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2 E. FERREYRA, M. URCIUOLO

1. INTRODUCTION

Forl < j <n,letQ); be open sets of the complex plane anddget €2; — C be holomorphic
functions on(2; such thato;.’ does not vanish identically dn;. We takep : (2 x ... xQ, — C
given by

0 (21,0 2n) = @1 (21) + oo + 0, (20) -
Let us consider the canonical identificati®A" ~ C" given by (1, y1, ..., Tn, Yn) —
(x1 + iy, ...,z + 1y,) . Let D; be bounded open sets such t@tc Q; and such thap’ # 0
ondD;. LetD = D; x ... x D,, and letu be the Borel measure d@¥"** given by

(1.2) u<E>=:]fxE<z,¢<z>>da<z>,

wherez = (z1 + iy, ..., z, + iy,) anddo (z) = dx,dy;...dz,dy, denotes the Lebesgue mea-
sure onR?”. We consider the convolution operator givenBy = u * f, for f € S (R*"*2) |

and the type set
11
_@:{Qq)emuxmuwmm<W}

where theL? (R?"*2) spaces are taken with the Lebesgue measure. Our aim is to determine
this set. In the case thai, does not reduce to the diagor}[alz %, we say that the measure
w1 is LP improving. A well known result asserts that a necessary condition for a meagare
be LP improving is that its support is not contained in any affine submanifolR*6f2 (see
Proposition 1.1 in([7]), so we will only consider the case wherdoes not vanish identically
on(; foralll <j <n.

The case of real hypersurfacesRfi has been widely studied (see for example [2], [4], [6],
[7], [8]). When the codimension of the surface is greater than one, this matter becomes more
complicated.

Ifforall 1 < j < n, ¢ (2) does not vanish om;, with standard techniques we obtain that

E, is the closed triangle with vertice®,0) (1,1) and (£}, -L5) . On the other case, if for
somel < j < n, {z € D;: ¢/ (z) =0} is afinite setz; 1, ..., z;;,, we will prove thatE,, is a
closed polygonal region whose vertices depend on the order okeadh< j <n,1 <1 <[,

as zero of the function

(1.2) Wiz, (2) = 95 (2) = @5 (250) — (2 = 2j4) ) (25.) -

In a first step, we study the cagg (z) = z™ig;(2), m; > 2, g; being holomorphic in a
neighborhood of the origin angl (0) # 0. We obtain that there exists a neighborhdof

the origin inC"™ such that the associated type set is a closed polygonal region with vertices
depending onng, ..., m,. Our proof will be based on a suitable adaptation of the argument
due to M. Christ, developed inl[1], where the author studies the type set associated to the two
dimensional measure supported on the parabola. We will derive the general case from this one,
with classical arguments.

Throughout this paper will denote a positive constant not necessarily the same at each
occurrence.

2. THE CASE ¢, (2) = 2™ig;(2),1 < j <n.

Forr > 0,wesetB, = {z € C: |z| <r}. Lety(z1,...,20) = D ¢, (25), wherep, (z) =
j=1

2Mig;(2),2 <my < ... < my, andg; are holomorphic functions i,, for somer; > 0, with
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g9; (0) # 0. We also assume that;, ¢, ..., <p§.mj) are different from zero o3, — {0} . Let 1
be defined byl) witlh = T[] B,,. To studyE,, without loss of generality we suppose

1<j<n
r; =1forall1 < j < n,sowe takeD = BY. The Riesz Thorin interpolation theorem implies

that £, is a convex subset g, 1] x [0,1]. It is well known that if(ll?, %) € E, thenp < q.

(Seel[10] p.33). Also, by dualityy, is symmetric with respect to the non principal diagonal.

Forl < J <n,wesetS; = > m;'. Alsowe setS,; = 0.
j=J

11 1 J+1+SJ+11 . J+SJ+1
Lemma 2.1. If (p, q) € E,and0 < J < nthenq > T, T e

Proof. We setz = (zy, ..., z,) . For0 < § < 1, we setf = . whereQ; c C"*! is given by
Qs = {(z,w) : |2j] < 6,1 <5 < J; |5 <YM, J+1<j<n; |w| <b6}

withb = > (sup || + 2sup \gj]> . We defineds ¢ C"™ by 4; =
B Bl

7j=1
{@w): 5] <L 1< < J5 |5 8™, J+1<G <n; |w—p (a1, ) [< 6.
We first show that there exists a constant 0 such that for(z, w) € As
(2.1) (1% [) (z,w)] > c82/F25041,
To see|(2.1) we take a fifz, w) € As. Fors = (1,...,5n) € 2+ (Il Bs x II"_; ., Bji/m; )
we have that
(S, (s) — (z,w) € Qs,
indeed, we havé; — z;| < 6, for1 < j < J,and|s; — z;| < 6V/™ forJ+1 < j < n. We
also have
[ (¢) —w| <[ ¢ (¢) —¢(z) [ +p(z) —w].
The mean value theorem gives us, fox j < J,
05 (21) = 5 (s5) |< dsup |}
andfor/+1<j<n
| @i (25) = @5 () [<] e () | + [ (s5) |< 25Sgplgj|-
So .
09— wl <03 (suplef] + 2500l ).
o1\ B By

Then [2.1) follows. Now,

1
a 1
H,u*f||q2 (/ |,u*f|q> > (52250 | Agla =
As

_ 652J+2SJ+1+(2+25J+1)%'
But (1%, é) € E, implies|u x f||, < c||f||, = c6®/¥22+1)5 S0, for alls > 0 small enough,
5J+SJ+1+(1+SJ+1)% < 66(J+1+SJ+1)%
then
S J+1+5m1  J+Sm

1
q 1+S1 p 14+ 8m

AJMAA Vol. 8, No. 1, Art. 6, pp. 1-12, 2011 AJMAA


http://ajmaa.org

4 E. FERREYRA, M. URCIUOLO

and the lemma followsa

We denote by ;, 0 < J < n, the lines given by
1 J+1+5m1 J+S5m
g 14851 p 1485
Also we denote byd;, 0 < J < n,and byB;, 1 < J < n the intersection of_; with
the non principal diagona{ (%, 1— %) 10< 2 < 1} and the intersection of ;_; with L
respectively. A computation shows that, foK J < n,

J+ 142554 1 )
2.2 Ay = ,
(2:2) / <J+2+2SJ+1 J+2+255,

andforl < J <n
1 —1)m;! 1—m;?
23 by = (PR ),

Let ¢ be aCg® (R) function supported in the intervad, 4] such that) = 1 on[1,2], and0 <

¢ <1.Weobservethat < Y ¢ (2Fz) < 3forz € (0,2). For eachky, ..., k, € NU{0}
keNU{0}

we set

Sop< >

.........

k1,....kn€N

S(R2n+2), by

(24) Tkl ----- k;nf = /"ijl ..... kn * f

Proposition 2.2. If £ = (sq,t1, ..., Sni1, tny1) € R then
i)

ﬁ ok;j(m;—2)
j=1

c no
(14 [(n41, tns1)])

J
A H 2k:j (’I?’Lj —2)

Z Hiy .. ke, )| <c =

(1 +|(spt1, tn+1)|)J+QS']+1 7

J—1 n
H 2kj (mj—2) H Qk:j(mJ—Q)
7j=1 j=J+1

-1 .
(1 + |(Sn+1, tn+1)|)J_1+2m] +mJSJ+1

Proof. We set
Ij,kj (Sa t7 Sn4-1 tn-l—l) = /6i<sw+ty+<(sn+17tn+1)7(pj(w’y)>)1/) (ij |(l’, y)|) dl‘dya

thus

j=1
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and
AN
: : Mkla---7k7z <€)
kji1y-,kn€N
J
H S]7t]78n+17 n+1 H § Sjatj73n+17tn+1)-
j=1 j=J+1k;eN

Sincey, is a holomorphic function a computation shows that(fary) such thak® |(z,y)| €
supp 1

‘Hessx,y (S*T + ty + <(5n+1:tn+1> ) 90]' (l’, y)>)} = |(10;, (l’ + Zy)|2 ’(Sn+17tn+1)‘2

Z 0272]%‘ (m;=2) |(5n+17 tn+1)’2 3

then using the method of the stationary phase (see proposition 6, p. 344 in [9]) we obtain

c2ki(m;=2)
25 I- s t, Sni1,tn

9

Snt1s tnt1)]
thusi) follows. Now a change of variables shows that

—9k. 7k; — k. — k. —kim: — ko
‘[j7kj (57t7 5n+17tn+1) =2 JIj,Jo (2 78,279,275 M 8,44, 2 ijtn—l-l) )
where

1% (s,,5,7) = / ettt ()40, (70275 (1, y)|) dady.

We note that forx, y) such that(z, y)| € supp ¢
|Hesswy (sx +ty + <( A) (z +1y)™ gj (2_ija Q_kjy)>) ‘

-|& GNP 2 el G

with ¢ independent of;. Indeed, since; (0) # 0, there exists:, such that fork > k£,
‘ 2

ZMigy (278

= |mym;_12"™%g; (27M2) + 2mj2_kamj_1g; (27M2) 427 2" gl (27%2)| > ¢,
and sincep’ does not vanish of¥; — {0}, if k < ko,
2

@megj (Z_kj z)

= [P (27857) e

= ’@2/@-%% (Q_ka)

Then
(2.6)

o150 < iy

Now, as in the proof of Lemma 1 in][5],

§ Ij,kj (87 t? Snd-1, tTH-l)
k}jEN

—2k; 7R; (o—k; —kj; o—k;m; —kjm,
= § 27 (27 s, 27 g, 2 s, 27N L)
k}jEN
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- > + >
2735 <1+ (sn41.tn1)) 2"3%5 > 14 (s 41,tn 1)

To estimate the first sum we use (2.6) to obtain that the sum is bounded by

1+ |( : tns1)] 2 H s C ™
S+l tntl 2735 <1+ (sn41,tn 1)) (14 [(Snt1s tngr)]) ™

g/wl:c

and in the second sum, we use that

|15 (2745, 270,27 Rms, g, 27 )

and we obtain

< -
27349 214 |(spt 1,041 (1 + |(8n+17 tn+1) )mj
SO
C
(27) Z Ij,kj (87 t7 Sn+1, tn—‘rl) S IPER
kyeN (L + [(Snt1, tnt)])™

Thusid) follows from ) and7)_ To provéi) we use-i) and the estimate
Ly (5,1, Snsts tugn)| < 2729,

to obtain
90;k;j(m;—2)

9.
(14 [(snt1, tata) )™

, we use this last estimate fgr> J with 6; = 7L, ) for
J

| Ly (5,1, $ns1 )| < € 9—2(1=0,)k;

To estimat (Z ukh,,,,kn> (&)

kjeN
j<Jand ) forj = J.

ForB = (}D, %) € [0,1] x [0,1] andT : LP — L7 we write, to simplify the notation|T'|| ;
instead of|T|, .. We also set, fot < .J <n,
2m;t +J S 1
2.8) o - ( m; + j—mj L - )
1+J+2mJ +mJSJ+1 1—|—J+2mJ +mJSJ+1
Lemma 2.3. Let Ty, .., be defined by (2/4) and let; and C; be defined by (2]2) and (2.8)
respectively. Then

i)

n
(m5-2)
HTkl,...,anAn S CHQQk] n+2 )

j=1
i)for0<J<n-1

e oy
E Tkl,...,kn < CH QTS

=1
kjt1,kn€N A, J
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iii)for1 < J<mn

2
J+1 2m m S
< ([ [ i) 7T
Cy

j=J+1

kyjeN

Proof. To provei) we use the complex interpolation theorem. Rear(z) > 0 and(s,t) € R?
we consider the fractional integration kernel

z

273

L (s,t) = ) (s, 0)"

8]

2

and its analytic extension to € C. In particular we havefz = cly_,, alsoly = ¢d whered
denotes the Dirac distribution at the origin. We also definas the distribution of®?"*+2 given
by the tensor product, = § ® ... ® 6 ® I,. For z such that-n < Re (z) < 2 we consider the
analytic family of operators

77777

Taking account of Propositign 2i2 we obtain that

n
HU—TL-F’L"YHQ,Q S Cl_[ij(mj—Q)7

j=1

R
2 F(Z—;w)’ <e

also it is easy to check that

1U2+inlly oo < ce™

so by interpolation,

2.94i). Also, z’z‘z’) follows in analogous way, applying the complex interpolation theorem to
the operatord/, f = ¢* > g,k ¥ J.* f, on the strip— (J —1+2m;' + mJSJ+1) <

Re (z) < 2 and then using Propositifn 2.2). §
Following the approach in 1], we recall that fby € N

15 (s0:50) = [ Gl ) ) .
If (z +iy)™ g7 (2% 2, 27My) = u(z,y) +iv(z,y),

(w4 (@) (ki)™ g (2702, 27))
=S+ gu:p (377 y) —|—%va (xv y)
and

) _ s e o
gy (et +(ED), (@ +iy)™ g (2772, 27y)))

=t + Suy, (z,y) + tv, (z,y)
and so if the gradient of the phase function vanishes at semg with |(z,y)| € supp ¢ then
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s+it=— (§+zﬂ (u +iv) (z + iy).
Now,
(u+iv) (2) = myz™ g, (2_’”2) 4 M7k g, (Q_sz) — ks(ms=1) . (2_1”,2) .

so from the first equality we obtain that there exigtssuch that fork; > ko, |(u + z’v)’|
is bounded from above and from below uniformly bpn also, sincey’, does not vanish on
B; — {0}, from the second equality we obtain the same assertioh fort; < kq and so there

exist constants;, c; > 0 such that(s, t,§,f) belongs to the cone

Iy ={(s,t,5,8) : el [(s, ) < |E )] < ¢ |(s,)]}
We define
Iy = {(s,t,g,a s (s, )] < ‘(E,%v)‘ <ol(s b))}
with ¢; = min; <<, {¢/ } ande, = maxi<y<, {¢f, 261} .
Let M be a function belonging t@'> (R*—{0}) homogeneous of degree zero with re-
spect to the euclidean dilations @&t such thatsuppM c Ty and forl < J < n and
k € Zlet My, (z,w) = M (27%2,27"™w) . Moreover, we choos@/ such that{}M:}, ,
is aC* partition of unity in{(z,w) € R*: 2 # 0 andw # 0}. Let ¢, be a constant such that
]\A/.//M = > M;j, be identically one osupp M. Also, for (51, ...,§n+1) € C"!, we set
li—k|<co

Mg (151 8n41) = Mug (€5 6ni1) ANAM e (€15 .60 41) = Mun (€5,6041) - LEL Q0 bE
the operator with multiplieiM ;.

Let € C (R*) be identically one in a neighborhood of the origin, and(fy; ..., ¢,,,,) €
Ctlet Hyy (&4, &ngn) = H (27F¢,,27Fms¢, 1) and let Py, be the Fourier multiplier
operator with symbaoH ;.

The following lemma is the key argument contained.in [1], adapted t@ouwimensional
setting. The proof is in([2], p. 37, for the casedimensional, but it can be straightforward

adapted to this case.

Lemma 2.4. Let {0} },.y be a sequence of positive measureRd#2, and letT, f = oy * f,
for f € S (R?*"™2). Supposd < J <n,1 < p<2andp < g < occ. If there existsd > 0 such
< A and

> TiPyy > Tu (I — Pyy) (I — @J,k)
e 1<k<N

1<k<N
forall N € N, then there exists > 0, c independent oft, N and{c},y., such that

> 7

1<k<N

<A

p.q

that sup || 7%, < A,
keN ’

< cA.

p.q

Our next aim is to study the operatorsy > Ty, . k. (I — Pjx,) (I — @J,iw> and
1<k ;<N
> Tky...k, Pk, Asin [2] we obtain the following result
1<k ;<N

Lemma2.5.For1 < p,q < oo andN € N there existg > 0 independent oV such that

Z Ty e (L — Pyy,) (f — @J,h)

1<k, <N

p,q p.q

AJMAA Vol. 8, No. 1, Art. 6, pp. 1-12, 2011 AJMAA


http://ajmaa.org

SHARP LP IMPROVING 9

and
b)

1<k ;<N

Lemma 2.6. If N € N then
a) the kernel of the convolution operator

Z Ty ok (L — Py,) (I — @J,kJ)

1<k,;<N

1<k;<N

p.q p.q

belongs to weakE+™s " and its norm is less tharR ™ 2ixs 2ki with ¢ independent oV,
b) the kernel of the convolution operator

1<k ;<N

belongs to weakE! ™" and its norm is less tharR~ =% 2ki with ¢ independent olV.

-----

.....

Ky ookon (21, o Znt1)

(2.9) — ok, (—QkJZJ’ okym (-Zn+1 + Z ©; (—z])>> H¢ (2’%‘ |z]])
) i

k - A . . .
whereG; = (IJ;(’) (1-H) (1 - Mm)) . Now, as in the proof 0f2.3) in [3] we obtain that
the functionsG; belong toS (R*) and that they are uniformly (with respect tg) rapidly
decreasing at infinity. So, as in the proof of Lemma 2.6 in [2] we et Now b) follows
similarly after noting that the kernel of the operaffy, . 1, Psx, is of the form [2.9) with

A
Gy = (1’;;5}1) 1

Let J, be defined by, = 0if my > 2andJy = max{j : 1 < j <n, m; =2} if my = 2.
These previous lemmas allows us to prove the following result

,,,,,

Proposition 2.7. If J > J, then there exists > 0, independent ok, ..., k;_, such that for
N eN

Lo mj(mj_l_m;l)
BN el o)

By

T (1S prtImy )

(—24—3 g, i (ma ) )
s

1<ky,...kn<N
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Proof. We denote by, = (1 %) .SinceB; =tC; + (1 —t) E; with

Y 14+m7

J 28 2 e . .
t = mf;,f%jfkétj , Lemm i1), Lemm) and the Marcinkiewicz interpolation
. J J .

theorem imply that

Z Ty b (I = Pyy) (I - @J,k(;)

1<k ;<N

By
2¢

J—1 n J+i+em T 4m sy
<c| 25> [T 2402 0~ Ty 2h5)(1-0)
j=1 j=J+1

Now if ¢ is defined as above,

2(m; —2)
J+1+2m; ' +mySyn
2(my+m%—mym; —2)
my(J+my+mySy)
soa) follows. Analogouslyp) follows. g

—2(1—1)

At this point we have already proved all the results needed to follow straightforward the proof
of Theorem 3.12 in[2] to obtain the next
Theorem 2.8. E,, is the closed convex polygonal region with vertiCed ) , B,,, ..., By +1, A,
and the symmetric points with respect to the non principal diagé}éaﬁ},).

Remark 2.1. We observe that/, is the closed convex polygonal region with vertigesl) ,
B, ..., By and the symmetric points with respect to the non principal diag(o%‘;a&).

3. THE GENERAL CASE

Forl < j <n,letQ); be open sets of the complex plane anddget €2; — C be holomorphic
functions on2; such thaty’/ does not vanish identically dn;. We takey : ©; x ... x 2, — C
given by

© (21, ey 2n) = 01 (21) + oo + @, (20) -
Let D; be bounded open sets such tiat C Q; and such thap” # 0 ondD;. Let D =
Dy x ... x D, and let;: be the Borel measure d&**** given by (1.1). Ife/ does not vanish
on Dj, letl; = 0. On the other case, l§t;,;}, ., be the zeros opy in D; and letn;; be the
order ofz;; as a zero of

wji (2) = @ (2) — @, (253) — (2 = 22) @5 (254) -
In any case, letr;, = 2. Let
M ={(m1,smng,): 0<14; <1;, 1<j <n}.
Fori = (iy,...,i,) we denotem; = (my;,,...,my,,). If m; € M we take the multiindex
o(my) = (6 (Mmig),...,0 (Myy,,)) Whereo is a permutation of the sétn, ;,, ..., m,;, } such

thato (mq,,) < ... < o (m,,,). We denote withZ,,,, the closed convex poligonal region with
vertices(1, 1),

B, — 1+ Sh, + (T —1) (0 (my,,) " 1— (o (myy,,)) "
! L4+ J (o (my) " + S5, T1+J(0(my,) " +80,, )7

AJMAA Vol. 8, No. 1, Art. 6, pp. 1-12, 2011 AJMAA
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1 < J < nand its symetrics with respect to the non principal diagonal, whgre > (o (mj,l-j))f1 .
j=J

Theorem 3.1. E, is the closed convex polygonal region given by
E.= () Em,:

m;eM
Proof. For each:; € D; we have a balB, ., (z;) C ©; such that for: € B, ., (2;) ,
Wiz (2) = 95 (2) = 9 () = (2 = ) 9 (z3) = (2 = %)™ g ()

with g;.. (z;) # 0, m;., > 2 andw, ., (wjjzj)', ...,(wjjzj)(m“f) different from zero on
B, (2;) — {#;}. We note that ifz; = z;; for somel < i < [; thenm,;,, = m;; > 2.
On the other caser; ., = 2. SinceD; is a compact set, there exists a finite Bet [] D;
1<j<n
such thatD can be covered with a finite collection of sets of the form
Dzl,...,zn = H Br(zj) (Zj)a

1<j<n
AAAAA z

(21, .., 2,) € F. We denote byl'p_

(L.1) with D replaced byD., . ., .
Now,

. the operator of convolution with,  _defined by

.....

p,q
(21,020 )EF 7

We note thatm, .,,...,m,.,) € M, thus(mi,,...,m,.,) = m; for somei = (i, ..., 7,),
0 <i; <1, 1 <j < n. After alinear change of variables (if necessary) we can apply the
results of the previous paragraph to obtain that the type set associﬁtgzg to IS E,. SO

() B € Eu.

m;eEM
Now we takem; € M. If m;; > 2foreveryl <i; <[;, 1 < j < n, we observe that since
¢/ does not vanish 0iD;, we can takeB, . (zj4,) € D; so
Di = BT(ZLH) (217i1) X ... X BT(Zn,in) (Zn,zn) C D,

and then
|7,

<7, . -
=Ty,
Now the type set associated is £y, SOE,, C En,. Finally, if somem;;. = 2, we take
any pointz; € D; and a ballB; with centerz;, contained inD; such thatv; =, w’ > andw/ -

be different from zero o — {Z;} . For the otherj’s we takeBr(zj ) (2j4,)- SinceEy, is the

type set associated to the cartesian product of these balls, we proceed aspefore.
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