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2 ILKAY YASLAN KARACA

1. INTRODUCTION

We are concerned with the following system of boundary value problems on time §cales

v (W) +Af(y(o(t) =0, t€la,b] CT,
(1.1) v (a) =0, 0<i<n-—2
Syt (E) =yt (0 (),

where\ > 0 is a parameterp > 3, m > 1 are integersg < & < & < ... < &, < b,
a; € (0,+00) forl < i <m and )" a; < 1. In addition f = [f1, fo, . fn], where
fi € C([0,00),[0,00)), 1 <7< N.Weassumethab = o (b) —a—> ", a;(§ —a) >0
and o (b) is right dense so that’ (b) = o (b) for j > 1.

The study of dynamic equations on time scales goes back to its founder Stefan Hilger [10].
Some preliminary definitions and theorems on time scales can be found in the books [3] and [4]
which are excellent references for the calculus of time scales.

Recently, existence results for positive solutions of higher-order multi-point boundary value
problems was studied by some authors, seel[5],[]6], [7] @nd [8].

A few papers can be found in the literature on higher-dimensional dynamic equations [1] and
[2].

We were, in particular, motivated by Anderson and Hoffacker [2]. They were interested in
the following functional dynamic equations on time scales

(1.2) & (t) = —A )27 (t) + Mo (t) £ (t,2) -

They obtained sufficient conditions for the existence of multiple positive periodic solutions of
the system of (1]2) by using Krasnosel’skii fixed point theorem.

This paper is organized as follows. Sectign 2 introduces some notation and several lemmas
which play important roles in this paper. Sectign 3 gives nonexistence and multiplicity results
for positive solutions to the system ¢f (IL.1). In this article, the main tool is the following well-
known Krasnosel'skii fixed point theorem in a cone [9].

Theorem 1.1.([9]). Let B be a Banach space, and |BtC B be a cone in3. Assume,, {2,
are open subsets @f with0 € Q,, 2, C 5, and let

APH(QQ\Ql)HP

be a completely continuous operator such that, either

() [Ay| <l|y|l,y € PN, and |Ay| > |y|, y € P N 0OQy; or
(i) |Ay| > |y|,y € PN oYy, and |Ay| < |y|, u € P N Os.

ThenA has at least one fixed pointiA N (95 \ Q).

2. PRELIMINARIES AND LEMMAS

Let G(t, s) be Green'’s function for the boundary value problems

v (1) + A Ly (o (1) =0, t € [a,b],
(2.1) y(a) =0,
Z;Zl iy (&) =y (o (b)).
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Then,

(o)1) (o(s) —a) =57 3 (€,) (o () )+ 31 s (€,—a) (1= (s)
o(b)—a—> % ai(§;—a) '
CLStSU(b), éi—lga(s)gmin{éiat}7 Zzlam+1>
(t-a) [0 (6)—o(s) 7 a5 (€,—0(5))]
S S ey
a<t<o(b), max{{, |, t} <o(s) <¢, i=1,m+ 1.

(22) GQ (ta 8) =

Lemma 2.1. There exist a numbeét € (0, 1) and a continuous functiott : [a,b] — R* such
that

Gy (t,s) < (s)fort € [a,o(b)], s € [a,b]

and
Go (t,s) > ki (s)fort € [£y,0(D)], s € [a,b],
where
w(s):(a(b)—a(%)(a(s)—@)7
(2.3) k = min LEm:oz»(a(b)—ﬂ) Sioa 1—io¢- :
2<i<m | o (b) p ! o (s)—a = !

Proof. Now, we will show that we may take (s) = ("(b)*"(%)("(s)*“).
Upper bounds:
Case 1. Considdr < o (s) <¢&,, o(s) <t.Then

o(b)—t=>77" q i~
Gatio) = T TR 60 oy

o(b) =Y &t (YT ey — 1
= D ( >(a(s)—a).

Sincey " | a; < 1, the maximum occurs when= ¢ (s) and then

o(b)—o(s m_lajas—j
atry < ZOZTO T TG (O 6)

(0 (b) —0a(s)(o(s) —a)
D

<

?

sinced ™ a; (0 (s) —¢;) < 0foro(s) <& and; € (a,b) witha < & < & < .. <

5m72<b‘
Case2. Fot,  <t<¢,2<r<m+1,& ,<o0(s)<¢, 2<i<r o(s) <t wehave
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GQ (t, S)
(0 (0) =) (0 (s) —a) = D7 0 (& — 1) (0 (s) —a) + Y72 a5 (& —a) (t— 0 (s))

D
C(o®) =) (o(s) —a) =3 (§—a(s)) (o (s) —a)
D
S (t—o(s)(o(s) —a)+ 37 a; (6 — 0 (s)) (t—a(s))

+ D
o(b) — 10 (t—o (s

<20 HZJD 27 o) -a)
a(b)—0(5)2?;1&j+t<z?=1aj_1)

- (o(s) —a),

- D

since}"" o (0 (s) —&;) <0 and 30"y (§,—0(s)) <0foré, , <o(s) <&, 2<
1 <m+1.

Since) 7", a; < 1, the maximum occurs whemn= o (s) S0

(0 (b) —0o(s)) (o (s) —a)
Gy (t,s) < o) .

Case3.Fot, | <t<¢,2<r<m, & <o0(s)<¢, r<i<m,t<o(s),weobtain

since) 7", (§—0(s)=0forg, <o(s) <&, 2<i<m.
Case 4. Fog,, <o (s) <o (b), t<o(s),weclearly have

Gattos) < (TO =7 () (0 (5) ~a)

D
Lower bounds: We shall show that we may take an arbitrary intéfyar (b)] C (a, o (b)].
We are looking fomin {G: (¢, s) : t € [£;,0 (b)]} as a function of of the same form as the

upper bound.
Case 1. Considdr < o (s) < &, o (s) <t, we get
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ob)—t =320 a; (& —
Gt s) = O 25_ &Y (o) — o

o(b) = a8+t (D e — 1
- = ( L e@-a

Since) " | a; < 1, the minimum occurs wheh= ¢ (b) and then

o (b) = Sy s+ () (X g -
GQ (t, S) Z

Case2.Fof, | <t<¢.,2<r<m+1,& 1<o0(s)<¢, 2<i<r o(s) <t wehave

G2 (t,S)
@) =D () —a) =X a5 (§ -0 (5) (0 () —a)
D
S (=0 (s) (0 (s) —a) + i ay (& — 0 () (t— 0 (5))

+ D

(Sra 1) (0(s) —a) + XiZay (& - 0 (9)]
B D

X o (1) =0 () Sy = X (& = 0 ()| (0/(5) = @) = 0 () i oy (€ = 0 (5)

Since(Z}’;1 aj — 1) (0(s) —a)+ X2y aj (& — o (s)) <0, the minimum occurs wheh=
o (b),then

Gy t,5) > 2=t (E-—o®) ) -a)+¥ 0 -a) (@b —0(s)

v

D
1 m
> B;O‘j (0(0) =) (0 (s) —a)
y <a<b>—a<sl>)> (“(8)_‘1)01@ Do (7 () =&).

Case3.Fot, ; <t<¢.,2<r<m,§_<o0(s)<¢, r<i<m,t<o(s),weobtain
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D
(t—a) [(0(0) = (s) (1= X7 a5) = Xy (€ — o (0)]
- D
(t-a)lo®) - [,
Sl
(G- -a) [, ¢
R O

D
S & —a)(o() —a(s)
- D
_(0(s)=a)(o(b)—0a(s) & —a
D o(s)—a

Thus we can take

e 0

|
Lemma 2.2. If y satisfies the boundary conditions

{yA'( a)=0, 0<i<n-—2,
21_1 alyA" 2(£>:yAn 2(‘7 (b))

and

y* (t) <0, teab],
then

y¥ (1) >0,
Proof. Let P (t) = " (t), t € [a,0 (b)] . Then we have

PA (1) <0, [a, b]
P (a) = 0and Z aP (&) =P (o (b))
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It must be true thaP (o (b)) > 0. To see this, assume to the contrary tRg (b)) < 0. Since
P (a) = 0andP (t) is concave downward, we have

t—a

IR

P(o (b)), tela,o(b)].

Therefore,

which is a contradiction.
Now, P (a) =0, P (o (b)) > 0,andP (t) is concave downward, so we have

P(t)y=y~"(t) >0, telao(b).
This completes the proof of the lemmg.

Let B be the Banach space defined by

B = {y .y~ is continuous onla, o (b)], ¥* (a) =0, 0<i<n— 3} ,

with the norm||y|| = maxi<;<, |vi|,, Wherejy;|, = SUDte(a,0()

YA’ (t)‘ and let

2

PZ{yGB:yZAn

wherek is as in[2.8).
Solving the systen (I].1) is equivalent to finding fixed points of the opefato3 — B defined

by

£)>0, min 2" () >k }
(t) > i i (t) =k lyll

o(b)
(2.4) Loy (t) = / G (t.5) (5.7 () As, 1€ [a,0(b)

and denote

n\T
L)\y = (L}\y> Liya ) L/\y) :
It can be verified that

(25) G2 (t7 S) = G$"’_2 (t7 S) :
From [2.5) it follows that

., o (b)
(2.6) (L) ()= Ga(t,5) f (5,47 (5)) As

a

where
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n—2 An—2 An—2 n n—o\ T
(L™ = ()™ (L) (La)™)
Solving the syste. 1) iB is equivalent to finding fixed points of the opera[cﬁ"“2 defined
by (2.6).

Lemma 2.3. The operatorL, is completely continuous such thag (P) C P.

Proof. From the continuity of7, (¢,s) and f (t,¢) it follows that the operatof., defined by
(2.4) is completely continuous i&. By Lemma[2.]l, Lemmp 2.2 and definition Bf we get
LyPCP.u

3. EXISTENCE OF POSITIVE SOLUTIONS

Now we are ready to establish a few sufficient conditions for the existence of at least one or
two positive solutions and the nonexistence of positive solutior|s df (1.1).
Now we define

O - fim 5 e - gy £

0 _ - ,
S =0 Jlull Tt ull—ee ful|

forl <i<n.

Theorem 3.1. For each) satisfying

1 1
o(b) <A< o(b)
ki [T 4 (s) As 1[4 (s) As
there exists at least one positive solution[of]|(1.1).

(3.1)

Proof. Let A be given as in (3]1). Now, let> 0 be chosen such that

1 1
o(b) < A < o(b) ’
k(2 — o) [70 0 (s) As (0 +6) [77 4 (s) As
Now, turning tol?, there exists an; > 0 such thatf; (y) < (12 + €) ||y|| for 0 < ||ly|| < ;. So,

fory € P with ||y|| = a;, we have from the fact th&t< G (t,s) < ¢ (s)fort € [a,0 (b)], s €
la,b],

o o (b)
(i)™ (1) = / Gs (t,5) i (" (5)) As
<A [ e 7 () As

o(b)
<A@+e) [ () as

< llyll = as.
Next, considerind®, there exist$; > 0 such thatf; (y) > (1> —€) ||y| for |jy|| > b;. Let
b; = max {2ai, %} . Theny € P and||y|| = b; implies
2

0] = min 270 > kyl =6,

A"
Yi 0 telgy o)

lyll =

and so fort € [¢,,0 (b)],
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a(b)

L) O =2 [ Gt i (5)) s

o(b)
> Mk / ¥ (s) As (12 — o) [yl
> |lyll = b

If we takea = max{a; : 1 <i<n}, b=min{b:1<i<n},byTheorenj 1]LL, has a
fixed pointy such thainin {a, b} < |ly|| < max {a, b} . The proof is completes
Theorem 3.2. For each) satisfying
1 1
(3.2) =(b) <A< o (b) ’
KO [TV 6 (s) As 12 [7 4 (s) As

there exists at least one positive solution[of](1.1).

Proof. Let A be given as in (3]2), and choose det 0 such that
1 1

o(b) <A< a(b) ’

R —e) J, v (s)As (177 +e) Jy v (s)As

Beginning with!?, there exists an; > 0 such thatf; (y) > (I¥ — ) ||y|| for 0 < ||y|| < a;. So,
for y € P with ||y|| = a;, andt € [¢,, o (b)] we have

. An—2 U(b)
E)> 0= [ Gatos) il (5) s
a(b)
> Mk / () 1 (5 (3)) As

o(b)
> k(10— ) / ¥ (s) As |y
> Iyl = a.

It remains to considef®. There exists; > 0 such thatf; (y) < (I>° + ¢) ||y|| for |ly|| > b;.
There are two cases:
For case(a), supposeN > 0 is such thatf; (y) < N, forall 0 < y < oo. Letb;, =

max {2@,-, AN f:(b) ¥ (s) As} . Theny € P and||y|| = b;, we have

o (b)

L) =2 [ Galt9) i (5)) s
< AN U(b)w(s)As

< [lyll = b:.

For case(b), let g; (h) := max{f; (y) : 0 <y < h}. The functiong; is nondecreasing and

limy, o g; (h) = oo. Chooseb; = max{Qai,bi} so thatg; (b;) > g; (h) for 0 < h < b;. For
y € P and|y| = b;, we have
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. AR—2 a(b)
(i)™ " (1) = A / Ga (t,5) £, (4 (s)) As

o(b)
< Agi (b;) ¥ (s) As
o(b)
S/\(lfo—l—e)bi/ ¥ (s)As
< [lyll = bs-

If we takea = min{a; : 1 <i<n}, b =max{b :1<i<n}, by TheorelLA has a
fixed pointy such thainin {a, b} < |ly|| < max {a, b} . The proof is completes

The rest of the paper we assurfigy) > 0 onR*.

Set
o(b)
A= ¥ (s) As.
Theorem 3.3.  (a) If either!? = oo or I&° = cofor1 < i < n,thenforall0 < A\ < ),
where
1 . r
Ao := — min sup

A 1<i<n r>0 MaXg<|jul|<r fz (u)’
(1.7) has at least one positive solution.
(b) If either!? =0 or I° = 0for 1 <i < n, then forall\ > )¢, where

r

Ao := — max inf
1<i<n >0 MiNg< |y <r fi (1)

(1.3) has at least one positive solution.

Proof. We now prove the paf) of Theorenj 3.8. Let > 0 given.
If ||y|| = r, it follows that

. n—2 U(b)
I Lxyll = max (Li\y)A (t) < )\0/ Gy (t,s) fi (y7 (s)) As <.

So for all0 < A < Ay we have

ILxyll < llyll-
Fix A < \y. ChooseR > 0 sufficiently large so that
o(b)
(3.3) )\Rk/ P (s)As > 1.
Sincel{ = oo, there isa; > 0 (1 <7 < n) such that
fi(y) >R
1yl
fort € [a,o (b)], 0 < |ly|| < a;. Hence we have that
fi(y) = Rlly|

fort € fa,o(b)], 0 <[yl < a;. Fory € P, [lyll = a; andt € [§,, 0 (b)], we get

. n—2 O'(b)
(L) (1) > ARK / ¥ (s) Asllyll > Iyl = a
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by (3.3). If we chooser = min{a; : 1 <i<n}, thenL, has a fixed pointy such that
min{a,r} < |ly|| < max{a,r}.

Next, we use the assumption that = oo. Sincel® = oo thereis a; > 0, (1 <i<mn)

such that
fi (y) >R
[yl
for ||y|| > b; and R is chosen so thaft (3.3) holds. It follows that

fi (y) > Ry

for ||y|| > b;.
Fory € P, |ly|| =b; andt € [£;,0 (D)], we have

S An—2 a(b)
T =2 [ Gt £l () as

a(b)
> ARk / ¥ (s) As |y
> b = |lyl

by (3.3). If we choosé = min{b; : 1 <i<n}, thenL, has a fixed poiny such that
min {b,r} < |ly|| < max{b,r}. This completes the proof of paft). Part(b) holds in an
analogous waya

Theorem 3.4.a) If I{ = [° = oo for 1 < i < n, then there is a\, > 0 such that for all
0 < A < )\, (1.7) has two positive solutions.

b) If 19 = 12° =0 for 1 < i < n, then there is @, > 0 such that for allx > ), ) has two
positive solutions.

Now, we give a nonexistence result as follows.

Theorem 3.5. (a) If there is a constant > 0 such thatf; (y) > c||y||, then there is a\, > 0
such that|(1.]l) has no positive solutions fob .

(b) If there is a constant > 0 such thatf; (y) < c||y|, then there is @&, > 0 such that[(L.]1)
has no positive solutions for< A < ).

Proof. We now prove the parta) of this theorem. Assume there is a constant 0 such
that f; (y) > c||y|| . Assumey (¢) is a solution of the system (1.1). We will show that for
sufficiently large that this leads to a contradiction. We have foi¢,, o (b)],

I a(b) o(b)
g2 (1) = A / Galt,5) 1 (4 (5)) As > chdg / b (s) As [yl

If we pick \, sufficiently large so thatk\, fa"(b) Y (s)As > 1forall A > )y, then we have
y2"" > |ly|| which is a contradiction. The proof of pa#) is similar. §

Example 3.6. We illustrate Theorern 3.2 with specific time sc@le- Z U [5, 7] .
Consider the system:
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y2" () + A (y7 (1) =0, te[0,4] CT,
(3.4) Y2 (0) =0, 0<i<n-—2,
1/2y (1) +1/3y (2) + 1/10y (3) = y (5)

T
where f = [1 + (g1 + )", e—@lﬂﬂ)] Cor =1/2, as = 1/3,a5 = 1/10, a = 0, b =
47 51:17 52:27 53:3
Sincef, (y) = 1+ (y1 +1)"°, fo(y) = e @) we have
lAO =o00, [7=0,

fori=1,2.Weget (s) =2 (4d—s)(s+1), [T¢(s)As= 35030 Therefore the assumptions
of Theorenj 3.p are satisfied. By Theo@ 3.2, fov\aelal (0,00), (3.4) has at least one positive

solution.

Example 3.7. We illustrate Theoretn 3.4 with specific time scéle= R.
Consider the system:

y" () +Af(y @) =0, tel0,5],
(3.5) y(0) =y (0) =0,
1/2y (1) +1/4y (2) = y (5)

T
wheref = [en vt (g +yp +y5)° + 1, (y11203)° + 5]

Sincef; (y) = entvtu+l - fo(y) = (yy +yo +uy3) + 1, f3(y) = (yiyays)’ + 5, we get
1% = oo, for i =1,2.

Since )
125
A= s)ds = —
/0 Y (5)ds =
r T 1
Su = su = —
T>%) maxo<||(y1,y2,ys)lI<r eyityztys+l r>€ e3rt+l 3e2’
r T 1
sup 5 = sup — S
r>0 MaXo<||(y1,y2,y3)[|<r (yi+y2+uy3)"+1 09 +1 6
r T 1
sup . = sup S
>0 MAX0< |y, yoys)l<r (V1Y243)" +5 >0 +5 6
we have . .
T
Ao = — min sup = —2

—e
A 1<i<3 T>0 maxo<|jy|<r Ji ( ) 125

So, by Theorerp 3|4, for all € (0, 3-¢?] , (3.5) has one positive solution.
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