

The Australian Journal of Mathematical Analysis and Applications

AJMAA

Volume 14, Issue 2, Article 10, pp. 1-11, 2017

WEAKLY COMPACT COMPOSITION OPERATORS ON REAL LIPSCHITZ SPACES OF COMPLEX-VALUED FUNCTIONS ON COMPACT METRIC SPACES WITH LIPSCHITZ INVOLUTIONS

D. ALIMOHAMMADI AND H. ALIHOSEINI

Received 10 January, 2017; accepted 1 September, 2017; published 16 October, 2017.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ARAK UNIVERSITY, P. O. BOX, 38156-8-8349, ARAK, IRAN. d-alimohammadi@araku.ac.ir, hr_alihoseini@yahoo.com URL: http://www.araku.ac.ir

ABSTRACT. We first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T' on the complex Banach space $E_{\mathbb{C}}$ is weakly compact, where $E_{\mathbb{C}}$ is a suitable complexification of E and T' is the complex linear operator on $E_{\mathbb{C}}$ associated with T. Next we show that every weakly compact composition operator on real Lipschitz spaces of complex-valued functions on compact metric spaces with Lipschitz involutions is compact.

Key words and phrases: Compact operator; Composition operator; Lipschitz involution; Weakly compact operator.

2010 Mathematics Subject Classification. Primary 47B33, 47B07, Secondary 26A16, 46J10.

ISSN (electronic): 1449-5910

^{© 2017} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION AND PRELIMINARIES

The Symbol \mathbb{K} denotes a field that can be either \mathbb{R} or \mathbb{C} . Let E and F be Banach spaces over \mathbb{K} . We denote by $B_{\mathbb{K}}(E, F)$ the Banach space over \mathbb{K} consisting of all bounded linear operators from E into F with the operator norm $\|\cdot\|_{op}$. We write $B_{\mathbb{K}}(E)$ instead $B_{\mathbb{K}}(E, E)$. Let us recall that $T \in B_{\mathbb{K}}(E, F)$ is compact (weakly compact, respectively) if the closure of T(U) in F is compact with the norm-topology (weak-topology, respectively), where U is the open unit ball in E.

It is known that if E, F and G are Banach spaces over $\mathbb{K}, S \in B_{\mathbb{K}}(E, F)$ and $T \in B_{\mathbb{K}}(F, G)$, then $T \circ S$ is compact (weakly compact, respectively) whenever T or S is compact (weakly compact, respectively).

Applying the Eberlein-Smulian theorem [4, Theorem V.6.1] and the definition of weakly compact operators between Banach spaces over \mathbb{K} , we obtain the following result.

Theorem 1.1. Let $(E, \|\cdot\|)$ and $(F, \|\cdot\|)$ be Banach spaces and $T : E \longrightarrow F$ be a linear operator from E into F over \mathbb{K} . Then T is weakly compact if and only if for each bounded sequence $\{a_n\}_{n=1}^{\infty}$ in $(E, \|\cdot\|)$ there exist a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ and an element b of F such that $\lim_{k\to\infty} Ta_{n_k} = b$ in F with the weak-topology.

Let X be a nonempty set, $V_{\mathbb{K}}(X)$ be a vector space of \mathbb{K} -valued functions on X and $T : V_{\mathbb{K}}(X) \longrightarrow V_{\mathbb{K}}(X)$ be a linear operator on $V_{\mathbb{K}}(X)$ over \mathbb{K} . If there exists a self-map $\phi : X \longrightarrow X$ such that $Tf = f \circ \phi$ for all $f \in V_{\mathbb{K}}(X)$, then T is called the *composition operator on* $V_{\mathbb{K}}(X)$ *induced by* ϕ .

Let X be a topological space. We denote by $C_{\mathbb{K}}(X)$ and $C_{\mathbb{K}}^b(X)$ the set of all \mathbb{K} -valued continuous and bounded continuous functions on X, respectively. Then $C_{\mathbb{K}}(X)$ is a commutative algebra over \mathbb{K} with unit 1_X , the constant function on X with value 1, and $C_{\mathbb{K}}^b(X)$ is a subalgebra of $C_{\mathbb{K}}(X)$ containing 1_X . Moreover, $C_{\mathbb{K}}^b(X)$ is a unital commutative Banach algebra over \mathbb{K} with the uniform norm

$$||f||_X = \sup\{|f(x)| : x \in X\} \qquad (f \in C^b_{\mathbb{K}}(X)).$$

Clearly, $C^b_{\mathbb{K}}(X) = C_{\mathbb{K}}(X)$ whenever X is compact. We write C(X) and $C^b(X)$ instead of $C_{\mathbb{C}}(X)$ and $C^b_{\mathbb{C}}(X)$, respectively.

Let (X, d) and (Y, ρ) be metric spaces. A map $\phi : X \longrightarrow Y$ is called a *Lipschitz mapping* from (X, d) into (Y, ρ) if there exists a constant $M \ge 0$ such that $\rho(\phi(s), \phi(t)) \le Md(s, t)$ for all $s, t \in X$. For a map $\phi : X \longrightarrow Y$, the *Lipschitz constant* of ϕ is denoted by $p(\phi)$ and defined by

$$p(\phi) = \sup\left\{\frac{\rho(\phi(s), \phi(t))}{d(s, t)} : s, t \in X, s \neq t\right\}.$$

Clearly a map $\phi: X \longrightarrow Y$ is a Lipschitz mapping if and only if $p(\phi) < \infty$. A map $\phi: X \longrightarrow Y$ is called a *supercontractive mapping* from (X, d) into (Y, ρ) if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\rho(\phi(s), \phi(t)) / d(s, t) < \varepsilon$ for all $s, t \in X$ with $0 < d(s, t) < \delta$. It is clear that if $\phi: X \longrightarrow Y$ is a supeccontractive mapping from (X, d) into (Y, ρ) such that $\phi(X)$ is bounded set in (Y, ρ) , then ϕ is a Lipschitz mapping.

Let (X, d) be a metric space. A function $f : X \longrightarrow \mathbb{K}$ is called a \mathbb{K} -valued Lipschitz function (supercontractive function, respectively) on (X, d) if f is a Lipschitz mapping (supercontractive mapping, respectively) from (X, d) into the Euclidean metric space \mathbb{K} . For a Lipschitz function f on (X, d), the Lipschitz number of f is denoted by $L_{(X,d)}(f)$ and defined by

$$L_{(X,d)}(f) = \sup\left\{\frac{|f(x) - f(y)|}{d(x,y)} : x, y \in X, x \neq y\right\}.$$

Let (X, d) be a pointed metric space with the base point $e \in X$. We denote by $\operatorname{Lip}_{0,\mathbb{K}}(X, d)$ the set of all \mathbb{K} - valued Lipschitz functions f on (X, d) for which f(e) = 0. Clearly, $\operatorname{Lip}_{0,\mathbb{K}}(X, d)$ is a linear subspace $C_{\mathbb{K}}(X)$ over \mathbb{K} . Moreover, $\operatorname{Lip}_{0,\mathbb{K}}(X, d)$ with the norm $L_{(X,d)}(\cdot)$ is a Banach space over \mathbb{K} . We denote by $\operatorname{lip}_{0,\mathbb{K}}(X, d)$ the set of all $f \in \operatorname{Lip}_{0,\mathbb{K}}(X, d)$ for which f is a supercontrative function on (X, d). It is easy to see that $\operatorname{lip}_{0,\mathbb{K}}(X, d)$ is a linear subspace of $\operatorname{Lip}_{0,\mathbb{K}}(X, d)$ and it is a closed set in the Banach space ($\operatorname{Lip}_{0,\mathbb{K}}(X, d), L_{(X,d)}(\cdot)$). Therefore, $(\operatorname{lip}_{0,\mathbb{K}}(X, d), L_{(X,d)}(\cdot))$ is a Banach space over \mathbb{K} . Note that if $\phi : X \longrightarrow X$ is a base pointpreserving Lipschitz mapping on (X, d), then $f \circ \phi \in \operatorname{Lip}_{0,\mathbb{K}}(X, d)$ ($f \circ \phi \in \operatorname{lip}_{0,\mathbb{K}}(X, d)$, respectively) for all $f \in \operatorname{Lip}_{0,\mathbb{K}}(X, d)$ ($f \in \operatorname{lip}_{0,\mathbb{K}}(X, d)$, respectively). For further general facts about Lipschitz spaces $\operatorname{Lip}_{0,\mathbb{K}}(X, d)$ and little Lipschitz spaces $\operatorname{lip}_{0,\mathbb{K}}(X, d)$, respectively). Note that there are $\operatorname{lip}_{0,\mathbb{K}}$ spaces containing only the zero function as for instance, $\operatorname{lip}_{0,\mathbb{K}}([0,1], d)$ whenever d is the Eucleadian metric on [0, 1].

Let (X, d) be a pointed compact metric space. It is said that $\lim_{0,\mathbb{K}}(X, d)$ separates points uniformly on X if there exists a constant a > 1 such that, for every $x, y \in X$ there exists $f \in \operatorname{Lip}_{0,\mathbb{K}}(X, d)$ with $L_{(X,d)}(f) \leq a$ such that f(x) = d(x, y) and f(y) = 0. For instance, if X is the middle-thirds Cantor set in [0, 1] and d is the Euclidean metric on X, the $\lim_{0,\mathbb{K}}(X, d)$ separates points uniformly on X (See [14, Proposition 3.2.2(a)]).

Let (X, d) be a metric space and $\alpha \in (0, 1]$. We know that the map $d^{\alpha} : X \times X \longrightarrow \mathbb{R}$ defined by $d^{\alpha}(x, y) = (d(x, y))^{\alpha}$, is a metric on X and the generated topology on X by d^{α} coincides by the generated topology on X by d. It is known [14, Proposition 3.2.2(b)] that $\lim_{\alpha \to 0} (X, d^{\alpha})$ separates points uniformly on X whenever (X, d) is a pointed compact metric space and $\alpha \in (0, 1)$.

Let (X, d) be a metric space and $\alpha \in (0, 1]$. We denote by $\operatorname{Lip}_{\mathbb{K}}(X, d^{\alpha})$ the set of all \mathbb{K} -valued bounded Lipschitz functions on (X, d^{α}) . Clearly, $\operatorname{Lip}_{\mathbb{K}}(X, d^{\alpha})$ is a subalgebra of $C^{b}(X)$ containing 1_{X} . Moreover, $\operatorname{Lip}_{\mathbb{K}}(X, d^{\alpha})$ is a Banach space under the norm

$$||f||_{X,L_{(X,d^{\alpha})}} = \max\{||f||_X, L_{(X,d^{\alpha})}(f)\} \quad (f \in \operatorname{Lip}(X,d^{\alpha})).$$

Let $\lim_{\mathbb{K}} (X, d^{\alpha})$ denote the set of all \mathbb{K} -valued supercontractive bounded functions on (X, d^{α}) . Clearly, $\lim_{\mathbb{K}} (X, d^{\alpha})$ is a subalgebra of $\lim_{\mathbb{K}} (X, d^{\alpha})$ and it is a closed set in the Banach space $(\lim_{\mathbb{K}} (X, d^{\alpha}), \cdot \|_{X, L_{(X, d^{\alpha})}})$. Hence, $(\lim_{\mathbb{K}} (X, d^{\alpha}), \| \cdot \|_{X, L_{(X, d^{\alpha})}})$ is a Banach space over \mathbb{K} . Moreover, $\lim_{\mathbb{K}} (X, d^{\beta}) \subseteq \lim_{\mathbb{K}} (X, d^{\alpha})$ whenever $0 < \alpha < \beta \leq 1$. It is known that $\lim_{\mathbb{K}} (X, d^{1})$ separates the points of X. Lipschitz algebras $\lim_{\mathbb{K}} (X, d^{\alpha})$ and little Lipschitz algebras $\lim_{\mathbb{K}} (X, d^{\alpha})$ were first introduced by Sherbert in [12] and [13].

Komowitz and Scheinberg in [8] characterized compact composition operators on $Lip(X, d^{\alpha})$ for $\alpha \in (0, 1]$ and $lip(X, d^{\alpha})$ for (0, 1) whenever (X, d) is a compact metric space.

Jiménez-Vargas and Villegas-Vallecillos in [7] studied and characterized compact composition operators on $\text{Lip}_0(X, d)$ whenever (X, d) is a pointed metric space not necessarily compact, and on Lip(X, d) and lip(X, d) whenever (X, d) is a metric space not necessarily compact.

Jiménez-Vargas in [6] studied weakly compact composition operators on $\operatorname{Lip}_{0,\mathbb{K}}(X,d)$ and $\operatorname{lip}_{0,\mathbb{K}}(X,d)$ whenever (X,d) is a pointed compact metric space, and on $\operatorname{Lip}_{\mathbb{K}}(X,d^{\alpha})$ for $\alpha \in (0,1]$ and $\operatorname{lip}_{\mathbb{K}}(X,d^{\alpha})$ for $\alpha \in (0,1)$ whenever (X,d) is a compact metric space and obtained the following results.

Theorem 1.2 (See [6, Thorem 2.3]). Let (X, d) be a pointed compact metric space, the map $\phi : X \longrightarrow X$ be a base point-preserving Lipschitz mapping on (X, d) and $T : \lim_{0, \mathbb{K}} (X, d) \longrightarrow \lim_{0, \mathbb{K}} (X, d)$ be the composition operator on $\lim_{0, \mathbb{K}} (X, d)$ induced by ϕ . Suppose that the little Lipschitz space $\lim_{0, \mathbb{K}} (X, d)$ separates points uniformly on X. If T is weakly compact, then T is compact.

Theorem 1.3 (See [6, Corollary 2.4]). Let (X, d) be a pointed compact metric space, the map $\phi : X \longrightarrow X$ be a base point-preserving Lipschitz mapping on (X, d) and $T : \operatorname{Lip}_{0,\mathbb{K}}(X, d) \longrightarrow \operatorname{Lip}_{0,\mathbb{K}}(X, d)$ be the composition operator on $\operatorname{Lip}_{0,\mathbb{K}}(X, d)$ induced by ϕ . Suppose that the little Lipschitz space $\operatorname{lip}_{0,\mathbb{K}}(X, d)$ separates points uniformly on X. If T is weakly compact, then T is compact.

Theorem 1.4 (See [6, Remark 2.1]). Let (X, d) be a compact metric space, $E = \text{Lip}_{\mathbb{K}}(X, d^{\alpha})$ for $\alpha \in (0, 1]$ or $E = \text{lip}_{\mathbb{K}}(X, d^{\alpha})$ for $\alpha \in (0, 1)$, $\phi : X \longrightarrow X$ be a Lipschitz mapping on (X, d) and $T : E \longrightarrow E$ be the composition operator on E induced by ϕ . If T is weakly compact, then T is compact.

Let X be a topological space. A self-map $\tau : X \longrightarrow X$ is called a *topological involution* on X if τ is continuous and $\tau(\tau(x)) = x$ for all $x \in X$. Clearly, such τ is a homeomorphism from X onto X.

Let X be a Hausdorff space and τ be a topological involution on X. Then the map τ^* : $C^b(X) \longrightarrow C^b(X)$ defined by $\tau^*(f) = \overline{f} \circ \tau$ is an algebra involution on $C^b(X)$, which is called the *algebra involution on* $C^b(X)$ *induced by* τ . We now define

$$C(X,\tau) = \{ f \in C(X) : \tau^{\star}(f) = f \},\$$

$$C^{b}(X,\tau) = \{ f \in C^{b}(X) : \tau^{\star}(f) = f \}.$$

Then $C(X,\tau)$ is a real subalgebra of $C(X), 1_X \in C(X,\tau), i1_X \notin C(X,\tau)$ and $C(X) = C(X,\tau) \oplus iC(X,\tau)$. Moreover $C^b(X,\tau)$ is a unital self- adjoint uniformly closed real subalgebra of $C^b(X), i1_X \notin C^b(X,\tau), C^b(X) = C^b(X,\tau) \oplus iC^b(X,\tau)$ and

$$\max\{\|f\|_X, \|g\|_X\} \le \|f + ig\|_X \le 2\max\{\|f\|_X, \|g\|_X\}$$

for all $f, g \in C^b(X, \tau)$. Clearly, $C^b(X, \tau) = C(X, \tau)$ if X is compact.

Real Banach algebra $(C(X, \tau), \|\cdot\|_X)$ was defined explicitly by Kulkarni and Limaye in [9], where (X, d) is a compact Hausdorff space and τ is a topological involution on X. For further general facts about $C(X, \tau)$ and certain real subalgebras, we refer to [10].

Let (X, d) be a metric space. A self-map $\tau : X \longrightarrow X$ is called a *Lipschitz involution* on (X, d) if $\tau(\tau(x)) = x$ for all $x \in X$ and τ is a Lipschitz mapping on (X, d).

Note that if τ is a Lipschitz involution on (X, d), then τ is a topological involution on (X, d) and $1 \leq p(\tau) < \infty$.

Let (X, d) be a pointed metric space and τ be a base point-preserving Lipschitz involution on (X, d). Then $\tau^*(\text{Lip}_0(X, d)) = \text{Lip}_0(X, d)$ and $\tau^*(\text{lip}_0(X, d)) = \text{lip}_0(X, d)$. We now define

$$\operatorname{Lip}_0(X, d, \tau) = \{ f \in \operatorname{Lip}_0(X, d) : \tau^*(f) = f \},\$$

$$\operatorname{lip}_{0}(X, d, \tau) = \{ f \in \operatorname{lip}_{0}(X, d) : \tau^{\star}(f) = f \}.$$

In fact $\operatorname{Lip}_0(X, d, \tau) = \operatorname{Lip}_0(X, d) \bigcap C(X, \tau)$ and $\operatorname{lip}_0(X, d, \tau) = \operatorname{lip}_0(X, d) \bigcap C(X, \tau)$. The following result is a modification of [2, Theorem 1.3].

Theorem 1.5. Let (X, d) be a pointed metric space and τ be a base point-preserving Lipschitz involution on (X, d). Suppose that $A = \text{Lip}_0(X, d, \tau)$ and $B = \text{Lip}_0(X, d)$, or, $A = \text{Lip}_0(X, d, \tau)$ and $B = \text{Lip}_0(X, d)$. Then:

- (i) A is a self-adjoint real subspace of $C^b(X, \tau)$ and $B, 1_X \notin A$ and $i1_X \notin A$.
- (ii) $B = A \oplus iA$.
- (iii) For all $f, g \in A$ we have

$$\max\{L_{(X,d)}(f), L_{(X,d)}(g)\} \leq p(\tau)L_{(X,d)}(f+ig)$$
$$\leq 2p(\tau)\max\{L_{(X,d)}(f), L_{(X,d)}(g)\}.$$

- (iv) A is closed in $(B, L_{(X,d)}(\cdot))$ and so $(A, L_{(X,d)}(\cdot))$ is a real Banach space.
- (v) $f \circ \phi \in A$ for all $f \in A$ if $\phi : X \longrightarrow X$ is a base point-preserving Lipschitz mapping on (X, d) with $\tau \circ \phi = \phi \circ \tau$.
- (vi) If τ is the identity map on X, then $\operatorname{Lip}_0(X, d, \tau) = \operatorname{Lip}_{0,\mathbb{R}}(X, d)$ and $\operatorname{Lip}_0(X, d, \tau) = \operatorname{Lip}_{0,\mathbb{R}}(X, d)$.

Let (X, d) be a metric space and the map $\tau : X \longrightarrow X$ be a Lipschitz involution on (X, d). Then $\tau^*(\operatorname{Lip}(X, d^{\alpha})) = \operatorname{Lip}(X, d^{\alpha})$ and $\tau^*(\operatorname{lip}(X, d^{\alpha})) = \operatorname{lip}(X, d^{\alpha})$ for $\alpha \in (0, 1]$. We now define

$$\operatorname{Lip}(X, d^{\alpha}, \tau) = \{ f \in \operatorname{Lip}(X, d^{\alpha}) : \tau^{\star}(f) = f \},\$$
$$\operatorname{lip}(X, d^{\alpha}, \tau) = \{ f \in \operatorname{lip}(X, d^{\alpha}) : \tau^{\star}(f) = f \}.$$

The following result is a modification of [2, Theorem 1.2].

Theorem 1.6. Let (X, d) be a metric space and τ be a Lipschitz involution on (X, d). Suppose that $\alpha \in (0, 1]$ and $A = \text{Lip}(X, d^{\alpha}, \tau)$ and $B = \text{Lip}(X, d^{\alpha})$, or, $A = \text{lip}(X, d^{\alpha}, \tau)$ and $B = \text{lip}(X, d^{\alpha})$. Then :

- (i) A is a real subalgebra of $C^b(X, \tau)$ and B, $1_X \in A$, $i1_X \notin A$.
- (ii) $B = A \oplus iA$.
- (iii) For all $f, g \in A$ we have

$$\max\{\|f\|_{X,L_{(X,d^{\alpha})}}, \|g\|_{X,L_{(X,d^{\alpha})}}\} \leq (p(\tau))^{\alpha} \|f + ig\|_{X,L_{(X,d^{\alpha})}}$$
$$\leq 2 (p(\tau))^{\alpha} \max\{\|f\|_{X,L_{(X,d^{\alpha})}}, \|g\|_{X,L_{(X,d^{\alpha})}}\}.$$

- (iv) A is closed in $(B, \|\cdot\|_{X,L_{(X,d^{\alpha})}})$ and so $(A, \|\cdot\|_{X,L_{(X,d^{\alpha})}})$ is a real Banach space.
- (v) $f \circ \phi \in A$ for all $f \in A$ if $\phi : X \longrightarrow X$ is a Lipschitz mapping on (X, d) with $\phi \circ \tau = \tau \circ \phi$.
- (vi) If τ is the identity map on X, then $\operatorname{Lip}(X, d^{\alpha}, \tau) = \operatorname{Lip}_{\mathbb{R}}(X, d^{\alpha})$ and $\operatorname{lip}(X, d^{\alpha}, \tau) = \operatorname{Lip}_{\mathbb{R}}(X, d^{\alpha})$.

Real Lipschitz algebras $\operatorname{Lip}(X, d^{\alpha}, \tau)$ and real little Lipschitz algebras $\operatorname{lip}(X, d^{\alpha}, \tau)$ were first introduced in [1], whenever (X, d) is a compact metric space. In this case, Ebadian and Ostadbashi characterized compact composition operators on these algebras in [5]. Compact composition operators on $\operatorname{Lip}_0(X, d, \tau)$, $\operatorname{Lip}(X, d, \tau)$ and $\operatorname{lip}(X, d, \tau)$ characterized in [2].

In Section 2, we first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T' on the complex Banach space $E_{\mathbb{C}}$ is weakly compact, where $E_{\mathbb{C}}$ is a suitable complification of E and T' is the complex linear operator on $E_{\mathbb{C}}$ associated with T. Next we show that if T is a weakly compact composition operator on real Lipschitz spaces of complex-valued Lipschitz functions $\operatorname{Lip}_0(X, d, \tau)$ and $\operatorname{lip}_0(X, d, \tau)$ on pointed compact metric space (X, d) with Lipschitz involution τ or on real Lipschitz space of complex-valued Lipschitz functions $\operatorname{Lip}(X, d^{\alpha}, \tau)$ and $\operatorname{lip}(X, d^{\alpha}, \tau)$ on compact metric spaces (X, d) with Lipschitz involution τ for $\alpha \in (0, 1)$, then T is compact under certain conditions. Finally, we show that the class of weakly compact composition operator on real Lipschitz spaces of complex-valued Lipschitz functions on compact metric spaces with Lipschitz involutions is larger than the class of weakly compact composition operators on complex Lipschitz spaces of complex-valued functions on compact metric spaces.

2. **Results**

Let *E* be a real vector space. A complex vector space $E_{\mathbb{C}}$ is called a *complexification* of *E* if there exists an injective real linear map $J : E \longrightarrow E_{\mathbb{C}}$ such that $E_{\mathbb{C}} = J(E) \oplus iJ(E)$. Clearly,

 $E \times E$ with addition and scalar multiplication defined by

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$
 $(a_1, b_1, a_2, b_2 \in E)$
 $(\alpha + i\beta)(a, b) = (\alpha a - \beta b, \beta a + \alpha b)$ $(\alpha, \beta \in \mathbb{R}, a, b \in E),$

is a complexification of E under the injective real linear map $J : E \longrightarrow E \times E$ defined by $J(a) = (a, 0), a \in X$.

Let $(E, \|\cdot\|)$ be a real Banach space. By a similar proof of [3, Proposition I.13.3], one can show that there is a norm $\||\cdot\||$ on $E \times E$ with $\||(a, 0)|\| = \|a\|$ for all $a \in E$ such that

$$\max\{\|a\|, \|b\|\} \leq \||(a, b)|\| \leq 2\max\{\|a\|, \|b\|\}$$

for all $a, b \in E$. Clearly, $(E \times E, ||| \cdot |||)$ is a complex Banach space.

Definition 2.1. Let *E* be a real linear space and $E_{\mathbb{C}}$ be a complexification of *E* under an injective real linear map $J : E \longrightarrow E_{\mathbb{C}}$. Suppose that $T : E \longrightarrow E$ is a real linear operator on *E* and the linear map $T' : E_{\mathbb{C}} \longrightarrow E_{\mathbb{C}}$ defines by

$$T'(J(a) + iJ(b)) = J(T(a)) + iJ(T(b)) \quad (a, b \in E).$$

Clearly, T' is a complex linear operator on $E_{\mathbb{C}}$. We say that T' is the *complex linear operator* on $E_{\mathbb{C}}$ associated with T.

For further general facts about the complexifications of real Banach spaces, we refer to [11].

The following result is a modification of [2, Theorem 2.1] and we use it in the sequel.

Theorem 2.1. Let $(E, \|\cdot\|)$ be a real Banach space and $E_{\mathbb{C}}$ be a complexification of E under an injective real linear map $J : E \longrightarrow E_{\mathbb{C}}$. Suppose that $\||\cdot|\|$ is a norm on $E_{\mathbb{C}}$ with $\||J(a)|\| = \|a\|$ for all $a \in E$ and there exist positive constants k_1 and k_2 such that

$$\max\{\|a\|, \|b\| \leq k_1 \| |J(a) + iJ(b)| \| \leq k_2 \max\{\|a\|, \|b\|\}\}$$

for all $a, b \in E$. Let $T : E \longrightarrow E$ be a bounded real linear operator on E and $T' : E_{\mathbb{C}} \longrightarrow E_{\mathbb{C}}$ be the complex linear operator on $E_{\mathbb{C}}$ associated with T. Then the following statements hold.

- (i) T' is bounded and $||T'||_{op} \leq k_1 k_2 ||T||_{op}$.
- (ii) T' is compact if and only if T is compact.

For a Banach space E over \mathbb{K} , we denote by E^* the dual space of E.

The following lemma is a modification [11, Theorem 7] and its proof is straightforward. We will use this lemma in the next theorem.

Lemma 2.2. Let $(E, \|\cdot\|)$ be a real linear Banach space and $E_{\mathbb{C}}$ be a complexification of Eunder an injective real linear map $J : E \longrightarrow E_{\mathbb{C}}$. Suppose that $\||\cdot\|\|$ is a norm on $E_{\mathbb{C}}$ with $\||J(a)|\| = \|a\|$ for all $a \in E$ and there exist positive constant k_1 and k_2 such that

$$\max\{\|a\|, \|b\|\} \leq k_1 \||J(a) + iJ(b)|\| \leq k_2 \max\{\|a\|, \|b\|\}$$

for all $a, b \in E$.

(i) If for
$$\lambda, \mu \in E^*$$
 the map $\lambda \diamond \mu : E_{\mathbb{C}} \longrightarrow \mathbb{C}$ defines by

$$(\lambda \diamond \mu)(J(a) + iJ(b)) = (\lambda(a) - \mu(b)) + i(\mu(a) + \lambda(b)) \quad (a, b \in E),$$

then $\lambda \diamond \mu \in (E_{\mathbb{C}})^*$ and

$$\|\lambda \diamond \mu\|_{op} \leq 2k_1(\|\lambda\|_{op} + \|\mu\|_{op}).$$

(ii) Let $\|\cdot\|_*$ be a norm on $E^* \times E^*$, as a complexification of E^* , with $\|(\lambda, 0)\|_* = \|\lambda\|_{op}$ for all $\lambda \in E^*$ and

$$\max\{\|\lambda\|_{op}, \|\mu\|_{op}\} \leq \|(\lambda, \mu)\|_{\star} \leq 2 \max\{\|\lambda\|_{op}, \|\mu\|_{op}\}$$

for all $\lambda, \mu \in E^*$. Then the map $\Psi : E^* \times E^* \longrightarrow (E_{\mathbb{C}})^*$ defined by

 $\Psi(\lambda,\mu) = \lambda \diamond \mu \qquad (\lambda,\mu \in E^{\star}),$

is a bijective complex linear operator and continuous from the complex Banach space $(E^* \times E^*, \|\cdot\|_*)$ onto the complex Banach space $((E_{\mathbb{C}})^*, \|\cdot\|_{op})$. Moreover, Ψ^{-1} is a bounded linear operator from $((E_{\mathbb{C}})^*, \|\cdot\|_{op})$ to $(E^* \times E^*, \|\cdot\|_*)$.

Theorem 2.3. Let $(E, \|\cdot\|)$ be a real linear Banach space and $E_{\mathbb{C}}$ be a Complexification of Eunder an injective real linear map $J : E \longrightarrow E_{\mathbb{C}}$. Suppose that $\||\cdot\|\|$ is a norm on $E_{\mathbb{C}}$ with $\||J(a)|\| = \|a\|$ for all $a \in E$ and there exist positive constants k_1 and k_2 such that

 $\max\{\|a\|, \|b\|\} \leq k_1 \||J(a) + iJ(b)|\| \leq k_2 \max\{\|a\|, \|b\|\}$

for all $a, b \in E$. Let $T : E \longrightarrow E$ be a bounded real linear operator on E and $T' : E_{\mathbb{C}} \longrightarrow E_{\mathbb{C}}$ be the complex linear operator on $E_{\mathbb{C}}$ associated with T. Then T is a weakly compact operator on the real Banach space $(E, \|\cdot\|)$ if and only if T' is weakly compact operator on the complex Banach space $(E_{\mathbb{C}}, \||\cdot\|)$.

Proof. Let $\|\cdot\|_{\star}$ be a norm on $E^{\star} \times E^{\star}$, as a complexification of E^{\star} , with $\||(\lambda, 0)|\| = \|\lambda\|_{op}$ for all $\lambda \in E^{\star}$ and

$$\max\{\|\lambda\|_{op}, \|\mu\|_{op}\} \leq \|(\lambda, \mu)\|_{\star} \leq 2\max\{\|\lambda\|_{op}, \|\mu\|_{op}\}$$

for all $\lambda, \mu \in E^*$. Define the map $\Psi : E^* \times E^* \longrightarrow (E_{\mathbb{C}})^*$ by

$$\Psi(\lambda,\mu) = \lambda \diamond \mu \qquad (\lambda,\mu \in E^{\star}),$$

where $\lambda \diamond \mu \in (E_{\mathbb{C}})^*$ defines by

$$(\lambda \diamond \mu)(J(a) + iJ(b)) = (\lambda(a) - \mu(b)) + i(\mu(a) + \lambda(b)), \qquad (a, b \in E).$$

By Lemma 2.2, Ψ is a bijection complex linear operator and a homeomorphism from the complex Banach space $(E^* \times E^*, \|\cdot\|_*)$ onto the complex Banach space $((E_{\mathbb{C}})^*, \|\cdot\|_{op})$.

We first assume that T is weakly compact. To prove the weakly compactness of T', let $\{c_n\}_{n=1}^{\infty}$ be a bounded sequence in $(E_{\mathbb{C}}, ||| \cdot |||)$. For each $n \in \mathbb{N}$ there exists $(a_n, b_n) \in E \times E$ such that $c_n = J(a_n) + iJ(b_n)$. It is clear that $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are bounded sequence in $(E, || \cdot ||)$. Since T is a weakly compact linear operator on $(E, || \cdot ||)$, by Theorem 1.1, there exist strictly increasing functions $q, r : \mathbb{N} \longrightarrow \mathbb{N}$ and elements $a, b \in E$ such that

$$\lim_{k \to \infty} Ta_{q(k)} = a \qquad \text{(in } E \text{ with the weak-topology),}$$
$$\lim_{k \to \infty} Tb_{r(k)} = b \qquad \text{(in } E \text{ with the weak-topology).}$$

For each $k \in \mathbb{N}$, set $n_k = r(q(k))$. Then $\{a_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$, $\{b_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{b_n\}_{n=1}^{\infty}$,

(2.1)
$$\lim_{k \to \infty} Ta_{n_k} = a \qquad \text{(in } E \text{ with the weak-topology),}$$

and,

(2.2)
$$\lim_{k \to \infty} Tb_{n_k} = b \qquad \text{(in } E \text{ with the weak-topology)}.$$

Let $\Lambda \in (E_{\mathbb{C}})^*$. Then there exist $\lambda, \mu \in E^*$ such that

(2.3)
$$\Lambda = \Psi(\lambda, \mu) = \lambda \diamond \mu.$$

AJMAA

Now we have

(2.4)
$$\lim_{k \to \infty} \lambda(a_{n_k}) = \lambda(a),$$

and,

(2.5)
$$\lim_{k \to \infty} \mu(b_{n_k}) = \mu(b),$$

by (2.1) and (2.2), respectively. From (2.4), (2.5) and (2.3) we get

(2.6)
$$\lim_{k \to \infty} \Lambda(T'C_{n_k}) = \Lambda(J(a) + iJ(b)).$$

Since $(E_{\mathbb{C}})^*$ separates the point of $E_{\mathbb{C}}$ and (2.6) holds for each $\Lambda \in (E_{\mathbb{C}})^*$, we conclude that

(2.7)
$$\lim_{k \to \infty} T'(C_{n_k}) = J(a) + iJ(b) \quad \text{(in } E_{\mathbb{C}} \text{ with the weak-topology)}.$$

This implies that T' is weakly compact operator on $(E_{\mathbb{C}}, ||| \cdot |||)$ by Theorem 1.1.

We now assume that T' is a weakly compact operator on $(E_{\mathbb{C}}, ||| \cdot |||)$. To prove the weakly compactness of T on $(E, || \cdot ||)$, let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence in $(E, || \cdot ||)$. It is clear that $\{J(a_n)\}_{n=1}^{\infty}$ is a bounded sequence in $(E_{\mathbb{C}}, ||| \cdot |||)$. Since $T' : E_{\mathbb{C}} \longrightarrow E_{\mathbb{C}}$ is a weakly compact linear operator on $E_{\mathbb{C}}$, by Theorem 1.1, there exist a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{k=1}^{\infty}$ and an element $c \in E_{\mathbb{C}}$ such that

(2.8)
$$\lim_{k \to \infty} T'(J(a_{n_k})) = c \quad \text{(in } E_{\mathbb{C}} \text{ with the weak-topology)}.$$

Since $c \in E_{\mathbb{C}}$, there exists $(a, b) \in E \times E$ such that

$$(2.9) c = J(a) + iJ(b).$$

We claim that

 $\lim_{k \to \infty} T(a_{n_k}) = a \quad \text{(in } E \text{ with the weak-topology).}$

Let $\lambda \in E^*$. Set $\Lambda = \Psi(\lambda, 0)$. Then $\Lambda \in (E_{\mathbb{C}})^*$. Hence, by (2.8) we have

(2.10)
$$\lim_{k \to \infty} \Lambda(T'(J(a_{n_k}))) = \Lambda(c).$$

From (2.10) and (2.9), we get

$$\lim_{k \to \infty} (\lambda \diamond 0) (J(Ta_{n_k})) = (\lambda \diamond 0) (J(a) + iJ(b))$$

and so

(2.11)
$$\lim_{k \to \infty} \lambda(Ta_{n_k}) = \lambda(a).$$

Since E^* separates the points of E and (2.11) holds for each $\lambda \in E^*$, we deduce that

 $\lim_{k \to \infty} T(a_{n_k}) = a \quad \text{(in } E \text{ with the weak-topology)}.$

Therefore, T is weakly compact by Theorem 1.1.

Theorem 2.4. Let (X, d) be a pointed compact metric space, τ be a base point-preserving Lipschitz involution on (X, d) and $A = \text{Lip}_0(X, d, \tau)$ or $A = \text{lip}_0(X, d, \tau)$. Suppose that the complex little Lipschitz space $\text{lip}_0(X, d)$ separates points uniformly on X. Let $\phi : X \longrightarrow X$ be a base point-preserving Lipschitz mapping on (X, d) with $\tau \circ \phi = \phi \circ \tau$ and $T : A \longrightarrow A$ be the composition operator on A induced by ϕ . If T is weakly compact, then T is compact. *Proof.* We assume that $A_{\mathbb{C}} = \operatorname{Lip}_0(X, d)$ if $A = \operatorname{Lip}_0(X, d, \tau)$ and $A_{\mathbb{C}} = \operatorname{lip}_0(X, d, \tau)$ if $A = \operatorname{Lip}_0(X, d)$. By Theorem 1.5, $A_{\mathbb{C}}$ is a complexification of A under the injective real linear map $J : A \longrightarrow A_{\mathbb{C}}$ defined by $J(f) = f(f \in A), (A, L_{(X,d)}(\cdot))$ is a real Banach space and $L_{(X,d)}(\cdot)$ is a norm on the complex vector space $A_{\mathbb{C}}$ with $L_{(X,d)}(J(f)) = L_{(X,d)}(f)$ for all $f \in A$ and

$$\max\{L_{(X,d)}(f), L_{(X,d)}(g)\} \leq p(\tau)L_{(X,d)}(J(f) + iJ(g))$$
$$\leq 2p(\tau)\max\{L_{(X,d)}(f), L_{(X,d)}(g)\}$$

for all $f, g \in A$. Suppose that T is weakly compact. Let $T' : A_{\mathbb{C}} \longrightarrow A_{\mathbb{C}}$ be the complex linear operator on $A_{\mathbb{C}}$ associated with T. Then T' is weakly compact by Theorem 2.3. It is easy to see that T' is the composition operator on $A_{\mathbb{C}}$ induced by ϕ . Since $\lim_{t \to 0} (X, d)$ separates points uniformly on X, we deduce that T' is compact by Theorem 1.2. This implies that $T : A \longrightarrow A$ is compact by Theorem 2.1.

By part (vi) of Theorem 1.5, it is clear that Theorem 2.4 extends [6, Theorem 2.3] and [6, Corollary 2.4] whenever $\mathbb{K} = \mathbb{R}$.

Theorem 2.5. Let (X, d) be a compact metric space, τ be a Lipschitz involution on (X, d), $\alpha \in (0, 1)$ and $A = \text{Lip}(X, d^{\alpha}, \tau)$ or $A = \text{lip}(X, d^{\alpha}, \tau)$. Let $\phi : X \longrightarrow X$ be a Lipschitz mapping on (X, d) with $\tau \circ \phi = \phi \circ \tau$ and $T : A \longrightarrow A$ be the composition operator on A induced by ϕ . If T is weakly compact, then T is compact.

Proof. We assume that $A_{\mathbb{C}} = \operatorname{Lip}(X, d^{\alpha})$ if $A = \operatorname{Lip}(X, d^{\alpha}, \tau)$ and $A_{\mathbb{C}} = \operatorname{lip}(X, d^{\alpha})$ if $A = \operatorname{lip}(X, d^{\alpha}, \tau)$. By Theorem 1.6, $A_{\mathbb{C}}$ is a complexification of A under the injective real linear map $J : A \longrightarrow A_{\mathbb{C}}$ defined by J(f) = f $(f \in A), (A, \|\cdot\|_{X, L_{(X, d^{\alpha})}})$ is a real Banach space and $\|\cdot\|_{X, L_{(X, d^{\alpha})}}$ is a norm on the complex vector space $A_{\mathbb{C}}$ with $\|J(f)\|_{X, L_{(X, d^{\alpha})}} = \|f\|_{X, L_{(X, d^{\alpha})}}$ for all $f \in A$ and

$$\max\{\|f\|_{X,L_{(X,d^{\alpha})}}, \|g\|_{X,L_{(X,d^{\alpha})}}\} \leq (p(\tau))^{\alpha} \|J(f) + (J(g))\|_{X,L_{(X,d^{\alpha})}}$$
$$\leq 2(p(\tau))^{\alpha} \max\{\|f\|_{X,L_{(X,d^{\alpha})}}, \|g\|_{X,L_{(X,d^{\alpha})}}\}$$

for all $f, g \in A$. Suppose that T is weakly compact. Let $T' : A_{\mathbb{C}} \longrightarrow A_{\mathbb{C}}$ be the complex linear operator on $A_{\mathbb{C}}$ associated with T. Then T' is weakly compact by Theorem 2.3. It is easy to see that T' is the composition operator on $A_{\mathbb{C}}$ induced by ϕ . By Theorem 1.4, T' is compact. This implies that T is compact by Theorem 2.1.

By part (vi) of Theorem 1.6, it is clear that Theorem 2.5 extends Theorem 1.4 in the case $\mathbb{K} = \mathbb{R}$.

Now, we show that the class of weakly compact composition operators on real Lipschitz spaces of complex-valued functions on compact metric spaces with Lipschitz involutions is larger than the class of complex linear operators on complex Lipschitz spaces of complex-valued functions on compact metric spaces.

Theorem 2.6. Let (X, d) be a compact metric space, $B = \text{Lip}(X, d^{\alpha})$ for $\alpha \in (0, 1]$ or $B = \text{lip}(X, d^{\alpha})$ for $\alpha \in (0, 1]$ and $T : B \longrightarrow B$ be a unital complex endomorphism of B induced by the Lipschitz mapping ϕ on (X, d). Let $Y = X \times \{0, 1\}, \rho$ be the metric on Y defined by $\rho((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), |y_1 - y_2|\}$ and $\tau : Y \longrightarrow Y$ be the Lipschitz involution on (Y, ρ) defined by

 $\tau(x,0) = (x,1), \quad \tau(x,1) = (x,0) \quad (x \in X).$

Suppose that $A = \operatorname{Lip}(Y, \rho^{\alpha}, \tau)$ if $B = \operatorname{Lip}(X, d^{\alpha})$ and $A = \operatorname{lip}(Y, \rho^{*}, \tau)$ if $B = \operatorname{lip}(X, d^{\alpha})$. Let $\phi : Y \longrightarrow Y$ be the self-map of Y defined by

$$\psi(x,0) = (\phi(x),0), \quad \psi(x,1) = (\phi(x),1) \quad (x \in X).$$

Then the following statements hold.

- (i) ψ is a Lipschitz involution on (Y, ρ) and $\psi \circ \tau = \tau \circ \psi$.
- (ii) If $S : A \longrightarrow A$ is the composition endomorphism of A induced by ψ , then S is weakly compact if and only if T is weakly compact.

Proof. Clearly, (i) holds. We prove (ii) in the case $B = \text{Lip}(X, d^{\alpha})$ and $A = \text{Lip}(Y, \rho^{\alpha}, \tau)$ for $\alpha \in (0, 1]$. Define the map $\Lambda : B \longrightarrow A$ by

$$(\Lambda f)(x,0) = f(x) \quad (f \in B, x \in X),$$

$$(\Lambda f)(x,1) = \overline{f(x)} \quad (f \in B, x \in X).$$

Then Λ is an injective bounded real linear operator from $(B, \|\cdot\|_{L_{(X,d^{\alpha})}})$, regarded as a real Banach algebra, onto $(A, \|\cdot\|_{Y,L_{(Y,\rho^{\alpha})}})$. By open mapping theorem for real Banach spaces, Λ^{-1} is a bounded linear operator from $(A, \|\cdot\|_{Y,L_{(Y,\rho^{\alpha})}})$ into $(B, \|\cdot\|_{X,L_{(X,d^{\alpha})}})$. We can easily show that $\Lambda \circ T \circ \Lambda^{-1} = S$. Therefore, S is weakly compact if only if T is weakly compact.

To prove (ii) in the case $B = \lim(X, d^{\alpha})$ and $A = \lim(Y, \rho^{\alpha}, \tau)$ for $\alpha \in (0, 1)$, it is sufficient that we apply $\Gamma = \Lambda|_{\lim(X, d^{\alpha})}$ instead of Λ .

According to Theorem 2.5, we deduce that Theorem 2.6 extends Theorem 1.4 whenever $K = \mathbb{C}$.

REFERENCES

- D. ALIMOHAMMADI and A. EBADIAN, Hedberg's theorem in real Lipschitz Algebras, *Indian J. Pure Appl. Math.*, 32(10)(2001), pp. 1470-1493.
- [2] D. ALIMOHAMMADI and S. SEFIDGAR, Compact composition operators on real Banach spaces of complex-valued Lipschitz functions, *Journal of Linear and Topological Algebra*, 3(2)(2014), pp. 85-101.
- [3] F. F. BONSALL and J. DUNCAN, Complete Normed Algebras, Springer-Verlag, 1973.
- [4] N. DUNFORD and J. SCHWARTZ, Linear Operators, *Interscience Publishers*, Inc., New York, 1957.
- [5] A. EBADIAN and S. OSTADBASHI, Compact homomorphisms of real Lipschitz algebras, *Southeast Asian Bull. Math.*, 30(4)(2006), pp. 653-661.
- [6] A. JIMÉNEZ-VARGAS, Weakly compact composition operators on spaces of Lipschitz functions, *Positivity*, DOI 10-1007/s 11117-015-0329-5 (2015), 9 pages.
- [7] A. JIMÉNEZ-VARGAS and M. VILLEGAS-VALLECILLOS, Compact composition operators on noncompact Lipschitz spaces, J. Math. Anal. Appl., (398)(1)(2013), pp. 221-229.
- [8] H. KAMOWITZ and S. SCHEINBERG, Some properties of endomorphisms of Lipschitz algebras, *Studia Math.*, **96** (1990), pp. 61-67.
- [9] S. H. KULKARNI and B. V. LIMAYE, Gleason parts of real function algebras, *Canad. J. Math.*, 33 (1)(1981), pp. 181-200.
- [10] S. H. KULKARNI and B. V. LIMAYE, Real Function Algebras, Marcel Dekker, New York, 1992.
- [11] G. A. MUÑOZ, Y. SARANTOPOULOS and A. TONGE, Complexifications of real Banach spaces, Polynomials and Multilinear maps, *Studia Math.*, 134(1)(1999), pp. 1-33.
- [12] D. R. SHERBERT, Banach algebras of Lipschitz functions, *Pacific J. Math.*, 13 (1963), pp. 1387-1399.
- [13] D. R. SHERBERT, The structure of ideals and point derivations of Banach algebras of Lipschitz functions, *Trans. Amer. Math. Soc.*, **111**(1964), pp. 240-272.

[14] N. WEAVER, Lipschitz Algebras, World Scientific Publishing Co., New Jersey, 1999.