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ABSTRACT. We first offer an entirely new way to derive the celebrated Euler equation of the
calculus of variations. The advantage of this approach is two-fold. On the one hand, it entirely
eschews the two hurdles encountered by Lagrange, which become challenging in the case of
elaborate functionals: getting rid of the arbitrary character of the perturbation given to the op-
timal function, and demonstrating the fundamental lemma of the calculus of variations. On the
other hand, it leads in a direct way to the remarkable discovery made by Robert Dorfman ( 1969,
[3]) when he introduced a modified Hamiltonian, which we called a Dorfmanian (2018, [8]) to
honor his memory. In turn, extending the Dorfmanian enables to obtain readily the fundamental
equations of the calculus of variations for the optimization of high-order functionals, or multiple
integrals.

Key words and phrases:Calculus of variations; Euler equations; Optimal control theory; New Hamiltonians.

1991Mathematics Subject Classification.Primary: 49.01, 49.02.

ISSN (electronic): 1449-5910

c© 2024 Austral Internet Publishing. All rights reserved.

The author would like to thank Michael Binder, Ernst Hairer, Michalis Haliassos, Rainer Klump and Volker Wieland for their interest and

their insightful remarks.

https://ajmaa.org/
mailto:<odelagrandville@gmail.com>
https://www.ams.org/msc/


2 OLIVIER DE LA GRANDVILLE

1. I NTRODUCTION : THE FIRST HITCHES MET BY L AGRANGE , IN HIS CLASSIC

APPROACH .

To the best of our knowledge, all texts on the calculus of variations derive a necessary condition
for extremizing a functional such as

I [y] =

∫ b

a

F (x, y, y′) dx

subject toy(a) = yb andy(b) = yb using the analytic method suggested by Lagrange in his
famous letter to Euler in 1755. Eleven years before, Euler had obtained this necessary condition,
the second-order differential equation

(1.1)
∂F

∂y
(x, y, y′)− d

dx

∂F

∂y′
(x, y, y′) = 0,

as well as the equations corresponding to higher-order functionals, by relying on a geometrical
argument. Euler enthusiastically embraced the analytic method suggested by the 19-year-old
Italian youngster. This method consisted in giving to the optimal curvey a variation in the form
(in modern notation) of a variableα multiplying an arbitrary, fixed functionη (x) such that
η(a) = 0 andη(b) = 0. By doing this, sincey (the solution) andη (x) were both considered as
fixed, Lagrange was able to transform the problem of optimizing a functional

I [y + αη] =

∫ b

a

F (x, y + αη, y′ + αη′) dx

into the optimization of a function of a single variableJ (α). That was a first, remarkable
insight. He was then led to take to zero the expressionI ′ (0) , amounting to

(1.2) I ′ (0) =

∫ b

a

[
∂F

∂y
η(x) +

∂F

∂y′
η′(x)

]
dx = 0.

Lagrange then had a second, beautiful idea: in order to suppress the dependency of the so-
lution of this equation on the perturbationη(x), he integrated by parts the second term of the
integrand in (1.2), which, thanks toη(a) = 0 andη(b) = 0, led him to write (1.2) as

(1.3) I ′ (0) =

∫ b

a

η(x)

[
∂F

∂y
− d

dx

∂F

∂y′

]
dx ≡

∫ b

a

η(x)g(x)dx = 0.

With the impetuosity of youth, Giuseppe concluded that sinceη(x) was arbitrary,g(x) must
vanish, which amounted to the Euler equation.

At this point, Euler was not entirely convinced, and asked young Giuseppe to please prove
thatg(x) should indeed vanish. It is only after much debate, in 1879, that a rigorous proof of
this apparently evident property was obtained by Paul du Bois-Reymond [1, 2]. In addition,
du Bois-Reymond had the ingenious idea of integrating by parts thefirst term of the integrand
in (1.2), which led him to the integrated form of the Euler equation, showing that it was not
necessary to assume that the extremal had to be twice differentiable; continuous differentiability
was sufficient (see the excellent exposition by Mark Kot [6], 2014, pp. 38-44). The property
thatg(x) should vanish then became to be known as the fundamental lemma of the calculus of
variations.

Summing up, we can say that Lagrange had encountered two hurdles: the first, getting rid of
the perturbation by factoring it out in the integrand of equation (1.2), he overcame brilliantly;
the second one, demonstrating the fundamental lemma of the calculus of variations, both Euler
and Lagrange had to leave to their followers.
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A NEW LOOK AT THE EQUATIONS OF THECALCULUS OF VARIATIONS 3

Although these hurdles are relatively easy to overcome in the case considered here, it turns out
that they become more and more cumbersome when optimizing more complex functionals (for
instance, if the functional depends on derivatives of ordern). And they are really challenging
when the functional is a multiple integral: already in the case of a double integral, factoring out
the perturbation requires a very subtle use of Green’s theorem; and the case ofn-uple integrals
is for the brave only, because we need to generalize Green’s theorem ton-space, definitely a
serious challenge (see Gelfand and Fomin [4] pp. 153-154, and Troutman [10], pp. 179-181).

In this paper we will suggest an analytic derivation not only of the Euler equation, but also of
all higher order Euler equations that suppresses the difficulties met by Lagrange. Our approach
will lead in a natural way to the modified Hamiltonian introduced by Robert Dorfman (1969,
[3], p. 822) in his remarkable economic interpretation of optimal control theory. To pay tribute
to Professor Dorfman and to honor his memory, we see it fitting to call this new Hamiltonian a
Dorfmanian.

We will then show that the Dorfmanian can in turn be extended into forms that enable to
optimize easily more complex functionals. This will be especially important in the notoriously
difficult case ofn-uple integrals; we will thus be led to a general Euler equation (the Ostrograd-
ski equation) with four lines of elementary calculations only. But before showing this, let us
derive the basic Euler equation in a new, simple way.

2. OPTIMIZING THE FUNCTIONAL I [y] =
∫ b

a
F (x, y, y′) dx: A NEW PATH .

The method we suggest has two levers: the first is to transform this functional into afunction
of the single variabley′ at any point x in the interval[a, b), and equate the derivative of this
function to zero. Secondly we will use the concept of theunit price of a functiony(x) introduced
by Robert Dorfman (1969, [3]), which we can define as follows.

Definition 2.1. We define, and denotepy (x) , theunit price of a functiony(x) as thederivative
of the optimal value of the functional

∫ b

x
F (u, y, y′) du with respect toy, at any pointx.We thus

have

(2.1) py (x) =
∂

∂y

∫ b

x

F (u, y, y′) du.

This unit price ofy(x) can thus be seen as the contribution to the optimal value of the functional
if one additional unit ofy is made available at pointx.

Let us now transform the functionalI [y] =
∫ b

a
F (x, y, y′) dx into a function ofy′, to be de-

notedI(y′). Suppose that we know the optimal trajectory ofy on the whole integration interval
[a, b], except on avery small, open, interval(x, x + ∆x) within [a, b]. At point x, the optimal
valuey(x) is supposed to be known. However, our knowledge of the solutiony from x + ∆x
to b is subject to the following proviso. The initial valuey (x + ∆x) depends on the slope of
the curvey at a point of the abscissa located immediately beforex + ∆x, which is essentiallyx
since we can take∆x as small as we want. Our problem is now to determine the optimal value
of y′ (x). This will be key to obtain a necessary condition fory to be optimal over the whole
interval[a, b].

Since we know, without any restriction, the optimaly over the interval[a, x], we are left with
the task of maximizing the functional over[x, b], i.e.

∫ b

x
F (x, y, y′) dx, denotedJ [y], equal to

(2.2) J [y] =

∫ b

x

F (u, y, y′) du = F (x, y, y′)∆x + o (∆x) +

∫ b

x+∆x

F (u, y, y′) du.
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4 OLIVIER DE LA GRANDVILLE

The optimal integral on the right hand side, to be denotedJ∗, depends solely on the variables
x + ∆x andy (x + ∆x); we can write it as∫ b

x+∆x

F (u, y, y′) du = J∗ (x + ∆x, y(x + ∆x)) ,

y(x + ∆x) being a function ofy′ thanks to the equality

(2.3) y (x + ∆x) = y (x) + y′(x)∆x + o (∆x) .

Our functionalJ [y] thus can be transformed into a function of the single variabley′ ≡ y′(x);
denotedJ (y′) , it is equal to

(2.4) J (y′) = F (x, y, y′)∆x + o (∆x) + J∗ (x + ∆x, y(x + ∆x))

Thus,J (y′) depends upony′ on two grounds: first directly, as expressed in the first term on the
right-hand side of (2.4),F (x, y, y′)∆x; secondly, indirectly through the variabley(x + ∆x) as
given by (2.4).

Taking to zero the derivative ofJ(y′) with respect toy′, we get

(2.5)
dJ(y′)

dy′
=

∂F

∂y′
(x, y, y′)∆x +

∂J∗ (x + ∆x, y(x + ∆x))

∂y (x + ∆x)

∂y (x + ∆x)

∂y′
= 0.

The derivative ∂J∗(x+∆x, y(x+∆x))
∂y(x+∆x)

will play a crucial role: referring to our definition of the
unit price of y at x (given by (2.1) ), we recognize in this derivative the unit price ofy at
(x + ∆x), and accordingly denote it aspy (x + ∆x). We have

(2.6) py (x + ∆x) =
∂J∗ (x + ∆x, y(x + ∆x))

∂y (x + ∆x)
.

On the other hand, in light of (2.3),∂y(x+∆x)
∂y′ = ∆x, and (2.5) becomes

(2.7)
dJ(y′)

dy′
=

∂F

∂y′
(x, y, y′)∆x + py (x + ∆x) ∆x = 0.

Simplifying, and taking∆x to zero, we have a first, important equation:

(2.8)
∂F

∂y′
(x, y, y′) + py (x) = 0.

Suppose that this equation has a solutiony′; replace this value in (2.4).J (y′) can now be
written asJ∗ (y′) , and equation (2.4) then becomes theidentity

(2.9) J∗ (y′) = F (x, y, y′)∆x + o (∆x) + J∗ (x + ∆x, y(x + ∆x))

where,y(x + ∆x) is given by (2.3) and thus depends upony.
Differentiating both sides of this identity with respect toy gives

(2.10)
dJ∗(y′)

dy
=

∂F

∂y
(x, y, y′)∆x +

∂J∗ (x + ∆x, y(x + ∆x))

∂y (x + ∆x)

∂y (x + ∆x)

∂y

or, equivalently, with our preceding notation (2.1),

(2.11) py(x) =
∂F

∂y
(x, y, y′)∆x + py(x + ∆x)

∂y (x + ∆x)

∂y
.

Usingpy(x + ∆x) = py(x) + p′y(x)∆x + o(∆x) and equation (2.3), we have

(2.12) py(x) =
∂F

∂y
(x, y, y′)∆x + py(x) + p′y(x)∆x + o (∆x) .
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Eliminatingpy(x), simplifying and taking∆x to zero leads to our second central equation

(2.13)
∂F

∂y
(x, y, y′) + p′y(x) = 0.

Equations (2.8) and (2.13) are just the Euler equation in parametric form; differentiating (2.8)
and replacingp′y(x) in (2.13) immediately yields

(2.14)
∂F

∂y
(x, y, y′)− d

dx

∂F

∂y′
(x, y, y′) = 0

the Euler equation (1.1).
We may wonder whether this method of deriving the Euler equation in this simple case can

be extended to the optimization of more complex functionals. We will show that this indeed is
the case.

3. OPTIMIZING I [y] =
∫ b

a
F (x, y, y′, y′′) dx.

Our aim is now to show that a necessary condition fory(x) to be an extremal of the functional∫ b

a
F (x, y, y′, y′′) dx is thaty(x) solves the fourth order differential Euler-Poisson equation

∂F

∂y
(x, y, y′, y′′)− d

dx

∂F

∂y′
(x, y, y′, y′′) +

d2

dx2

∂F

∂y′′
(x, y, y′, y′′) = 0.

This time we will transform this functional into a simple function ofy′′, as follows. Similarly
to what we did before, we define, and denotep1(x) the unit price ofy′(x) as

(3.1) p1(x) =
∂

∂y′ (x)

∫ b

x

F (u, y, y′, y′′) du.

To clearly distinguish this price from the unit price ofy(x) introduced before aspy(x), we will
henceforth designate the latter asp0(x). We thus have

(3.2) py(x) ≡ p0(x) =
∂

∂y (x)

∫ b

x

F (u, y, y′, y′′) du.

We now suppose thatboth y(x) andy′(x) are known over interval [a, b), except on avery
small, open, interval(x, x + ∆x) within [a, b]. The only piece of information missing is the
value ofy′′(x). We need to optimize the functional

∫ b

x
F (u, y, y′, y′′)du, denotedG [y] , equal to

G [y] =

∫ b

x

F (u, y, y′, y′′) du

= F (x, y, y′, y′′)∆x + o (∆x) +

∫ b

x+∆x

F (u, y, y′, y′′) du.(3.3)

The optimal integral on the right hand side, depending on the three variablesx + ∆x,
y (x + ∆x) andy′ (x + ∆x) only, can be denotedG∗(x+∆x, y(x+∆x), y′ (x + ∆x)); y′ (x + ∆x)
depends upony′′ through

(3.4) y′ (x + ∆x) = y′ (x) + y′′(x)∆x + o (∆x) .

Our functionalG [y] thus can be transformed into a function ofy′′; denotedG (y′′) it is equal to

(3.5) G (y′′) = F (x, y, y′, y′′)∆x + o (∆x) + G∗(x + ∆x, y(x + ∆x), y′ (x + ∆x))
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6 OLIVIER DE LA GRANDVILLE

and is a function ofy′′ for two reasons: first, directly, as expressed inF (x, y, y′, y′′); secondly,
as a composite function through the variabley′ (x + ∆x) as given by (3.4).

Taking to zero the derivative ofG(y′′) with respect toy′′, we get

dG(y′′)

dy′′
=

∂F

∂y′′
(x, y, y′, y′′)∆x+

(3.6) +
∂G∗ (x + ∆x, y(x + ∆x), y′ (x + ∆x))

∂y′ (x + ∆x)

∂y′ (x + ∆x)

∂y′′
= 0.

The derivative ∂G∗(x+∆x, y(x+∆x),y′(x+∆x))
∂y′(x+∆x)

, the rate of increase of the optimal value ofG∗

per additional unit ofy′ available atx + ∆x is the unit price of the variabley′ at x + ∆x, to
be denoted asp1 (x + ∆x). On the other hand, in light of (3.4),∂y′(x+∆x)

∂y′′ = ∆x, and (3.6)
becomes

(3.7)
dG(y′′)

dy′′
=

∂F

∂y′′
(x, y, y′, y′′)∆x + p1 (x + ∆x) ∆x = 0.

Simplifying, and taking∆x to zero gives our first central equation

(3.8)
∂F

∂y′′
(x, y, y′, y′′) + p1 (x) = 0.

Suppose that this equation has a solutiony′′; replace this value into (3.5).G(y′′) can now be
written asG∗ (y′′) , and equation (3.5) becomes theidentity

(3.9) G∗ (y′′) = F (x, y, y′, y′′)∆x + o (∆x) + G∗ (x + ∆x, y(x + ∆x), y′ (x + ∆x)) .

Let us first differentiate identity (3.9) with respect toy′; this gives

dG∗(y′′)

dy′
=

∂F

∂y′
(x, y, y′, y′′)∆x +

∂G∗

∂y (x + ∆x)

∂y (x + ∆x)

∂y′
+

+
∂G∗

∂y′ (x + ∆x)

∂y′ (x + ∆x)

∂y′
(3.10)

or, equivalently, with our preceding notation,

p1(x) =
∂F

∂y′
(x, y, y′, y′′)∆x + p0 (x + ∆x)

∂y (x + ∆x)

∂y′
+

(3.11) + p1 (x + ∆x)
∂y′ (x + ∆x)

∂y′
.

Using equations (2.3) and (3.4), and writing

p1 (x + ∆x) = p1(x) + p′1(x)∆x + o (∆x)

we have

(3.12) p1(x) =
∂F

∂y′
(x, y, y′, y′′)∆x + p0 (x + ∆x) ∆x + p1(x) + p′1(x)∆x + o (∆x) .

Eliminatingp1(x), simplifying and taking∆x to zero yields our second central equation

(3.13)
∂F

∂y′
(x, y, y′, y′′) + p0(x) + p′1(x) = 0.
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Differentiating identity (3.9) with respect toy and operating in the same way leads to the third
central equation

(3.14)
∂F

∂y
(x, y, y′, y′′) + p′0(x) = 0.

Consider the system of the three equations (3.8), (3.13) and (3.14). These are just the Euler-
Poisson equation in parametric form. Indeed, differentiating – with respect tox – twice (3.8)
and once (3.13), we immediately get the fourth-order differential equation1

(3.15)
∂F

∂y
(x, y, y′, y′′)− d

dx

∂F

∂y′
(x, y, y′, y′′) +

d2

dx2

∂F

∂y′′
(x, y, y′, y′′) = 0.

4. A WELCOME RESULT : NEW, HIGHLY EFFICIENT HAMILTONIANS LEADING

DIRECTLY TO EULER EQUATIONS .

At this stage, it is only natural to wonder if we could construct algebraic expressions, akin to
Hamiltonians, from which the central, parametric Euler equations could bedirectly derived,
practically with no calculations. If this appeared to be possible, at least for the functionals∫ b

a
F (x, y, y′) dx and

∫ b

a
F (x, y, y′, y′′) dx we just took up, we would definitely wonder whether

this would carry over to all possible configurations of the functional, including complex ones.
Consider first the functional

∫ b

a
F (x, y, y′) dx. The Euler equation in parametric form was

given by the system

(4.1)
∂F

∂y′
(x, y, y′) + p (x) = 0

and

(4.2)
∂F

∂y
(x, y, y′) + p′(x) = 0.

It is almost immediate to determine an expressionD(x, y, y′) whose gradient with respect to
y andy′, when taken to zero, yields (4.1) and (4.2) . This is

(4.3) D(x, y, y′) = F (x, y, y′) + p(x)y′ + p′(x)y = F (x, y, y′) +
d

dx
[p(x)y(x)]

This expression turns out to have exactly the structure of the concept Robert Dorfman had
introduced as a "modified Hamiltonian" (1969 [3], p. 822), that we called aDorfmanianand
denotedD in [8] and [9]. Indeed, referring to the main lines of Dorfman’s essay given in this
appendix, we can see that (4.3) is given by (6.6) when (a) the state variable is the functiony(x);
(b) the derivativey′(x) plays the role of the control variable; and (c)p(x) replacesλ(t).

In the simple case of the functionalI [y] =
∫ b

a
F (x, y, y′) dx considered in section 2, the

Dorfmanian is the traditional Hamiltonian augmented byp′(x)y. It offers remarkable advan-
tages. First, the Dorfmanian has an immediate interpretation. Multiplying (4.3) bydx, we
have

D(x, y, y′)dx = F (x, y, y′)dx + p(x)y′dx + p′(x)ydx

= F (x, y, y′)dx + d [p(x)y(x)] .(4.4)

This expression represents the sum ofall effects generated on the functional by the optimal
functiony and its derivativey′ at any pointx, in an intervaldx. The first effect is measured by
the integrand of the functional,F (x, y, y′)dx. In addition, we recall thatp(x)y(x) is the value

1An alternate way of obtaining the Euler - Poisson equation can be found in [7].
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8 OLIVIER DE LA GRANDVILLE

of the extremaly atx; therefore the second part of the Dorfmanian,d [p(x)y(x)] = p(x)y′dx +
p′(x)ydx, is theincrease in the value ofy generated both by an increase in the quantity ofy
(equal top(x)y′dx) and by a change in its price (given byp′(x)ydx). A necessary condition for
y andy′ to optimize the functional is of course that the derivatives ofD with respect toy and
y′ vanish. Taking to zero the gradient of these total effects generates parametrically the Euler
equation in just two lines. Indeed, we get

∂D(x, y, y′)

∂y′
=

∂F

∂y′
(x, y, y′) + p (x) = 0

and

∂D(x, y, y′)

∂y
=

∂F

∂y
(x, y, y′) + p′ (x) = 0,

corresponding to our equations 2.8 and 2.13.
In the case of the functional

∫ b

a
F (x, y, y′, y′′) dx, consider the three equations we derived

before:

(4.5)
∂F

∂y′′
(x, y, y′, y′′) + p1 (x) = 0,

(4.6)
∂F

∂y′
(x, y, y′, y′′) + p0(x) + p′1(x) = 0,

and

(4.7)
∂F

∂y
(x, y, y′, y′′) + p′0(x) = 0,

leading to the Euler-Poisson equation. Let us ask whether we can find a modified Hamiltonian
(an extended Dorfmanian) whose gradient, when equated to zero, would yield these equations.

When we took up this case, we supposed thatbothy and y′ were known except on a small
interval(x, x + ∆x); therefore we just needed to optimizey′′ at x. We thus can infer that both
functions,y(x) andy′(x), now hold the role solely played earlier byy(x). Therefore it seems
logical to extend the Dorfmanian (4.4) to the expression

D(x, y, y′, y′′) = F (x, y, y′, y′′) +
d

dx
[p0(x)y(x)] +

d

dx
[p1(x)y′(x)] =

(4.8) = F (x, y, y′, y′′) + p0(x)y′ + p′0(x)y + p1(x)y′′ + p′1(x)y′

Equating to zero the gradient of (4.8) with respect toy′′, y′, andy yields equations (3.9), (3.13),
and (3.14), and hence the Euler-Poisson equation in just three lines.

We are now on sure footing to infer that the Dorfmanian can be extended to handle in a most
efficient way the optimization of more complex functionals, thus yielding generalized Euler
equations without any concern to overcome the difficulties met by Lagrange. This is what we
did in [8] and [9].
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5. CONCLUSION .

Several paths can be considered if our goal is to optimize functionals defined by integrals. First,
we can follow the analytical approach offered by Lagrange, enthusiastically embraced by Euler
as a definite improvement upon his geometric reasoning. Innovative as it may be, the Lagrange
method has its own drawbacks: it implies overcoming two hurdles, one of them particularly
challenging in the case of multiple integrals, since it involves the difficult extension of Green’s
theorem ton−space.

Today, shortcuts avoiding these hurdles are available if we have recourse to optimal control
theory, at least for simple functionals. But in turn, the Pontryagin principle is not devoid of its
own problems. The first difficulty is of an interpretative nature. Even in the simplest cases, it
is not easy to understand the significance of the implied equations; in particular, it is hard to
figure out why the derivative of the Hamiltonian with respect to the state variable should be
equal to minus the derivative of the costate variable with respect to time. Secondly, applying
the Pontryagin principle to multiple integrals is admittedly challenging. Finally, to the best of
our knowledge, the principle has never been extended to cover high-order functionals.

It is our view that among all possible approaches, the one resting on the Dorfmanian is by far
the most useful – we could even say the most beautiful. Introducing new concepts: (1) the value
of a variable and (2) a new Hamiltonian with an immediate, meaningful appeal, Dorfman’s
reasoning leads to the Euler equation in just two lines, without any hurdles to overcome –
remember that the equation eluded even Newton, Leibniz, as well as the Bernouilli brothers.
In its extensions, the Dorfmanian proves to be highly efficient: the Euler-Poisson equation is
reached in three lines; and if we set out to address the difficult problem of optimizingn−uple
integrals, we will obtain the Ostrogradski equation in just four lines of elementary calculations.
It is only to be hoped that the path opened up by Robert Dorfman will be continued.

6. APPENDIX : ROBERT DORFMAN ’ S MODIFIED HAMILTONIAN : THE BIRTH OF A

BEAUTIFUL , LONG NEGLECTED IDEA .

We believe that it is important to recall how a highly fruitful idea in dynamic optimization was
born (1969, [3]). Taking up the basic problem of optimal control theory, Dorfman defined a
state variable ask(t) and a control variable asx(t), and considered the problem of determining
a necessary condition for the maximization of a functional

(6.1)
∫ T

0

u(k(t), x(t), t) dt

under the constraints

(6.2) k̇ = f(k, x, t)

andk(0) = k0; k(T ) ≤ kT . (We have kept Dorfman’s original notation; for clarity, we empha-
size the fact that in Dorfman’s notation,x(t) designates afunctionof time andt is the integration
variable; in our paperx is an integration variable. The state variablek(t) becomes our function
y(x), andy′(x) plays the role of the control variable.)

The traditional Pontryagin approach requires to introduce a time dependent functionλ(t) and
a Hamiltonian defined by

(6.3) H = u(k, x, t) + λ(t)f(k, x, t) = u(k, x, t) + λ(t)k̇.

AJMAA, Vol. 21 (2024), No. 1, Art. 14, 10 pp. AJMAA

https://ajmaa.org


10 OLIVIER DE LA GRANDVILLE

The fundamental equations of the Pontryagin maximum principle then are

(6.4)
∂H

∂x
=

∂u

∂x
+ λ(t)

∂f

∂x
= 0

and

(6.5)
∂H

∂k
=

∂u

∂k
+ λ(t)

∂f

∂k
= −λ̇(t),

together with the constraint (6.2).
Dorfman definedλ(t) as theunit price of k(t), equal to the derivative of the optimal value

of the functional with respect tok at timet. From economic reasoning, Dorfman first gave an
impressive derivation of equations (6.4) and (6.5) (see [3], pp. 817-822).

He then made a crucial observation (p. 822): those equations could equally be derived by
taking to zero the gradient with respect tok andx of a "modified Hamiltonian" (as he called it),
denotedH∗ and defined as

H∗ = u(k, x, t) +
d

dt
[λ(t)k(t)]

= u(k, x, t) + λ(t)k̇(t) + λ̇(t)k(t) = H + λ̇(t)k(t).(6.6)

This modified Hamiltonian – this Dorfmanian as we called it – is thus the traditional Hamil-
tonianH augmented bẏλ(t)k(t). As we have shown, it is a highly valuable concept: applied
to the calculus of variations, not only does it yield the Euler equation in just two lines, but its
extensions readily lead to all equations governing the optimisation of high-order functionals.
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