + C − 4)k + C −D = (k + 1)f(k),

it follows that f(k) = 0 involves E = F .
To complete the proof, we still need to show that the equation f(k) = 0 has at least a root in

[0, 1]. This is true since f(k) is a continuous function and f(0) = −f(1) = C −D 6= 0.

Lemma 3.1. Let h4(a, b, c) be a fourth degree symmetric homogeneous polynomial. The in-
equality

h4(a, b, c) ≥ 0

holds for all real numbers a, b, c if and only if h4(t, 1, 1) ≥ 0 for all real t.
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Proof. Let p = a + b + c, q = ab + bc + ca and r = abc. For fixed p and q, from the known
relation

27(a− b)2(b− c)2(c− a)2 = 4(p2 − 3q)3 − (2p3 − 9pq + 27r)2,

it follows that r is maximal and minimal when two of a, b, c are equal. On the other hand,
for fixed p and q, the inequality h4(a, b, c) ≥ 0 can be written as g(r) ≥ 0, where g(r) is a
linear function. Therefore, g(r) is minimal when r is minimal or maximal; that is, when two
of a, b, c are equal. Since the polynomial h4(a, b, c) is symmetric, homogeneous and satisfies
h4(−a,−b,−c) = h4(a, b, c), g(r) is minimal if and only if h4(t, 1, 1) ≥ 0 and h4(t, 0, 0) ≥ 0
for all real t. To complete the proof, it suffices to show that if h4(t, 1, 1) ≥ 0 for all real t, then
h4(t, 0, 0) ≥ 0 for all real t. Indeed, since h4(a, b, c) has the general form

h4(a, b, c) = A0

∑
a4 + A1

∑
ab(a2 + b2) + A2

∑
a2b2 + A3abc

∑
a,

the condition h4(t, 1, 1) ≥ 0 for all real t involves A0 ≥ 0, and hence h4(t, 0, 0) = A0t
4 ≥ 0

for all real t.

4. PROOF OF THEOREM 2.3

Using the substitutions

p = x+ y + z, q = xy + yz + zx, r = abc,

we have
xyz

∑
x = pr,

∑
x2y2 = q2 − 2pr,∑

x4 = (
∑

x2)2 − 2
∑

x2y2 = (p2 − 2q)2 − 2(q2 − 2pr) = p4 − 4p2q + 2q2 + 4pr,∑
x3y +

∑
xy3 = (

∑
xy)(

∑
x2)− xyz

∑
x = q(p2 − 2q)− pr,∑

x3y −
∑

xy3 = p(x− y)(y − z)(z − x),

27(x− y)2(y − z)2(z − x)2 = 4(p2 − 3q)3 − (2p3 − 9pq + 27r)2.

Further, we need Lemma 4.1, Lemma 4.2 and Lemma 4.3 below. By Lemma 4.1, the inequal-
ity f4(x, y, z) ≥ 0 holds if and only if

(4.1) S4(x, y, z) ≥ |(C −D)(x+ y + z)(x− y)(y − z)(z − x)|
for all real x, y, z.

Sufficiency. Consider the following two cases: p = 0 and p 6= 0.

Case 1: p = 0. Since
∑
x4 = 2q2,

∑
x2y2 = q2 and

∑
x3y +

∑
xy3 = −2q2, the desired

inequality (4.1) becomes
(2 + A− C −D)q2 ≥ 0.

This is true since the hypothesis g4(t) ≥ 0 for all t ≥ 0 involves 2 + A− C −D ≥ 0.

Case 2: p 6= 0. Due to homogeneity, we may set p = 1, which involves q ≤ 1/3. Since

|(x− y)(y − z)(z − x)| =
√

(x− y)2(y − z)2(z − x)2 =
√

4(1− 3q)3 − (2− 9q + 27r)2

27
,

(4.1) becomes

2− (8− C −D)q + 2(2 + A− C −D)q2 + (8− 4A+ 2B − C −D)r ≥

≥ |C −D|
3
√
3

√
4(1− 3q)3 − (2− 9q + 27r)2.
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Substituting t =
√
1− 3q, which implies q = (1− t2)/3, t ≥ 0, the inequality turns into

2(2 + A− C −D)t4 + (16− 4A+ C +D)t2 − 2 + 2A+ C +D + 9Er ≥

≥
√
3|C −D|

√
4t6 − (3t2 − 1 + 27r)2,

where
E = 8− 4A+ 2B − C −D.

Applying Lemma 4.2 for

(4.2) α =
√
3|C −D|, β =

E

3
, a = 2t3, b = 3t2 − 1 + 27r,

we get
√
3|C −D|

√
4t6 − (3t2 − 1 + 27r)2 ≤ 2Ft3

3
+
E(3t2 − 1 + 27r)

3
.

Thus, we only need to prove that

2(2 + A− C −D)t4 + (16− 4A+ C +D)t2 − 2 + 2A+ C +D + 9Er ≥

≥ 2Ft3

3
+
E(3t2 − 1 + 27r)

3
,

which is just the hypothesis g4(t) ≥ 0.
Necessity. We need to prove that if (4.1) holds for all real x, y, z, then g4(t) ≥ 0 for all t ≥ 0.

Actually, it suffices to consider that (4.1) holds for all real x, y, z such that p = x+ y + z = 1.
As we have shown above, the inequality (4.1) for p = 1 has the form

2(2 + A− C −D)t4 + (16− 4A+ C +D)t2 − 2 + 2A+ C +D + 9Er ≥

≥
√
3|C −D|

√
4t6 − (3t2 − 1 + 27r)2,

where
E = 8− 4A+ 2B − C −D.

Choosing the triple (x, y, z) as in Lemma 4.3, we get

2(2 + A− C −D)t4 + (16− 4A+ C +D)t2 − 2 + 2A+ C +D + 9Er ≥

≥ 2Ft3

3
+
E(3t2 − 1 + 27r)

3
,

which is equivalent to g4(t) ≥ 0.

Lemma 4.1. The inequality f4(x, y, z) ≥ 0 holds for all real x, y, z if and only if the inequality

S4(x, y, z) ≥ |(C −D)(x+ y + z)(x− y)(y − z)(z − x)|
holds for all real x, y, z, where

S4(x, y, z) = 2
∑

x4 + 2A
∑

x2y2 + 2Bxyz
∑

x+ (C +D)(
∑

x3y +
∑

xy3).

Proof. It is easy to show that

2f4(x, y, z) = S4(x, y, z) + (C −D)(
∑

x3y −
∑

xy3)

= S4(x, y, z)− (C −D)(x+ y + z)(x− y)(y − z)(z − x).
Sufficiency. According to the hypothesis

S4(x, y, z) ≥ |(C −D)(x+ y + z)(x− y)(y − z)(z − x)|,
we have

2f4(x, y, z) ≥ |(C −D)(x+ y + z)(x− y)(y − z)(z − x)|
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−(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0.

Necessity. Since

2f4(x, y, z) = S4(x, y, z)− (C −D)(x+ y + z)(x− y)(y − z)(z − x),
from the hypothesis f4(x, y, z) ≥ 0, we get

S4(x, y, z) ≥ (C −D)(x+ y + z)(x− y)(y − z)(z − x).
On the other hand, if f4(x, y, z) ≥ 0 for all real x, y, z, then also f4(x, z, y) ≥ 0 for all real
x, y, z. Since

2f4(x, z, y) = S4(x, y, z) + (C −D)(x+ y + z)(x− y)(y − z)(z − x),
we get

S4(x, y, z) ≥ −(C −D)(x+ y + z)(x− y)(y − z)(z − x)
for all real x, y, z. Therefore, we have

S4(x, y, z) ≥ |(C −D)(x+ y + z)(x− y)(y − z)(z − x)|.

Lemma 4.2. If α, β, a, b are real numbers, α ≥ 0, a ≥ 0 and a2 ≥ b2, then

α
√
a2 − b2 ≤ a

√
α2 + β2 + βb,

with equality if and only if

βa+ b

√
α2 + β2 = 0.

Proof. Since

a

√
α2 + β2 + βb ≥ |β|a+ βb ≥ |β||b|+ βb ≥ 0,

we can write the inequality as

α2(a2 − b2) ≤ (a

√
α2 + β2 + βb)2,

which is equivalent to the obvious inequality

(βa+ b

√
α2 + β2)2 ≥ 0.

Lemma 4.3. Let A,B,C,D,E, F be given real constants such that

E = 8− 4A+ 2B − C −D, F =
√

27(C −D)2 + E2.

For any given t ≥ 0, there exists a real triple (x, y, z) such that

x+ y + z = 1, xy + yz + zx = (1− t2)/3
and

√
3|C −D|

√
4t6 − (3t2 − 1 + 27xyz)2 =

2Ft3

3
+
E(3t2 − 1 + 27xyz)

3
.

Proof. Let r = xyz. From the last relation we get[√
3|C −D|

√
4t6 − (3t2 − 1 + 27r)2 − E(3t2 − 1 + 27r)

3

]2
=

(
2Ft3

3

)2

,

[√
3|C −D|(3t2 − 1 + 27r) +

E

3

√
4t6 − (3t2 − 1 + 27r)2

]2
= 0,
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that is f(r) = 0, where

f(r) =
√
3|C −D|(3t2 − 1 + 27r) +

E

3

√
4t6 − (3t2 − 1 + 27r)2.

We need to prove that for any given t ≥ 0 there exists a real triple (x, y, z) such that x+y+z = 1,
xy + yz + zx = (1− t2)/3 and f(r) = 0. According to

27(x− y)2(y − z)2(z − x)2 = 4t6 − (3t2 − 1 + 27r)2 ≥ 0,

this is true if r ∈ [r1, r2], where

r1 =
1

27
(1− 3t2 − 2t3), r2 =

1

27
(1− 3t2 + 2t3).

Therefore, we only need to show that the equation f(r) = 0 has a root in [r1, r2]. Indeed, from

f(r1) = −2
√
3|C −D|t3, f(r2) = 2

√
3|C −D|t3, f(r1)f(r2) ≤ 0,

the desired conclusion follows.

5. PROOF OF PROPOSITION 2.4

We first see that F = 0 involves

C = D = 4− 2A+B

and
1

3
g4(t) = (5A− 2B − 6)t4 + (12− 4A+B)t2 + 3− A+B.

According to Theorem 2.3 and its proof in section 4, we have f4(x, y, z) ≥ 0 for all real x, y, z,
with equality for at least a real triple (x, y, z) 6= (0, 0, 0), only if g4(t) ≥ 0 for all t ≥ 0 and
g4(t) = 0 for at least a nonnegative value of t. In our case, we have g4(t) ≥ 0 for all t ≥ 0 only
if 5A− 2B − 6 ≥ 0 and 3− A+ B ≥ 0. We need to consider three cases: 5A− 2B − 6 = 0;
5A− 2B − 6 > 0 and 3− A+B > 0; 5A− 2B − 6 > 0 and 3− A+B = 0.

Case 1: 5A− 2B − 6 = 0. We get

A = 2k + 2, B = 5k + 2, C = D = k + 2, k ∈ R,
and hence

f4(x, y, z) =
∑

x4 + 2(k + 1)
∑

x2y2 + (5k + 2)xyz
∑

x+ (k + 2)
∑

xy(x2 + y2)

= (x+ y + z)2[x2 + y2 + z2 + k(xy + yz + zx)].

Clearly, the inequality f4(x, y, z) ≥ 0 holds for all real x, y, z if and only if k ∈ [−1, 2]. The
same result follows from the condition g4(t) ≥ 0 for all t ≥ 0, where

g4(t) = 9(2− k)t2 + 9(1 + k).

Case 2: 5A− 2B − 6 > 0, 3−A+B > 0. We have g4(t) ≥ 0 for all t ≥ 0 and also g4(t) = 0
for at least a nonnegative value of t if and only if 12− 4A+B < 0 and

(12− 4A+B)2 = 4(5A− 2B − 6)(3− A+B);

that is,
B = 2(A− 2±

√
A− 2), A ≥ 2.

Putting k = ±
√
A− 2, we get

A = k2 + 2, B = 2k(k + 1), C = D = 2k,

and hence
f4(x, y, z) = [x2 + y2 + z2 + k(xy + yz + zx)]2.
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From 12− 4A+B = 2(k + 1)(2− k) < 0, we get k ∈ (−1, 2).
Case 3: 5A− 2B − 6 > 0, 3− A+B = 0. We get

A = 2− k, B = −1− k, C = D = k − 1, k < 2,

and hence

f4(x, y, z) =
∑

x4 + (2− k)
∑

x2y2 − (1 + k)xyz
∑

x+ (k − 1)
∑

xy(x2 + y2)

= (x2 + y2 + z2 − xy − yz − zx)[x2 + y2 + z2 + k(xy + yz + zx)].

The inequality f4(x, y, z) ≥ 0 holds for all real x, y, z if and only if k ∈ [−1, 2). The same
result follows from the condition g4(t) ≥ 0 for all t ≥ 0, where

g4(t) = 9t2[(2− k)t2 + 1 + k].

6. PROOF OF PROPOSITION 2.5

By the proof of Theorem 2.3 it follows that the main necessary condition to have f4(x, y, z) ≥
0 for all real x, y, z and f(x, y, z) = 0 for at least a real triple (x, y, z) 6= (0, 0, 0) is to have
g4(t) ≥ 0 for all t ≥ 0 and g4(t) = 0 for at least a nonnegative value of t. Clearly, for F > 0,
the inequality g4(t) ≥ 0 holds for all t ≥ 0 only if 2+A−C −D > 0. We can find all equality
cases of the inequality f4(x, y, z) ≥ 0 using the above proof of Theorem 2.3. Consider two
cases: x+ y + z = 0 and x+ y + z = 1.

Case 1: x+ y + z = 0. The inequality (4.1), which is equivalent to f4(x, y, z) ≥ 0, becomes

(2 + A− C −D)(xy + yz + zx)2 ≥ 0,

with equality for x+ y + z = 0 and xy + yz + zx = 0; that is, for x = y = z = 0.

Case 2: x+ y + z = 1. According to Lemma 4.1, a first necessary equality condition is

(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0.

In addition, according to Lemma 4.2, it is necessary to have

βa+ b

√
α2 + β2 = 0,

where α, β, a and b are given by (4.2). This condition is equivalent to

2Et3 + F (3t2 − 1 + 27xyz) = 0.

Since x+ y + z = 1 and xy + yz + zx = (1− t2)/3, where where t is any nonnegative root of
the polynomial g4(t), the equality f4(x, y, z) = 0 holds when

(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0,

x+ y + z = 1, xy + yz + zx =
1− t2

3
, 27xyz = 1− 3t2 − 2E

F
t3;

that is, when x, y, z are proportional to the roots of the equation

27w3 − 27w2 + 9(1− t2)w +
2E

F
t3 + 3t2 − 1 = 0

and satisfy (C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0. Substituting w/3 for w, we get the
desired equation

w3 − 3w2 + 3(1− t2)w +
2E

F
t3 + 3t2 − 1 = 0.
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7. PROOF OF PROPOSITION 2.8

Clearly, if g4(t) ≥ for all t ≥ 0, then 2 + A− C −D > 0.

(i) If the polynomial g4(t) has four nonnegative real numbers t1 ≤ t2 ≤ t3 ≤ t4, then the
condition g4(t) ≥ 0 for all t ≥ 0 holds if and only if

0 ≤ t1 = t2 = a ≤ b = t3 = t4,

when
g4(t) = 3(2 + A− C −D)(t− a)2(t− b)2.

Since the coefficient of t is 0 in g4(t) and is 2ab(a+b) in (t−a)2(t−b)2, it follows that a = 0 and
b ≥ 0. From g4(0) = 0, we get 1+A+B+C+D = 0, which involves 3(1+A) = C2+CD+D2

(see Remark 2.2).
Reversely, if 1 + A+B + C +D = 0 and 3(1 + A) = C2 + CD +D2, then

g4(t) = 3(2 + A− C −D)t2
[
t− F

6(2 + A− C −D)

]2
,

where F ≥ 0.

(ii) The polynomial g4(t) has the double root 0 if and only if 1 +A+B +C +D = 0, when

g4(t) = t2g(t),

where
g(t) = 3(2 + A− C −D)t2 − Ft+ 3(4−B + C +D).

Clearly, g4(t) has only two nonnegative roots (that are t1 = t2 = 0) when g(t) has either
negative real roots or complex roots. Since F ≥ 0, g(t) can not have negative roots, but can
have complex roots, when the discriminant of the quadratic polynomial g(t) is negative; that is,

3(1 + A) > C2 + CD +D2.

(iii) Write the inequality g4(t) ≥ 0 as h(t) ≥ 0, where

h(t) = t4 − at3 + bt2 + c.

In addition, writing h(t) in the form

h(t) ≡ (t− t0)2(t2 + pt+ q), t0 > 0,

we find
2t0 − p = a, t20 − 2pt0 + q = b, pt0 − 2q = 0, qt20 = c.

From the last three relation, we get

2t20 = b+
√
b2 + 12c,

6q =
√
b2 + 12c− b,

p =

√
2(
√
b2 + 12c− b)

3
√
b+
√
b2 + 12c

.

Since p > 0 and q > 0, the quadratic polynomial t2 + pt + q has no nonnegative real root.
Substituting t0, p and q in 2t0 − p = a, we get

a = 2t0 − p = 2t0 −
2q

t0
=

2t20 − 2q

t0

=
2(2b+

√
b2 + 12c)

3t0
=

2
√
2(2b+

√
b2 + 12c)

3
√
b+
√
b2 + 12c

.
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8. APPLICATIONS OF THEOREM 2.3

Application 1. If x, y, z are real numbers, then ([5])

(x2 + y2 + z2)2 +
8√
7
(x3y + y3z + z3x) ≥ 0.

Proof. We have

A = 2, B = 0, C = 8/
√
7, D = 0, E = −8/

√
7, F = 16,

and hence

g4(t) = 12

(
1− 2√

7

)
t4 − 16t3 + 12

(
1 +

2√
7

)
t2 + 3 +

8√
7

=
2√
7

(
t− 3 +

√
7

2

)2 [
6(
√
7− 2)t2 + 2(3−

√
7)t+ 1

]
.

Since g4(t) ≥ 0 for all t ≥ 0, the inequality is proved (Theorem 2.3).
To find all equality cases, we apply Proposition 2.5. We see that the polynomial g4(t) has

only the nonnegative double root α = (3+
√
7)/2. Therefore, equality holds when x, y, z satisfy

(x+ y + z)(x− y)(y − z)(z − x) ≥ 0

and are proportional to the roots of the equation

w3 − 3w2 − 9

(
1 +

√
7

2

)
w +

27

4

(
1 +

3√
7

)
= 0;

that is, x/w1 = y/w2 = z/w3 (or any cyclic permutation), where w1 ≈ 6.0583, w2 ≈ −3.7007,
w3 ≈ 0.6424.

Application 2. Let x, y, z be real numbers. If −3 ≤ k ≤ 3, then ([6])

4
∑

x4 + (9− k2)xyz
∑

x ≥ 2(1 + k)
∑

x3y + 2(1− k)
∑

xy3.

Proof. Applying Theorem 2.3 for

A = 0, B =
9− k2

4
, C =

−1− k
2

, D =
−1 + k

2
,

we get E =
27− k2

2
, F =

27 + k2

2
and

4g4(t) = (t− 1)2[36t2 + (9− k2)(2t+ 1)] ≥ 0.

If −3 < k < 3, then the polynomial g4(t) has only the nonnegative double root t = 1. By
Proposition 2.5, we get that equality holds when x, y, z satisfy

k(x+ y + z)(x− y)(y − z)(z − x) ≤ 0

and are proportional to the roots of the equation

w3 − 3w2 +
108

27 + k2
= 0.

If |k| = 3, then the polynomial g4(t) has also the double root t = 0, which leads to the equality
case x = y = z.

For instant, if k = 1, then we get the inequality

x4 + y4 + z4 + 2xyz(x+ y + z) ≥ x3y + y3z + z3x, x, y, z ∈ R,
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with equality for
x

sin
8π

7

=
y

sin
4π

7

=
z

sin
2π

7
(or any cyclic permutation). Also, if k = 3, we get the known inequality (see [1])

x4 + y4 + z4 + xy3 + yz3 + zx3 ≥ 2(x3y + y3z + z3x), x, y, z ∈ R.
with equality for x = y = z, and also for

x sin
π

9
= y sin

7π

9
= z sin

13π

9

(or any cyclic permutation).

Application 3. Let m and n be real numbers. The inequality ([7])∑
x4 + (m+ 3)

∑
x2y2 ≥ (2− n)

∑
x3y + (2 + n)

∑
xy3

holds for all real numbers x, y, z if and only if m ≥ 0 and

|n| ≤ 2

3

√
(m+ 9)

√
m(m+ 9)−m2

3
.

Proof. We have

A = m+ 3, B = 0, C = n− 2, D = −n− 2, E = −4m, F = 2
√
27n2 + 4m2,

g4(t) = 3(m+ 9)t4 − 2
√
27n2 + 4m2 t3 +m.

According to Theorem 2.3, the desired inequality holds if and only if g4(t) ≥ 0 for all t ≥ 0.
From g4(0) ≥ 0, we get m ≥ 0, and by the AM-GM inequality, we have

3(m+ 9)t4 +m ≥ 4 4
√
m(m+ 9)3t12 = 4

√
(m+ 9)

√
m(m+ 9) t3.

Therefore, we have g4(t) ≥ 0 for all t ≥ 0 if and only if

4

√
(m+ 9)

√
m(m+ 9)− 2

√
27n2 + 4m2 ≥ 0,

which is equivalent to

|n| ≤ 2

3

√
(m+ 9)

√
m(m+ 9)−m2

3
.

Application 4. If x, y, z are real numbers, then ([8])

(x2 + y2 + z2)2 + 2(x3y + y3z + z3x) ≥ 3(xy3 + yz3 + zx3).

Proof. We have

A = 2, B = 0, C = 2, D = −3, E = 1, F = 26,

and hence
g4(t) = 15t4 − 26t3 + 9t2 + 2 = (t− 1)2(15t2 + 4t+ 2).

Since g4(t) ≥ 0 for all t ≥ 0, the proof is completed (Theorem 2.3).
To analyse the equality cases, we apply Proposition 2.5. Since the polynomial g4(t) has the

nonnegative double roots 1, we get the equality conditions

(x+ y + z)(x− y)(y − z)(z − x) ≥ 0
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and
w3 − 3w2 +

27

13
= 0,

which lead to the equality case x/w1 = y/w2 = z/w3 (or any cyclic permutation), where
w1 ≈ −0.7447, w2 ≈ 1.0256, w3 ≈ 2.7191.

Application 5. If x, y, z are real numbers, then

10
∑

x4 + 64
∑

x2y2 ≥ 33
∑

xy(x2 + y2).

Proof. We have

A =
32

5
, B = 0, C = D =

−33
10

, E = F = 11,

and hence
5g4(t) = 225t4 − 55t3 − 39t2 + 4 = (5t+ 2)2(9t2 − 5t+ 1).

Since g4(t) ≥ 0 for all t ≥ 0, the proof is completed (Theorem 2.3).
Since C = D, according to Corollary 2.7, equality holds when

x

w
= y = z,

where w is a double real root of the polynomial

h(w) = w4 + 2Cw3 + (2A+B)w2 + 2(B + C)w + A+ 2C + 2

=
1

5
(5w4 − 33w3 + 64w2 − 33w + 9)

=
1

5
(w − 3)2(5w2 − 3w + 1).

Therefore, equality occurs for x/3 = y = z (or any cyclic permutation).
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