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ABSTRACT. We extend the method of Weinberger for a non-linear over-determined elliptic
problem inR2. We prove that the domain in consideration is a ball. The tool of this investi-
gation are maximum principles and P-functions.
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1. I NTRODUCTION

Maximum principles of E. Hopf [15, 16], first and second, for solutions of certain classes of
second order elliptic problems have been known for a while. These tools in partial differential
equations are investigated by Serrin [23] and Weinbeger [27]. In1971, Serrin [23] assumed that
u is a classical solution of∆ u = −1 in Ω, u = 0 on the boundary∂Ω whereΩ is a bounded,
regular domain ofRN simply connected. He furthermore supposed that the normal derivative of
u is constant on the boundary∂Ω and showed that the only configuration of the domainΩ is an
N -ball. This popular technique which is called moving plane method works for the non-linear
case as

a(u, |∇ u|)∆ u + h(u, |∇ u|)u,iu,ju,ij = f(u, |∇ u|),
wherea, h andf are continuously differentiable functions in each variable.

For the particular case " the Saint-Venant problem" Weinberger [27] in a short note used an
elementary argument based on maximum principles of E. Hopf [15, 16] and on a construction
of some combination ofu (calledP -function) solution of the over-determined problem under
consideration and its gradient|∇ u|. The advantage here, we have a weaker condition of reg-
ularity which isu of classC1 only on Ω̄. Employing moreover Green’s theorem to establish
an auxiliary identity. Weinberger was able to prove that the combination constructed in terms
of u and its gradient|∇ u| is constant. To build an analogous function as in [27] require more
attention for different reasons, in particular to get a similar integral identity seems with limited
success.
The contribution made in this paper is to extend the argument used in [27] to more general
setting, the non-linear case. Also we note that the extension that we look for is to consider
non-linearity in dimension2 as made in [27] for the linear case. Our technique require maxi-
mum principles of E. Hopf [15, 16] for non-linear second order elliptic equations and several
applications of Green’s theorem. In the same direction, symmetry results are also derived by
A. Greco in [11, 12, 13, 14] using different technique. The device of his proof is based on a
comparison with the radial case which is achieved by means of maximum principles. He inves-
tigates the question: which over-determined condition can force the domain to be a ball centered
at a prescribed point? Results are provided for some quasi-linear elliptic equations involving
thep Laplace as well as the minimal surface operator. In particular with a boundary condition
depending on a radiusr, he proved the following theorem whereu is assumed to be a classical
solution of the Saint-Venant problem, formulated by

(1.1) ∆ u = −1 in Ω, u = 0 on ∂Ω.

Theorem 1.1. Let Ω be a bounded domain of classC1 in RN , N ≥ 2, containing the origin.
Consider problem(1.1) over-determined by the condition

(1.2) − ∂u

∂n
= c|x| on ∂Ω,

wherec is a positive constant. If problem(1.1)− (1.2) has a solutionu ∈ C2(Ω)∩C1(Ω̄) then
Ω is a ball centered at 0.

For related work as existence, uniqueness and geometrical form of domains for a class of
elliptic problems we refer the reader to [7, 10, 14, 17, 18, 19, 21, 22, 26]. To this end, we
mention that two new ways to prove symmetry results in a class of elliptic problems involving
constant and radial boundary conditions are the use of domain derivative which is classical tool
of shape optimization, namely the differentiation with respect to the domain, due to M.Choulli
and A.Henrot [6] and continuous Steiner symmetrization investigated in a brilliant series of F.
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Brock [1, 2, 3, 4, 5]. As a variant of Serrin’s technique, F. Brock defined a new kind of symmetry
" Local symmetry" for more details see [1].

2. M AIN RESULT

In this section, we consider the non-linear case for the Saint-Venant problem. We assume
thatu is a classical solution of

(2.1) ∆ u + f(u) = 0 in Ω, u = 0 on ∂Ω,

wheref is a positive function, non-increasing. The domainΩ is supposed to be bounded, regular
and simply connected inR2. The statement of the result that we will prove is formulated in the
following theorem

Theorem 2.1. Let u be a classical solution of(2.1), at least of classC2 on Ω and of classC1

on Ω̄. Moreover if we assume thatu satisfies the extra-condition

(2.2) − ∂u

∂n
= c on ∂Ω,

thenΩ is a ball andu is radially symmetric provided that:

f > 0, f ′ ≤ 0,

and

f(u) ≥ c2 + 1

u
.

As noted before, keeping constant sign for the non-linear functionf was a necessary condi-
tion in proving Serrin’s theorem [23] for a class of elliptic over-determined problems, while in
Weinberger’s proof it was not. It seems to us as we did in this note, that to do not assume thatf
is increasing or decreasing leads the general result fails to be true. This is due to some difficul-
ties arising in performing some convenient elliptic differential inequality. Without monotonicity
of the functionf , difficulties are usually met even if we do not use Serrin’s argument. In other
words, we need some sufficient information on the given non-linear function in order to lead the
maximum principles of E. Hopf applied. We split the proof of Theorem 2.1 in some lemmas.
The first result stated in Lemma 2.1 below express an auxiliary equality that we need to use
jointly with maximum principles of E. Hopf [15, 16] and the second result provide an elliptic
differential inequality which is a crucial tool of the maximum principles. The identity arising
in Lemma 2.1 is somewhat a kind of Rellich’s type identity.

Lemma 2.1.Letu be a classical solution of(2.3) then the following integral equality is satisfied

(2.3) 2

∫
Ω

F dx = c2V,

whereV denotes the volume|Ω| of the domainΩ andF satisfies

(2.4) F (u) :=

∫ u

0

f(s) ds.

For the proof of Lemma 2.1, recall thatu has constant sign if the functionf is non-increasing
(resp. non-decreasing). Whereas this fact was necessary in the Serrin’proof [23], in the Wein-
berger’s proof this condition is dropped. Moreover as we will see here this investigation leads

AJMAA, Vol. 7, No. 2, Art. 25, pp. 1-8, 2011 AJMAA

http://ajmaa.org


4 LAKHDAR RAGOUB

the method used in [27] works as well as that of [23] for the general case. To start, let us make
use of the following observation

∆ (r
∂u

∂r
) = r

∂∆ u

∂r
+ 2∆ u(2.5)

= −r
∂f

∂r
− 2f,

upon the governing equation(2.1) is inserted andr denotes the distance from a fixed origin.
We remark that the inserted functionr ∂u

∂r
in (2.7) is super-harmonic whenu is a solution of

the Saint-Venant problem(1.1), (2.2). Based on this observation, it was proved in [18] that the
domainΩ is anN -ball without using the Technique of moving plane. The starting proof of that
of Payne and Schaefer [18] is to transform the given over-determined problem to the new one
written in an equivalent integral form where Green’s and Rellich’s identities are the essence of
this method.
Now multiplying (2.5) by−u and using Green’s theorem, we get∫

Ω

(−u∆ (r
∂u

∂r
) + r

∂u

∂r
∆ u) dx =

∫
Ω

(ru
∂f

∂r
+ 2uf − rf

∂u

∂r
)) dx(2.6)

=

∫
Ω

(r
∂uf

∂r
+ 2uf − 2rf

∂u

∂r
) dx.

It is easy to see that equality(2.6) can be rewritten explicitly as

(2.7) ∫
Ω

(−u∆ (r
∂u

∂r
) + r

∂u

∂r
∆ u) dx =

∫
Ω

(r
∂uf

∂r
+ 2uf)dx− 2

∫
Ω

∇ r2

2
∇ F dx.

Next we express the last term in(2.5) from the right in light of classical formula of Green,
we obtain

∫
Ω

r
∂uf

∂r
dx =

∫
Ω

∇ (
r2

2
)∇ (uf) dx(2.8)

= −2

∫
Ω

uf dx,

while for the same argument in view of(2.1) and(2.2) the integrals equalities in(2.6) take the
form

(2.9) ∫
Ω

(−u∆ (r
∂u

∂r
) + r

∂ u

∂r
∆ u) dx =

∫
∂Ω

(−u
∂

∂n
(r

∂u

∂r
) + r

∂u

∂r

∂u

∂n
) ds

=

∫
∂Ω

r
∂r

∂n
(
∂u

∂n
)2 ds

= 2c2V.

Thus we conclude that

(2.10) 2

∫
Ω

F dx = c2V.

The second step that we need in proving Theorem 2.1 relies heavily on the use of maximum
principles of E. Hopf [15, 16]. For this, we construct a new functionΦ which is combination of
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u and its gradient∇ u by setting

(2.11) Φ := |∇ u|2 + F (u).

Hereafter in order to prove that the combinationΦ in (2.11) is constant, we need an auxiliary
result formulated in the following lemma.

Lemma 2.2. Let Φ be defined in(2.11), thenΦ satisfies the following elliptic differential in-
equality

(2.12) Φ,kk ≥ 0,

provided that the functionsf and its derivatives are subject to

(2.13) f > 0, f ′ ≤ 0.

For the proof of Lemma 2.2, let us compute

(2.14) Φ,k = 2u,kiu,i + u,kf,

Φ,kk = 2u,kiu,ki + 2u,i∆ u,i(2.15)

+ u,kkf + u,ku,kf
′,

(2.16)

or equivalently, we have

(2.17) Φ,kk = 2u,kiu,ki − f ′u,ku,k − f 2.

Hence in view of(2.15) and since2u,kiu,ki − (∆ u)2 ≥ 0, (see Sperb’s book [24]), we deduce
that

(2.18) Φ,kk > 0 in Ω.

Consequently, applying the maximum principle for a class of elliptic equations [15, 16, 24] we
conclude that the combinationΦ defined in(2.11) attains its maximum value on the boundary
∂Ω of Ω unlessΦ is constant. This result may be formulated as follows

(2.19) Φ < c2 in Ω,

or

(2.20) Φ = c2 in Ω.

If the first alternative(2.19) occurred, we get

(2.21)
∫

Ω

Φ dx < c2V,

whereV denotes the volume of the domainΩ. Again classical formula of Green and(2.3) yield

(2.22)
∫

Ω

Φ dx =

∫
Ω

uf(u) dx +

∫
Ω

F (u) dx.

From(2.12) we handle the first term in(2.22) from the right as follows

(2.23)
∫

Ω

F (u) dx =
1

2
c2V.

Combining(2.21)− (2.23) together, we are conducted to∫
Ω

Φ dx =

∫
Ω

u f(u) dx +
1

2
c2V(2.24)

< c2V.
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The argue by contradiction will be completed if we assume that

(2.25) f(u) ≥ c2 + 1

u
, for u positive solutions of(2.3)− (2.4).

In fact we use(2.23), (2.24) and(2.25) in order to get

2

∫
Ω

u f(u) dx + 2

∫
Ω

F (u) dx = 2

∫
Ω

u f(u) dx + c2V(2.26)

= 2

∫
Ω

Φ dx

< 2c2 V.

By our assumptions(2.25) on f and its derivatives(2.13) we observe easily that we are con-
ducted to a contradiction. This is due to the positivity ofu, f , F and the fact thatF ≥ u f
sincef is non-increasing. Indeed the differential inequality(2.26) is reduced to

4( c2 + 1) V < 4

∫
Ω

F (u) d x < 2 c2 V.

Thus, the combinationΦ is necessarily constant in the domainΩ. Similarly to the final part
of Weinberger [27], to determine the geometric nature of the domainΩ we employ a result of
Spivack [25]. Namely, we show that the mean curvature of the boundary∂Ω is constant. To do
this, we make successive partial differentiation of the combinationΦ. In fact, we have

(2.27) Φ := |∇ u|2 + F (u) = const. inΩ.

From (2.29), we express the normal derivative of the combinationΦ on the boundary∂Ω as
follows

(2.28) 2(ununn +
1

2
unf) = 0,

whereun andunn denote respectively the normal and second derivatives ofu. Now since the
boundary∂Ω is sufficiently smooth, the differential equation(2.1) takes the form

(2.29) unn + Kun + f(0) = 0.

Combining(2.28) and(2.29), we obtain

(2.30) K =
f(0)

2c

which in view of [25] implies thatΩ is a ball andu is radially symmetric. To this end we give
an example in order to illustrate Theorem 2.1.

Example 2.1. Let f be a function defined by:f(u) := 18 ln(u + c2+2)
(u + c2+2)

, positive foru > e −
c2 + 2, where
e = 2.718.... and letu be a classical solution of the following over-determined elliptic problem

(2.31) ∆ u + 18
ln(u + c2 + 2)

(u + c2 + 2)
= 0 in Ω, u = 0 on ∂Ω,

whereΩ is a bounded, regular, simply connected domain ofR2, and

(2.32) − ∂u

∂n
= c where,c :=

∫
Ω

f(u)dx

|∂Ω|
.
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Then f is a non-increasing function satisfyingu f(u) ≥ 3. Indeed, we considerg(u) :=

u f(u) = 18 u ln(u + c2+2)
(u + c2+2)

, and thereforeg′(u) = 18 u + ln(u + c2+2)
(u + c2+2)2

which is positive foru >

e − c2 + 2 > 0. Then we deduce thatg(u) > g(e − 1) = 9
e

> 2. Now applying Theorem
2.1, we conclude thatΩ is a ball andu is radially symmetric.
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