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ABSTRACT. In this paper, we discuss the existence of compositional square roots of circle maps.
If f andg are two maps such thatg ◦ g = f , we say thatg is a compositional square root off .
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1. SUMMARY OF RESULTS

For interval maps, we have the following theorems:

(1) No interval map with a periodic point with periodn ≥ 2 admits a square root.
(2) There are uncountably many interval maps (up to conjugacy) with square root and un-

countably many interval maps (up to conjugacy) without square root whenever the only
periodic points are fixed points.

For circle maps, we have the following theorems:

(1) No circle map with a periodic point with periodn ≥ 2 admits a square root.
(2) There are uncountably many circle maps (up to conjugacy) with square root and un-

countably many circle maps (up to conjugacy) without square root whenever the only
periodic points are fixed points.

(3) There are uncountably many circle maps (up to conjugacy) with square root and un-
countably many circle maps (up to conjugacy) without square root whenever there are
no periodic points.

2. I NTRODUCTION

A compositional square root (simply square root) of a mapf : X → X is a mapg : X → X
such thatg ◦ g = f . An interval map is a continuous self map of any closed interval. Ifn is a
positive integer,fn always denotes the composition off with itself n-times. A compositional
nth root of a mapf : X → X is a mapg : X → X such thatgn = f . An elementx ∈ X is
called a fixed point off if f(x) = x, and a periodic point if there is a positive integern such
thatfn(x) = x. The set of all fixed points of a functionf is denoted byFix(f), the set of all
periodic points of period 2 (i.e.,{x ∈ X : f 2(x) = x, f(x) 6= x}) of a functionf is denoted
by P2(f) and the set of all periodic points of a functionf is denoted byP (f). A subsetE of
the domain is said to bef -invariant iff(E) ⊂ E. In the recent paper [2], the author proved that
(i) every increasing interval map admits a square root, (ii) no decreasing interval map admits
a square root, (iii) every interval mapf can be extended to another mapg on a bigger interval
such thatg ◦ g = f on the smaller interval, (iv) every piecewise linear map from[0, 1] to [0, 1]
that interchanges0 and1 and the interior interval is invariant, fails to admit a square root. In
this paper, we consider continuous maps on the circle and obtained some more results in the
case of interval maps. We also discuss many criteria about the existence of a square root.

3. SQUARE ROOTS OF CIRCLE MAPS

There are several ways of defining the circle. The usual Euclidean circle is given by{(x, y) ∈
R : x2 + y2 = r2}, wherer is the radius. Another common definition of the circle about0 in
C with radiusr is {z ∈ C : z = re2πiθ, θ ∈ R}. Another one isS1 = R/Z , the real numbers
modulo the integers. However, the first definition is very useful for visualization and the second
one simplifies some computations and the third one is less intuitive but computationally simpler.
This space can be imagine as the unit interval[0, 1] identified at its endpoints. If we have two
pointsa andb in the circle, we denote[a, b] for the interval (i.e., the arc) wrapping forward from
a to b. We will call a mapf : S1 → S1 orientation-preserving if, for any two pointsa, b in
the circle, every point in[a, b] is mapped into[f(a), f(b)], and we callf orientation-reversing
if [a, b] is mapped into[f(b), f(a)]. Defineπ : R → S1 by π(x) = x(modZ). The mapπ
is continuous, orientation-preserving, surjective, injective on any half-open interval of length
1, and satisfiesπ(x + n) = π(x) for all real numberx and integern. Let f : S1 → S1 be
continuous. We denoteF for a countable family of closed intervals inR such that for any
interval I in the family, f ◦ π(I) is a closed, proper subinterval ofS1 and the union of all
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elements from the family isR. It is possible to divideR into such a familyF . A continuous
mapF : R → R is called a lift off to R if π ◦ F = f ◦ π. That is., liftF is a map which is
semi-conjugate tof . If F : R → R is a lift of f to R then by adding any constant integerm to
F , the new functionF̃ satisfiesπ ◦ F̃ = f ◦ π., and thusF̃ is a lift. Also, sinceπ(x) = π(y) if
and only ifx andy differ by an integer, any two lifts must differ from each other by a constant
integer. Therefore, all lifts off are equal toF (x) + m for some integerm. Hence, orientation-
preserving maps on the circle corresponds to increasing for maps ofR, and orientation-reversing
corresponds to decreasing.

Proposition 3.1. F : R → R is a lift of a continuous mapf : S1 → S1 if and only if F is
continuous and there existsd ∈ Z such that, for allx ∈ R, F (x + 1) = F (x) + d. Inductively,
F (x + m) = F (x) + dm, for any natural number (or integer, iff is a homeomorphism)m.

Proof. Any lift F must satisfyF (x+1) = F (x)+d for anyx ∈ R and for some integerd since
π◦F = f◦π. Furthermore,d must be the same integer for all points sinceF (x+1) is continuous.
For the other direction, we can definef : S1 → S1 by consideringπ ◦ F on [0, 1) = π([0, 1)).
SinceF (0) andF (1) differ by an integer,f will be continuous at0 = 1 ∈ S1.

The following theorem provides a relationship between the existence of square roots of circle
maps and the interval maps.

Theorem 3.2. Let f : S1 → S1 be continuous. A liftF : R → R of f has a square root if and
only if f has a square root.

Proof. The mapπ : R → S1 restricted to any half open interval of length 1 inR, is a homeo-
morphism from that interval toS1. Thus, ifJ is a closed interval which is a proper subset ofS1,
thenπ−1(J) is a family of disjoint closed intervals inR of length less than1. Hence, for each
j ∈ J , if we choose a pointp ∈ π−1({j}), p belongs to exactly one intervalL in π−1(J) which
is homeomorphic toJ through the restriction ofπ to L. Let f : S1 → S1 be continuous and
I0 ∈ F . Suppose0 ∈ I0 ∈ F and choosep0 ∈ π−1(f(0)). Next setF (0) = p0 and letL0 ∈ F
be such thatp0 ∈ L0. Thenπ|L0, the restriction ofπ to L0, is a homeomorphism fromL0 to
f(π(I0)). On I0, we setF = π−1|L0 ◦ f ◦ π. By continuing this process, inductively we can
defineF on R. LetU = {R \ I : I ∈ F}. ThenC = {π(U) : U ∈ U} is an open cover forS1.
SinceS1 is compact,C has a finite sub cover. Hence finitely many interval inF will determine
the existence of square root of a continuous mapf : S1 → S1 and hence by Proposition 3.1,
the theorem follows.

Proposition 3.3. Let f : X → X be continuous. Suppose there is anf -invariant setE ⊂ X
such thatf(a) = b andf(b) = a for somea, b ∈ E with a 6= b. If f has no periodic of period2
in E \ {a, b} 6= ∅ then the equationφ2 = f has no solution.

Proof. Let f : X → X be continuous. Suppose there is anf -invariant setE ⊂ X such that
f(a) = b andf(b) = a for somea, b ∈ E with a 6= b, andf has no periodic of period2 in the
non-empty setE \ {a, b}. Contrary to assume thatφ : X → X is a solution ofφ2 = f . Then
φ2(E) ⊂ E. Putc := φ(a). Thenc ∈ E andf 2(c) = c. Which implies eitherc = a or c = b or
f(c) = c, and hence it follows thata = b. It is a contradiction. Hence the equationφ2 = f has
no solution.

The following total order onN is called the Sharkovskii’s ordering:
3 � 5 � 7 � 9 � ... � 2× 3 � 2× 5 � 2× 7 � ...
� 2n × 3 � 2n × 5 � 2n × 7 � ...
...2n � .... � 22 � 2 � 1.
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Theorem 3.4. [3] (Sharkovskii’s Theorem) Letm � n in the Sharkovskii’s ordering. For every
continuous self map ofR, if there is anm-cycle, then there is ann-cycle.

Corollary 3.5. No interval map with a periodic point of periodn ≥ 2 admits a square root.

Proof. Let f : I → I be an interval map with a periodic point of periodn ≥ 2. Then by
Theorem 3.4,f has a periodic pointx with period2. ConsiderE = (P (f)\P2(f))∪{x, f(x)}.
ThenE is f -invariant. Hence by Proposition 3.3, the proof follows.

Remark 3.1. Any orientation preserving homeomorphism onS1 has a square root, and for
any orientation reversing homeomorphism onS1 has no square root. This is because, a map
f : S1 → S1 is an orientation preserving (reversing) homeomorphism if and only if the lift
F : R → R is an increasing (decreasing) bijection. Hence by Theorem 3.2, the remark follows.

The familyPER(S1) := {Per(f) : f : S1 → S1 is continuous} has been completely
described by Block and Coppel as follows:

Theorem 3.6. [1] The following are equivalent for a subsetS of N:
(1) 1 ∈ S ∈ PER(S1)
(2) If n ∈ S for somen > 1, (at least) one of the following should hold:

(i) Every integer greater thann belongs toS.
(ii) Every integer that comes later thann in the Sharkovskii’s ordering, belongs toS.

Theorem 3.7.Letf : S1 → S1 be a continuous map such thatFix(f) 6= ∅. If P (f) 6= Fix(f)
thenf has no square root.

Proof. Let f : S1 → S1 be continuous withFix(f) 6= ∅. Suppose thatP (f) 6= Fix(f). By
Theorem 3.6, if1 ∈ Per(f) = S andn ∈ S with n > 1 then either every integer that comes
later thann in the Sharkovskii’s ordering, belong toS or every integer greater thann belongs
to S. If n ∈ S and every integer that comes later thann in the Sharkovskii’s ordering, belong
to S, thenf has a periodic pointx of period2. In this case, consider̃P (f) = (P (f) \ P2(f)) ∪
{x, f(x)}. By Proposition 3.3, the mapf has no square root sincẽP (f) is anf -invariant set
with no periodic point of period2 other thanx. If every integer greater thann belongs toS then
considerg = f 2m for some natural numberm with 2m ≥ n. Letx be a periodic point off with
period2m. By a similar argument involved above,g has no square root. Contrary to assume
thatf has a square root. Which impliesg has a square root. Which is a contradiction. Hence
the proof.

Theorem 3.8.LetF be the set of all interval mapsf : I → I such thatP (f) = Fix(f). There
are uncountably many elements (up to conjugacy) inF with square root and uncountably many
elements (up to conjugacy) inF without square root.

Proof. Without loss of generality assume thatI = R ∪ {−∞,∞}. Let {In := [an, bn] :
an, bn ∈ R∪{−∞,∞}} be a countable family of closed intervals inR∪{−∞,∞}with disjoint
interiors. For eachn ∈ N \ {1}, consider an increasing continuous bijectionfn : In → In such
that f(an) = an, f(bn) = bn andfn hasn-number of fixed points. For eachA ⊂ N \ {1},
let fA : I → I be an increasing bijection such that the restriction offA to In is fn for each
n ∈ A andFix(f) = ∪n∈AFix(fn). ThenfA has a square root andP (fA) = Fix(fA) for
eachA ⊂ N \ {1}. Also fA is not conjugate tofB for distinct subsetsA, B of N \ {1}. Hence
there are uncountably many elements (up to conjugacy) inF with a square root. Next, let
{Jn := [an, bn] : an, bn ∈ [0,∞]} be a countable family of closed intervals in[0,∞] with
disjoint interiors. For eachA ⊂ N \ {1}, let fA be an increasing bijection on[0,∞] such that
the restriction offA to Jn is fn for eachn ∈ A andFix(f) = ∪n∈AFix(fn). Consider a
decreasing bijectiongA : I → I such thatg2

A = fA on [0,∞]. ThengA has a no square root and
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P (gA) = Fix(fA) for eachA ⊂ N \ {1}. Also gA is not conjugate togB for distinct subsets
A, B of N \ {1}. Hence there are uncountably many elements (up to conjugacy) inF without
square root.

Corollary 3.9. Let G be the set of all continuous mapsf : S1 → S1 such thatP (f) =
Fix(f) 6= ∅. There are uncountably many elements (up to conjugacy) inG with square root
and uncountably many elements (up to conjugacy) inG without square root.

Proof. Let a, b ∈ S1 andI = [a, b] be a closed arc inS1. Suppose thatf : I → I is a continuous
such thatf(a) = a andf(b) = b. If g : S1 → S1 is a continuous map such thatg := f onI and
g(x) = x onS1 \ I thenP (g) = P (f). Hence by Theorem 3.8, the results follows.

Theorem 3.10.LetH be the set of all continuous mapsf : S1 → S1 such thatFix(f) = ∅.
There are uncountably many elements (up to conjugacy) inH with square root and uncountably
many elements (up to conjugacy) inH without square root.

Proof. Every orientation preserving irrational rotation has a square root and no orientation re-
versing irrational rotation has a square root. Hence the proof follows by Remark 3.1.

4. CONCLUSION

Studying compositional square roots of a mapf : X → X and finding a criteria for the
existence are very much interested in mathematics. This paper gives a criteria for continuous
circle maps and it is listed in the Section 1. The same question can be asked in the case of
compositionalnth roots and we shall address this question in sequel to this paper.
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