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1. I NTRODUCTION

We are concerned with the following system of boundary value problems on time scalesT :

(1.1)


y∆n

(t) + λf (y (σ (t))) = 0, t ∈ [a, b] ⊂ T,
y∆i

(a) = 0, 0 ≤ i ≤ n− 2,∑m
i=1 αiy

∆n−2
(ξi) = y∆n−2

(σ (b)) ,

whereλ > 0 is a parameter,n ≥ 3, m ≥ 1 are integers,a < ξ1 < ξ2 < ... < ξm < b,

αi ∈ (0,+∞) for 1 ≤ i ≤ m and
∑m

i=1 αi < 1. In additionf = [f1, f2, ...fN ]T , where
fi ∈ C ([0,∞) , [0,∞)) , 1 ≤ i ≤ N. We assume thatD = σ (b) − a −

∑m
i=1 αi (ξi − a) > 0

and σ (b) is right dense so thatσj (b) = σ (b) for j ≥ 1.
The study of dynamic equations on time scales goes back to its founder Stefan Hilger [10].

Some preliminary definitions and theorems on time scales can be found in the books [3] and [4]
which are excellent references for the calculus of time scales.

Recently, existence results for positive solutions of higher-order multi-point boundary value
problems was studied by some authors, see [5], [6], [7] and [8].

A few papers can be found in the literature on higher-dimensional dynamic equations [1] and
[2].

We were, in particular, motivated by Anderson and Hoffacker [2]. They were interested in
the following functional dynamic equations on time scales

(1.2) x∆ (t) = −A (t)xσ (t) + λh (t) f (t, xt) .

They obtained sufficient conditions for the existence of multiple positive periodic solutions of
the system of (1.2) by using Krasnosel’skii fixed point theorem.

This paper is organized as follows. Section 2 introduces some notation and several lemmas
which play important roles in this paper. Section 3 gives nonexistence and multiplicity results
for positive solutions to the system of (1.1). In this article, the main tool is the following well-
known Krasnosel’skii fixed point theorem in a cone [9].

Theorem 1.1. ([9]). LetB be a Banach space, and letP ⊂ B be a cone inB. AssumeΩ1, Ω2

are open subsets ofB with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

A : P ∩
(
Ω̄2 \ Ω1

)
→ P

be a completely continuous operator such that, either

(i) |Ay| ≤ |y|, y ∈ P ∩ ∂Ω1, and |Ay| ≥ |y|, y ∈ P ∩ ∂Ω2; or
(ii) |Ay| ≥ |y|, y ∈ P ∩ ∂Ω1, and |Ay| ≤ |y|, u ∈ P ∩ ∂Ω2.

ThenA has at least one fixed point inP ∩
(
Ω̄2 \ Ω1

)
.

2. PRELIMINARIES AND L EMMAS

LetG2(t, s) be Green’s function for the boundary value problems

(2.1)

 y∆2
(t) + λf (t, y (σ (t))) = 0, t ∈ [a, b] ,

y (a) = 0,∑m
i=1 αiy (ξi) = y (σ (b)) .
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Then,

(2.2) G2 (t, s) =


(σ(b)−t)(σ(s)−a)−

Pm
j=i αj(ξj−t)(σ(s)−a)+

Pi−1
j=1 αj(ξj−a)(t−σ(s))

σ(b)−a−
Pm

i=1 αi(ξi−a)
,

a ≤ t ≤ σ (b) , ξi−1 ≤ σ (s) ≤ min{ξi, t}, i = 1,m+ 1,
(t−a)[σ(b)−σ(s)−

Pm
j=i αj(ξj−σ(s))]

σ(b)−a−
Pm

i=1 αi(ξi−a)
,

a ≤ t ≤ σ (b) , max{ξi−1, t} ≤ σ (s) ≤ ξi, i = 1,m+ 1.

Lemma 2.1. There exist a numberk ∈ (0, 1) and a continuous functionψ : [a, b] → R+ such
that

G2 (t, s) ≤ ψ (s) for t ∈ [a, σ (b)] , s ∈ [a, b]

and

G2 (t, s) ≥ kψ (s) for t ∈ [ξ1, σ (b)] , s ∈ [a, b] ,

where

ψ (s) =
(σ (b)− σ (s)) (σ (s)− a)

D
,

(2.3) k = min
2≤i≤m

{
1

σ (b)

m∑
j=i

αj

(
σ (b)− ξj

)
,

ξ1 − a

σ (s)− a

[
1−

m∑
j=i

αj

]}
.

Proof. Now, we will show that we may takeψ (s) = (σ(b)−σ(s))(σ(s)−a)
D

.
Upper bounds:

Case 1. Consider0 ≤ σ (s) ≤ ξ1, σ (s) ≤ t. Then

G2 (t, s) =
σ (b)− t−

∑m
j=1 αj

(
ξj − t

)
D

(σ (s)− a)

=
σ (b)−

∑m
j=1 αjξj + t

(∑m
j=1 αj − 1

)
D

(σ (s)− a) .

Since
∑m

j=1 αj < 1, the maximum occurs whent = σ (s) and then

G2 (t, s) ≤
σ (b)− σ (s) +

∑m
j=1 αj

(
σ (s)− ξj

)
D

(σ (s)− a)

≤ (σ (b)− σ (s)) (σ (s)− a)

D
,

since
∑m

j=1 αj

(
σ (s)− ξj

)
≤ 0 for σ (s) ≤ ξ1 andξj ∈ (a, b) with a < ξ1 < ξ2 < ... <

ξm−2 < b.
Case 2. Forξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m+1, ξi−1 ≤ σ (s) ≤ ξi, 2 ≤ i ≤ r, σ (s) ≤ t, we have
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G2 (t, s)

=
(σ (b)− t) (σ (s)− a)−

∑m
j=i αj

(
ξj − t

)
(σ (s)− a) +

∑i−1
j=1 αj

(
ξj − a

)
(t− σ (s))

D

=
(σ (b)− t) (σ (s)− a)−

∑m
j=i αj

(
ξj − σ (s)

)
(σ (s)− a)

D

+

∑m
j=1 αj (t− σ (s)) (σ (s)− a) +

∑i−1
j=1 αj

(
ξj − σ (s)

)
(t− σ (s))

D

≤
σ (b)− t+

∑m
j=1 αj (t− σ (s))

D
(σ (s)− a)

≤
σ (b)− σ (s)

∑m
j=1 αj + t

(∑m
j=1 αj − 1

)
D

(σ (s)− a) ,

since
∑m

j=i αj

(
σ (s)− ξj

)
≤ 0 and

∑i−1
j=1 αj

(
ξj − σ (s)

)
≤ 0 for ξi−1 ≤ σ (s) ≤ ξi, 2 ≤

i ≤ m+ 1.

Since
∑m

j=1 αj < 1, the maximum occurs whent = σ (s) so

G2 (t, s) ≤ (σ (b)− σ (s)) (σ (s)− a)

D
.

Case 3. Forξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m, ξi−1 ≤ σ (s) ≤ ξi, r ≤ i ≤ m, t ≤ σ (s) , we obtain

G2 (t, s) =
(t− a)

[
σ (b)− σ (s)−

∑m
j=i aj

(
ξj − σ (s)

)]
σ (b)− a−

∑m
i=1 ai (ξi − a)

≤ (σ (b)− σ (s)) (t− a)

D

≤ (σ (b)− σ (s)) (σ (s)− a)

D

since
∑m

j=i αj

(
ξj − σ (s)

)
≥ 0 for ξi−1 ≤ σ (s) ≤ ξi, 2 ≤ i ≤ m.

Case 4. Forξm ≤ σ (s) ≤ σ (b) , t ≤ σ (s) , we clearly have

G2 (t, s) ≤ (σ (b)− σ (s)) (σ (s)− a)

D
.

Lower bounds: We shall show that we may take an arbitrary interval[ξ1, σ (b)] ⊂ (a, σ (b)] .

We are looking formin {G2 (t, s) : t ∈ [ξ1, σ (b)]} as a function ofs of the same form as the
upper bound.
Case 1. Consider0 ≤ σ (s) ≤ ξ1, σ (s) ≤ t, we get
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G2 (t, s) =
σ (b)− t−

∑m
j=1 αj

(
ξj − t

)
D

(σ (s)− a)

=
σ (b)−

∑m
j=1 αjξj + t

(∑m
j=1 αj − 1

)
D

(σ (s)− a) .

Since
∑m

j=1 αj < 1, the minimum occurs whent = σ (b) and then

G2 (t, s) ≥
σ (b)−

∑m
j=1 αjξj + σ (b)

(∑m
j=1 αj − 1

)
D

(σ (s)− a)

>
(σ (b)− σ (s)) (σ (s)− a)

D

1

σ (b)

m∑
j=1

αj

(
σ (b)− ξj

)
.

Case 2. Forξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m+1, ξi−1 ≤ σ (s) ≤ ξi, 2 ≤ i ≤ r, σ (s) ≤ t, we have

G2 (t, s)

=
(σ (b)− t) (σ (s)− a)−

∑m
j=i αj

(
ξj − σ (s)

)
(σ (s)− a)

D

+

∑m
j=1 αj (t− σ (s)) (σ (s)− a) +

∑i−1
j=1 αj

(
ξj − σ (s)

)
(t− σ (s))

D

=
t
[(∑m

j=1 αj − 1
)

(σ (s)− a) +
∑i−1

j=1 αj

(
ξj − σ (s)

)]
D

+

[
σ (b)− σ (s)

∑m
j=1 αj −

∑m
j=i αj

(
ξj − σ (s)

)]
(σ (s)− a)− σ (s)

∑i−1
j=1 αj

(
ξj − σ (s)

)
D

.

Since
(∑m

j=1 αj − 1
)

(σ (s)− a) +
∑i−1

j=1 αj

(
ξj − σ (s)

)
< 0, the minimum occurs whent =

σ (b) , then

G2 (t, s) ≥
−

∑m
j=i αj

(
ξj − σ (b)

)
(σ (s)− a) +

∑i−1
j=1 αj

(
ξj − a

)
(σ (b)− σ (s))

D

≥ 1

D

m∑
j=i

αj

(
σ (b)− ξj

)
(σ (s)− a)

>
(σ (b)− σ (s)) (σ (s)− a)

D

1

σ (b)

m∑
j=i

αj

(
σ (b)− ξj

)
.

Case 3. Forξr−1 ≤ t ≤ ξr, 2 ≤ r ≤ m, ξi−1 ≤ σ (s) ≤ ξi, r ≤ i ≤ m, t ≤ σ (s) , we obtain
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G2 (t, s) =
(t− a)

[
σ (b)− σ (s)−

∑m
j=i αj

(
ξj − σ (s)

)]
D

=
(t− a)

[
(σ (b)− σ (s))

(
1−

∑m
j=i αj

)
−

∑m
j=i αj

(
ξj − σ (b)

)]
D

≥ (t− a) (σ (b)− σ (s))

D

[
1−

m∑
j=i

αj

]

≥ (ξ1 − a) (σ (b)− σ (s))

D

[
1−

m∑
j=i

αj

]

=
(σ (s)− a) (σ (b)− σ (s))

D

ξ1 − a

σ (s)− a

[
1−

m∑
j=i

αj

]
.

Case 4. Forξm ≤ σ (s) ≤ σ (b) , t ≤ σ (s) , we have

G2 (t, s) =
(t− a) (σ (b)− σ (s))

D

≥ (ξ1 − a) (σ (b)− σ (s))

D

=
(σ (s)− a) (σ (b)− σ (s))

D

ξ1 − a

σ (s)− a
.

Thus we can take

k = min
2≤i≤m

{
1

σ (b)

m∑
j=i

αj

(
σ (b)− ξj

)
,

ξ1 − a

σ (s)− a

[
1−

m∑
j=i

αj

]}
.

Lemma 2.2. If y satisfies the boundary conditions{
y∆i

(a) = 0, 0 ≤ i ≤ n− 2,∑m
i=1 aiy

∆n−2
(ξi) = y∆n−2

(σ (b))

and

y∆n

(t) ≤ 0, t ∈ [a, b] ,

then

y∆n−2

(t) ≥ 0.

Proof. Let P (t) = y∆n−2
(t) , t ∈ [a, σ (b)] . Then we have

P∆2

(t) ≤ 0, t ∈ [a, b] ,

P (a) = 0 and
m∑

i=1

aiP (ξi) = P (σ (b)) .
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It must be true thatP (σ (b)) ≥ 0. To see this, assume to the contrary thatP (σ (b)) < 0. Since
P (a) = 0 andP (t) is concave downward, we have

P (t) ≥ t− a

σ (b)− a
P (σ (b)) , t ∈ [a, σ (b)] .

Therefore,

m∑
i=1

aiP (ξi)− P (σ (b)) ≥
m∑

i=1

ai
ξi − a

σ (b)− a
P (σ (b))− P (σ (b))

>

m∑
i=1

aiP (σ (b))− P (σ (b))

> P (σ (b))− P (σ (b)) = 0,

which is a contradiction.
Now,P (a) = 0, P (σ (b)) ≥ 0, andP (t) is concave downward, so we have

P (t) = y∆n−2

(t) ≥ 0, t ∈ [a, σ (b)] .

This completes the proof of the lemma.

Let B be the Banach space defined by

B =
{
y : y∆n

is continuous on[a, σ (b)] , y∆i

(a) = 0, 0 ≤ i ≤ n− 3
}
,

with the norm‖y‖ = max1≤i≤n |yi|0, where|yi|0 = supt∈[a,σ(b)]

∣∣∣y∆n−2

i (t)
∣∣∣ and let

P =

{
y ∈ B : y∆n−2

i (t) ≥ 0, min
t∈[ξ1,σ(b)]

y∆n−2

i (t) ≥ k ‖y‖
}

wherek is as in (2.3).
Solving the system (1.1) is equivalent to finding fixed points of the operatorLλ : B → B defined
by

(2.4) Lλy (t) = λ

∫ σ(b)

a

Gn (t, s) f (s, yσ (s)) ∆s, t ∈ [a, σ (b)]

and denote

Lλy =
(
L1

λy, L
2
λy, ..., L

n
λy

)T
.

It can be verified that

(2.5) G2 (t, s) = G∆n−2

n (t, s) .

From (2.5) it follows that

(2.6) (Lλy)
∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) f (s, yσ (s)) ∆s

where
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(Lλy)
∆n−2

=
((
L1

λy
)∆n−2

,
(
L2

λy
)∆n−2

, ..., (Ln
λy)

∆n−2
)T

.

Solving the system (1.1) inB is equivalent to finding fixed points of the operatorL∆n−2

λ defined
by (2.6).

Lemma 2.3. The operatorLλ is completely continuous such thatLλ (P) ⊂ P.

Proof. From the continuity ofG2 (t, s) and f (t, ξ) it follows that the operatorLλ defined by
(2.4) is completely continuous inB. By Lemma 2.1, Lemma 2.2 and definition ofP , we get
LλP ⊂ P .

3. EXISTENCE OF POSITIVE SOLUTIONS

Now we are ready to establish a few sufficient conditions for the existence of at least one or
two positive solutions and the nonexistence of positive solutions of (1.1).
Now we define

l0i = lim
‖u‖→0

fi (u)

‖u‖
, l∞i = lim

‖u‖→∞

fi (u)

‖u‖
,

for 1 ≤ i ≤ n.

Theorem 3.1.For eachλ satisfying

(3.1)
1

kl∞i
∫ σ(b)

a
ψ (s) ∆s

< λ <
1

l0i
∫ σ(b)

a
ψ (s) ∆s

there exists at least one positive solution of (1.1).

Proof. Let λ be given as in (3.1). Now, letε > 0 be chosen such that

1

k (l∞i − ε)
∫ σ(b)

a
ψ (s) ∆s

≤ λ ≤ 1

(l0i + ε)
∫ σ(b)

a
ψ (s) ∆s

.

Now, turning tol0i , there exists anai > 0 such thatfi (y) ≤ (l0i + ε) ‖y‖ for 0 < ‖y‖ ≤ ai. So,
for y ∈ P with ‖y‖ = ai,we have from the fact that0 ≤ G2 (t, s) ≤ ψ (s) for t ∈ [a, σ (b)] , s ∈
[a, b] ,

(
Li

λy
)∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s

≤ λ

∫ σ(b)

a

ψ (s) fi (y
σ (s)) ∆s

≤ λ
(
l0i + ε

) ∫ σ(b)

a

ψ (s) ∆s ‖y‖

≤ ‖y‖ = ai.

Next, consideringl∞i , there existŝbi > 0 such thatfi (y) ≥ (l∞i − ε) ‖y‖ for ‖y‖ ≥ b̂i. Let

bi = max
{

2ai,
b̂i

k

}
. Theny ∈ P and‖y‖ = bi implies

‖y‖ ≥
∣∣∣y∆n−2

i (t)
∣∣∣
0
≥ min

t∈[ξ1,σ(b)]
y∆n−2

i (t) ≥ k ‖y‖ ≥ b̂i,

and so fort ∈ [ξ1, σ (b)] ,
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(
Li

λy
)∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s

≥ λk

∫ σ(b)

a

ψ (s) ∆s (l∞i − ε) ‖y‖

≥ ‖y‖ = bi.

If we takea = max {ai : 1 ≤ i ≤ n} , b = min {bi : 1 ≤ i ≤ n} , by Theorem 1.1,Lλ has a
fixed pointy such thatmin {a, b} ≤ ‖y‖ ≤ max {a, b} . The proof is complete.

Theorem 3.2.For eachλ satisfying

(3.2)
1

kl0i
∫ σ(b)

a
ψ (s) ∆s

< λ <
1

l∞i
∫ σ(b)

a
ψ (s) ∆s

,

there exists at least one positive solution of (1.1).

Proof. Let λ be given as in (3.2), and choose letε > 0 such that

1

k (l0i − ε)
∫ σ(b)

a
ψ (s) ∆s

≤ λ ≤ 1

(l∞i + ε)
∫ σ(b)

a
ψ (s) ∆s

.

Beginning withl0i , there exists anai > 0 such thatfi (y) ≥ (l0i − ε) ‖y‖ for 0 < ‖y‖ ≤ ai. So,
for y ∈ P with ‖y‖ = ai, andt ∈ [ξ1, σ (b)] we have

(
Li

λy
)∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s

≥ λk

∫ σ(b)

a

ψ (s) fi (y
σ (s)) ∆s

≥ λk
(
l0i − ε

) ∫ σ(b)

a

ψ (s) ∆s ‖y‖

≥ ‖y‖ = ai.

It remains to considerl∞i . There existŝbi > 0 such thatfi (y) ≤ (l∞i + ε) ‖y‖ for ‖y‖ ≥ b̂i.
There are two cases:
For case(a) , supposeN > 0 is such thatfi (y) ≤ N, for all 0 ≤ y < ∞. Let bi =

max
{

2ai, λN
∫ σ(b)

a
ψ (s) ∆s

}
. Theny ∈ P and‖y‖ = bi, we have

(
Li

λy
)∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s

≤ λN

∫ σ(b)

a

ψ (s) ∆s

≤ ‖y‖ = bi.

For case(b) , let gi (h) := max {fi (y) : 0 ≤ y ≤ h} . The functiongi is nondecreasing and

limh→∞ gi (h) = ∞. Choosebi = max
{

2ai, b̂i

}
so thatgi (bi) ≥ gi (h) for 0 ≤ h ≤ bi. For

y ∈ P and‖y‖ = bi, we have
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(
Li

λy
)∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s

≤ λgi (bi)

∫ σ(b)

a

ψ (s) ∆s

≤ λ (l∞i + ε) bi

∫ σ(b)

a

ψ (s) ∆s

≤ ‖y‖ = bi.

If we takea = min {ai : 1 ≤ i ≤ n} , b = max {bi : 1 ≤ i ≤ n} , by Theorem 1.1,Lλ has a
fixed pointy such thatmin {a, b} ≤ ‖y‖ ≤ max {a, b} . The proof is complete.

The rest of the paper we assumef (y) > 0 onR+.
Set

A =

∫ σ(b)

a

ψ (s) ∆s.

Theorem 3.3. (a) If either l0i = ∞ or l∞i = ∞ for 1 ≤ i ≤ n, then for all0 < λ ≤ λ0,
where

λ0 :=
1

A
min

1≤i≤n
sup
r>0

r

max0<‖u‖≤r fi (u)
,

(1.1) has at least one positive solution.
(b) If either l0i = 0 or l∞i = 0 for 1 ≤ i ≤ n, then for allλ ≥ λ0, where

λ0 :=
1

A
max
1≤i≤n

inf
r>0

r

min0<‖u‖≤r fi (u)
,

(1.1) has at least one positive solution.

Proof. We now prove the part(a) of Theorem 3.3. Letr > 0 given.
If ‖y‖ = r, it follows that

‖Lλy‖ = max
1≤i≤n

(
Li

λy
)∆n−2

(t) ≤ λ0

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s ≤ r.

So for all0 < λ ≤ λ0 we have

‖Lλy‖ ≤ ‖y‖ .
Fix λ ≤ λ0. ChooseR > 0 sufficiently large so that

(3.3) λRk

∫ σ(b)

a

ψ (s) ∆s ≥ 1.

Sincel0i = ∞, there isai > 0 (1 ≤ i ≤ n) such that

fi (y)

‖y‖
≥ R

for t ∈ [a, σ (b)] , 0 < ‖y‖ ≤ ai. Hence we have that

fi (y) ≥ R ‖y‖
for t ∈ [a, σ (b)] , 0 < ‖y‖ ≤ ai. Fory ∈ P , ‖y‖ = ai and t ∈ [ξ1, σ (b)] , we get

(
Li

λy
)∆n−2

(t) ≥ λRk

∫ σ(b)

a

ψ (s) ∆s ‖y‖ ≥ ‖y‖ = ai
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by (3.3). If we choosea = min {ai : 1 ≤ i ≤ n} , thenLλ has a fixed pointy such that
min {a, r} ≤ ‖y‖ ≤ max {a, r} .

Next, we use the assumption thatl∞i = ∞. Sincel∞i = ∞ there is abi > 0, (1 ≤ i ≤ n)
such that

fi (y)

‖y‖
≥ R

for ‖y‖ ≥ bi and R is chosen so that (3.3) holds. It follows that

fi (y) ≥ R ‖y‖
for ‖y‖ ≥ bi.
Fory ∈ P , ‖y‖ = bi and t ∈ [ξ1, σ (b)] , we have

(
Li

λy
)∆n−2

(t) = λ

∫ σ(b)

a

G2 (t, s) fi (y
σ (s)) ∆s

≥ λRk

∫ σ(b)

a

ψ (s) ∆s ‖y‖

≥ bi = ‖y‖

by (3.3). If we chooseb = min {bi : 1 ≤ i ≤ n} , then Lλ has a fixed pointy such that
min {b, r} ≤ ‖y‖ ≤ max {b, r} . This completes the proof of part(a) . Part (b) holds in an
analogous way.

Theorem 3.4. a) If l0i = l∞i = ∞ for 1 ≤ i ≤ n, then there is aλ0 > 0 such that for all
0 < λ ≤ λ0, (1.1) has two positive solutions.
b) If l0i = l∞i = 0 for 1 ≤ i ≤ n, then there is aλ0 > 0 such that for allλ ≥ λ0, (1.1) has two
positive solutions.

Now, we give a nonexistence result as follows.

Theorem 3.5. (a) If there is a constantc > 0 such thatfi (y) ≥ c ‖y‖ , then there is aλ0 > 0
such that (1.1) has no positive solutions forλ ≥ λ0.
(b) If there is a constantc > 0 such thatfi (y) ≤ c ‖y‖ , then there is aλ0 > 0 such that (1.1)
has no positive solutions for0 < λ ≤ λ0.

Proof. We now prove the part(a) of this theorem. Assume there is a constantc > 0 such
that fi (y) ≥ c ‖y‖ . Assumey (t) is a solution of the system (1.1). We will show that forλ
sufficiently large that this leads to a contradiction. We have fort ∈ [ξ1, σ (b)] ,

y∆n−2

i (t) = λ

∫ σ(b)

a

G2(t, s)fi (y
σ (s)) ∆s ≥ ckλ0

∫ σ(b)

a

ψ (s) ∆s ‖y‖ .

If we pick λ0 sufficiently large so thatckλ0

∫ σ(b)

a
ψ (s) ∆s > 1 for all λ ≥ λ0, then we have

y∆n−2
> ‖y‖ which is a contradiction. The proof of part(b) is similar.

Example 3.6.We illustrate Theorem 3.2 with specific time scaleT = Z ∪ [5, 7] .
Consider the system:
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(3.4)


y∆n

(t) + λf (yσ (t)) = 0, t ∈ [0, 4] ⊂ T,
y∆i

(0) = 0, 0 ≤ i ≤ n− 2,
1/2y (1) + 1/3y (2) + 1/10y (3) = y (5)

wheref =
[
1 + (y1 + y2)

1/5 , e−(y1+y2)
]T

, α1 = 1/2, α2 = 1/3, α3 = 1/10, a = 0, b =

4, ξ1 = 1, ξ2 = 2, ξ3 = 3.

Sincef1 (y) = 1 + (y1 + y2)
1/5 , f2 (y) = e−(y1+y2), we have

l0i = ∞, l∞i = 0,

for i = 1, 2. We getψ (s) = 15
53

(4− s) (s+ 1) ,
∫ 5

0
ψ (s) ∆s = 300

53
. Therefore the assumptions

of Theorem 3.2 are satisfied. By Theorem 3.2, for allλ ∈ (0,∞) , (3.4) has at least one positive
solution.

Example 3.7.We illustrate Theorem 3.4 with specific time scaleT = R.
Consider the system:

(3.5)

 y′′′ (t) + λf (y (t)) = 0, t ∈ [0, 5],
y (0) = y′ (0) = 0,

1/2y (1) + 1/4y (2) = y (5)

wheref =
[
ey1+y2+y3+1, (y1 + y2 + y3)

2 + 1, (y1y2y3)
2 + 5

]T
.

Sincef1 (y) = ey1+y2+y3+1, f2 (y) = (y1 + y2 + y3)
2 + 1, f3 (y) = (y1y2y3)

2 + 5, we get
l∞i = ∞, for i = 1, 2.

Since

A =

∫ 5

0

ψ (s) ds =
125

24
,

sup
r>0

r

max0<‖(y1,y2,y3)‖≤r ey1+y2+y3+1
= sup

r>0

r

e3r+1
=

1

3e2
,

sup
r>0

r

max0<‖(y1,y2,y3)‖≤r (y1 + y2 + y3)
2 + 1

= sup
r>0

r

9r2 + 1
=

1

6
,

sup
r>0

r

max0<‖(y1,y2,y3)‖≤r (y1y2y3)
2 + 5

= sup
r>0

r

r6 + 5
=

1

6
,

we have

λ0 =
1

A
min
1≤i≤3

sup
r>0

r

max0<‖y‖≤r fi (y)
=

8

125
e−2.

So, by Theorem 3.4, for allλ ∈
(
0, 8

125
e−2

]
, (3.5) has one positive solution.
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