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ABSTRACT. This paper is concerned with the existence of positive solution to the discrete three-
point boundary value problem

∇∆u(k) + λf(k, u(k)) = 0, k ∈ {1, . . . , N},
u(0) = 0, u(N + 1) = αu(l)

whereλ > 0, l ∈ {1, · · · , N}, andf is allowed to change sign. By constructing available
operators, we shall apply the method of lower solution and the method of topology degree to
obtain positive solution of the above problem forλ on a suitable interval. The associated Green’s
function is first given.
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1. INTRODUCTION

The multi-point boundary value problems (BVP) of differential equations or difference equa-
tions arise in a variety of areas in applied mathematics and physics. The study of multi-point
boundary value problems for linear second order ordinary differential equations was initiated by
Il’in and Moiseev [5], motivated by the work of Bitsadzeand Samarskii [1] on nonlocal linear
elliptic boundary problems. Since then, nonlinear multi-point boundary value problems have
been studied by several authors, for example, see [2], [3], [4], [6], [7], [8], [9] and the references
cited therein. The main tools used are fixed-point theorems in cones. All the above works have
been done under the assumption that the nonlinear term is nonnegative so as to make use of the
concavity of solutions in the proofs.

In this paper, we consider the following discrete three-point boundary value problem

(1.1) ∇∆u(k) + λf(k, u(k)) = 0, k ∈ L,

(1.2) u(0) = 0, u(N + 1) = αu(l),

whereλ > 0 andα are fixed constants,N ≥ 1 is a fixed integer,L = {1, 2, · · · , N}, L+ =
{0, 1, · · · , N + 1}, l is a fixed integer inL, and the nonlinear termf is continuous and is
allowed to change sign. Here, as usual,∆ is the forward difference operator with stepsize
1, and∇ is the backward difference operator with stepsize 1. We first establish the Green’s
function of the problem, then by constructing available operators, we combine the method of
lower solution with the method of topology degree and show that BVP (1.1)-(1.2) has at least
one positive solution with certain growth conditions imposed onf . In this way we removed the
usual restrictionf ≥ 0.

2. MAIN RESULTS

Before the statement of our main results, we give some lemmas which are needed later.
Let C(L+) denote the class of real-valued mapsω onL+ with norm|ω|0 = max

k∈L+
|ω(k)|. Note

thatC(L+) is a Banach space.

Lemma 2.1. Suppose thatN + 1− αl 6= 0 andy(k) ∈ C(L+), then BVP

(2.1) ∇∆u(k) + y(k) = 0, k ∈ L,

(2.2) u(0) = 0, u(N + 1) = αu(l)

has a unique solution

(2.3)

u(k) = −
k−1∑
j=1

(k − j)y(j) +
N∑

j=1

k

N + 1− αl
(N + 1− j)y(j)

−
l−1∑
j=1

αk

N + 1− αl
(l − j)y(j), k ∈ L+.

Here we adopt the convention that
m2∑

i=m1

f(i) = 0 for m2 < m1.

Proof. From (2.1), we have, for anyi ∈ L,

∆u(i)−∆u(i− 1) = −y(i),
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thus for anyj ∈ L,

∆u(j)−∆u(0) =

j∑
i=1

[∆u(i)−∆u(i− 1)] = −
j∑

i=1

y(i).

Sinceu(0) = 0, we get

∆u(j)− u(1) = −
j∑

i=1

y(i), j ∈ L,

which implies that

u(k + 1)− u(1)− ku(1) =
k∑

j=1

[∆u(j)− u(1)] = −
k∑

j=1

j∑
i=1

y(i), k ∈ L.

Equivalently, we have

u(k) = −
k−1∑
j=1

j∑
i=1

y(i) + ku(1) = −
k−1∑
j=1

(k − j)y(j) + ku(1), k ∈ L+.

Using the conditionu(N + 1) = αu(l), we arrive at

u(1) =
1

N + 1− αl

N∑
j=1

(N + 1− j)y(j)− α

N + 1− αl

l−1∑
j=1

(l − j)y(j),

and the lemma follows by putting this back into the last expression. �

Lemma 2.2. SupposeN + 1− αl 6= 0, then the Green’s function for the BVP

(2.4) −∇∆u(k) = 0, k ∈ L,

(2.5) u(0) = 0, u(N + 1) = αu(l),

is given by

(2.6) G(k, j) =



j[N + 1− k − α(l − k)]

N + 1− αl
, j ≤ k, j ≤ l;

j(N + 1− k) + αl(k − j)

N + 1− αl
, l < j ≤ k;

k(N + 1− j)

N + 1− αl
, j > k, j > l;

k[N + 1− j − α(l − j)]

N + 1− αl
, k < j ≤ l.
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Proof. If k ≥ l, the unique solution (2.3) can be rewritten as

u(k) = −
l−1∑
j=1

(k − j)y(j)−
k−1∑
j=l

(k − j)y(j)

+
l−1∑
j=1

k

N + 1− αl
(N + 1− j)y(j) +

k−1∑
j=l

k

N + 1− αl
(N + 1− j)y(j)

+
N∑

j=k

k

N + 1− αl
(N + 1− j)y(j)−

l−1∑
j=1

αk

N + 1− αl
(l − j)y(j)

=
l−1∑
j=1

j[N + 1− k − α(l − k)]

N + 1− αl
y(j) +

k−1∑
j=l

j(N + 1− k) + αl(k − j)

N + 1− αl
y(j)

+
N∑

j=k

k(N + 1− j)

N + 1− αl
y(j).

Similarly, if k < l, the unique solution (2.3) becomes

u(k) =
k−1∑
j=1

j[N + 1− k − α(l − k)]

N + 1− αl
y(j) +

l−1∑
j=k

k[N + 1− j − α(l − j)]

N + 1− αl
y(j)

+
N∑

j=l

k(N + 1− j)

N + 1− αl
y(j).

Therefore, the unique solution of (2.1)-(2.2) isu(k) =
N∑

j=1

G(k, j)y(j). Lemma 2.2 now fol-

lows. �

Lemma 2.3. (see [10])Let X be a real Banach space with norm‖ · ‖, Ω is an open bounded
subset inX with 0 ∈ Ω. SupposeA : Ω → X is a completely continuous operator. If

‖Ax‖ ≤ ‖x‖, Ax 6= x, for all x ∈ ∂Ω,

then

deg{I − A, Ω, 0} = 1.

Now let X = C(L+) andK = {u ∈ X : u ≥ 0}. Throughout the rest of the paper we
assume that the following hypotheses are satisfied:

(H1) 0 < α < 1;
(H2) f : L+ × [0,∞) → R is continuous.
Observe that if (H1) holds, we haveG(k, j) ≥ 0. Moreover, ifu(k) is the solution of BVP

(2.1)-(2.2), thenu(k) =
N∑

j=1

G(k, j)y(j). In particular, for the special case wherey(k) ≡ 1,

definew(k) =
N∑

j=1

G(k, j), then from (2.3) we have

(2.7) w(k) =
N∑

j=1

G(k, j) = −k(k − 1)

2
+

k[(N + 1)(N + 2)− αl(l − 1)]

2(N + 1− αl)
, k ∈ L+.

Let A = max
k∈L+

w(k). It is clear that0 < A < ∞.
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Theorem 2.4.Suppose there are real numbersR > M > 0 such that

(2.8) 0 <
M

min
k∈L+

f(k,Mw(k))
= a < c =

R

A max
k∈L+

Mw(k)≤u≤R

f(k, u)
.

Then BVP (1.1)-(1.2) has at least one positive solutiony(k) satisfying

0 < Mw(k) ≤ y(k), k ∈ L+ and‖y‖ < R

if λ ∈ [a, c].

Proof. Let

(2.9) f ∗(k, u) =

{
f(k, u), u ≥ Mw(k),
f(k,Mw(k)), u ≤ Mw(k),

and defineΦ : K → X by

(2.10) (Φu)(k) = λ

N∑
j=1

G(k, j)f ∗(j, u(j)), k ∈ L+.

ThenΦ is onK a completely continuous operator. Letθ : X → K be defined by

(2.11) (θu)(k) = max{u(k), 0},
it is clear thatθ ◦ Φ : K → K is also completely continuous.

TakeΩ = {u ∈ K : ‖u‖ < R}. Givenu ∈ ∂Ω, setI = {k ∈ L+ : f ∗(k, u(k)) ≥ 0}. Then

(θ ◦ Φ)u(k) = max{λ
N∑

j=1

G(k, j)f ∗(j, u(j)), 0}

≤ λ
∑

I

G(k, j)f ∗(j, u(j))

≤ c max
k∈L+

0≤u≤r

f ∗(k, u)
∑

I

G(k, j)

≤ Ac max
k∈L+

Mw(k)≤u≤r

f(k, u)

= R.

If there is au ∈ ∂Ω such that(θ ◦Φ)u = u, thenθ ◦Φ has a fixed point inΩ. On the other hand,
if for any u ∈ ∂Ω, (θ ◦ Φ)u 6= u, it follows from Lemma 2.3 that

deg{I − θ ◦ Φ, Ω, 0} = 1.

Thenθ ◦ Φ has a fixed point inΩ. So in both casesθ ◦ Φ has a fixed pointy ∈ Ω.
We claim that

(2.12) (Φy)(k) ≥ Mw(k), k ∈ L+.

If not, there isk0 ∈ L+ such that

(2.13) γ := Mw(k0)− (Φy)(k0) = max
k∈L+

{Mw(k)− (Φy)(k)} > 0.

Now clearlyk0 6= 0 by the first equation of (1.2). Besides, ifk0 = N + 1, then from the second
equation of (1.2),

Mw(N + 1)− (Φy)(N + 1) = α[Mw(l)− (Φy)(l)]
< Mw(l)− (Φy)(l)
≤ γ,
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a contradiction. Sok0 ∈ {1, 2, · · · , N}. It is obvious that

M∆w(k0)−∆(Φy)(k0) ≤ 0

and
M∆w(k0 − 1)−∆(Φy)(k0 − 1) ≥ 0.

Note that in this case we must have

(2.14) Mw(k) ≥ Φy(k), k ∈ L+.

For if not, there existsk1 ∈ {1, · · · , k0 − 1} ∪ {k0 + 1, k0 + 2, · · · , N + 1} such that

(2.15) Mw(k1)− Φy(k1) < 0

and

(2.16) Mw(k)− (Φy)(k) ≥ 0, k ∈ {k1 + 1, k1 + 2, · · · , k0} or k ∈ {k0, k0 + 1, · · · , k1− 1}.

If k1 ∈ {1, · · · , k0 − 1}, then

M∆w(k1)−∆(Φy)(k1)

= M∆w(k0)−∆(Φy)(k0)−
k0∑

j=k1+1

[M∇∆w(j)−∇∆(Φy)(j)]

≤
k0∑

j=k1+1

[M − λf ∗(j, y(j))]

≤
k0∑

j=k1+1

[M − a min
k∈L+

f(k,Mw(k))]

= 0,

which implies that

Mw(k1)− (Φy)(k1) ≥ Mw(k1 + 1)− (Φy)(k1 + 1) ≥ 0.

This contradicts (2.15). On the other hand, ifk1 ∈ {k0 + 1, · · · , N + 1}, then

M∆w(k1)−∆(Φy)(k1)

= M∆w(k0 − 1)−∆(Φy)(k0 − 1) +
k1∑

j=k0

[M∇∆w(j)−∇∆(Φy)(j)]

≥
k1∑

j=k0

[λf ∗(j, y(j))−M ]

≥
k1∑

j=k0

[a min
k∈L+

f(k,Mw(k))−M ]

= 0,

which implies that

Mw(k1)− (Φy)(k1) ≥ Mw(k1 − 1)− (Φy)(k1 − 1) ≥ 0.

This also contradicts (2.15). So (2.14) holds.
However

Mw(k0)− Φy(k0) =
N∑

j=1

G(k0, j)[M − λf ∗(j, y(j))]

≤ [M − a min
k∈L+

f(k,Mw(k))]
N∑

j=1

G(k0, j)

= 0.
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This contradicts (2.13). Thus (2.12) holds. Then(θ ◦ Φ)y = Φy = y andy(t) is a solution of
BVP (1.1)-(1.2). �

Similarly, we have:

Theorem 2.5.Supposef(k, 0) ≥ 0, f(k, 0) 6≡ 0 for k ∈ L+ and there isR > 0 such that

(2.17) c =
R

A max
k∈L+

0≤u≤R

f(k, u)
> 0.

Then whenλ ≤ c, BVP (1.1)-(1.2) has at least one positive solutiony(t) satisfying

0 < ‖y‖ < R.

Proof. Let

(2.18) f ∗(k, u) =

{
f(k, u), u ≥ 0,
f(k, 0)− u, u < 0.

The theorem now follows from arguments similar to those used in the proof of Theorem 2.4.�
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