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ABSTRACT. Let ut − ∇2u = f(x) :=
∑M

m=1 amδ(x − xm) in D × [0,∞), whereD ⊂ R3

is a bounded domain with a smooth connected boundaryS, am = const, δ(x − xm) is the
delta-function. Assume thatu(x, 0) = 0, u = 0 on S. Given the extra datau(yk, t) := bk(t),
1 ≤ k ≤ K, can one findM,am, andxm? HereK is some number. An answer to this question
and a method for findingM,am, andxm are given.
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2 A. G. RAMM

1. I NTRODUCTION

Let D ⊂ R3 be a bounded domain with a smooth connected boundaryS. Consider the
problem

(1.1) ut −∇2u = f(x) =
M∑

m=1

amδ(x− xm) (x, t) ∈ D × [0,∞),

(1.2) u(x, 0) = 0, u|S = 0,

whereM, am andxm are not known,am are some numbers. Thus, we want to recover a special
type of source from some extra data. The standard data from which the time-independent source
f of general type can be recovered uniquely are the datau(x, T ), whereT > 0 is an arbitrary
fixed number. Let us first describe the solution to this problem, which is known, but we present
this solution in the form useful for our purposes. LetLu = ∇2 be the Dirichlet Laplacian inD,
and letvj be its normalized inL2(D) eigenfunctions:

Lvj + λjvj = 0 in D, vj|S = 0,

whereλj > 0 are the eigenvalues,limj→∞ λj = ∞. The unique solution to problem (1.1)-(1.2)
is

(1.3) u(x, t) =
∞∑

j=1

1− e−λjt

λj

P (j)∑
p=1

vjp(x)cjp,

whereP (j) is the multiplicity of the eigenvalueλj, {vjp}1≤p≤P (j) is the orthonormal eigenbasis
in the eigenspace corresponding to the eigenvalueλj, andcjp = (f, vjp), where(h, g) is the
inner product inL2(D). If the numberscjp are known, then the unknownf can be uniquely
recovered by equation (1), namely,

f = ut − Lu,

whereu is given by formula (1.3). Therefore if

u(x, T ) =
∞∑

j=1

1− eλjT

λj

P (j)∑
p=1

vjp(x)cjp

is known, then the coefficients

(u(x, T ), vjp) =
1− eλjT

λj

cjp

can be calculated, then the numberscjp can be calculated, thenu(x, t) can be calculated by
formula (1.3) for allx ∈ D and allt > 0, and, finally,f can be calculated by equation (1.1)
(see, e.g., [1], where other inverse problems for parabolic equations are also considered).

The aim of this note is to consider different data, the data which are often easier to measure
in practice. Namely, we assume that the extra data are the functionsbk(t), 1 ≤ k ≤ K, whereK
is some number, andbk(t) := u(yk, t) are known for all sufficiently larget > 0 at some points
yk ∈ D, which we can choose and at which we can measure the temperature at all timest ≥ 0.

The inverse problem is:
Can one determineM, am and xm from the databk(t) known for all t ≥ 0 and all k =

1, 2, . . . K?
How large should one chooseK?
Our main result is an answer to these questions. Let us assume that

(1.4) K := max
j

P (j) < ∞.
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This assumption is valid not for all domains. For example, ifD is a ball, thenP (j) = 2j + 1,
so thatP (j) → ∞ asj → ∞. While generically one expectsK < ∞, evenK = 1, but for
domains with certain symmetry the multiplicity of eigenvalues may be not uniformly bounded
as a function ofj, as the example of a ball shows.

For a general sourcef(x), which is a function of three variables,x1, x2, x3, intuitively one
does not expect that unique recovery off is possible from the data{bk(t)}1≤k≤K consisting of
finitely many functions of one variablet. However, for the special sourcef , defined in equation
(1.1), it is possible to recoverf , i.e., the numberM , theM numbersam, and theM points
(vectors)xm from the above data provided that (1.4) holds.

Moreover, ifK = 1, then one can determine an arbitrary sourcef ∈ C2
0(D) from just one

data functionu(y1, t) known for all sufficiently larget > 0 at a suitably chosen pointy1. Thus,
if P (j) = 1 for all j, then one functionu(y1, t) of one variablet determines a functionf of
three variablesx = (x1, x2, x3) uniquely provided thaty1 ∈ D is suitably chosen.

Indeed, ifP (j) = 1 for all j, then

u(y1, t) =
∞∑

j=1

1− e−λj

λj

vj(y1)cj.

As t → ∞, one can determine uniquely from the above data the numbersvj(y1)cj for all j. If
y1 is chosen so thatvj(y1) 6= 0 for all j, then the numberscj are uniquely determined for allj.
Consequently, the function

u(x, t) =
∞∑

j=1

1− e−λjt

λj

vj(x)cj

is uniquely determined for allx ∈ D because the eigenfunctionsvj are known. Therefore, by
equation (1.1), the sourcef is uniquely determined.

Theorem 1.1.If (1.4) holds then one can choose pointsyk so that the data{u(yk, t)}1≤k≤K,∀t≥0

determineM , am, andxm uniquely.

We will outline a method for findingM , am, andxm. The main tool in the proof are the
following two lemmas.

Lemma 1.2. If vp, 1 ≤ p ≤ K, is a linearly independent system of continuous functions, defined
in a domainD, then there exist pointsyk ∈ D, 1 ≤ k ≤ K, such that the matrix[vp(yk)]1≤p,k≤K

is nonsingular.

Lemma 1.3. The data{bk(t)}1≤k≤K,∀t≥0 determine the numberscjp in (1.3) uniquely.

Remark 1.1. Our results and proofs can be easily extended to the case of other selfadjoint
boundary conditions, inhomogeneous boundary conditions, non-zero initial conditions, and a
general selfadjoint second-order elliptic operatorsL.

In Section 2 proofs are given.

2. PROOFS

Proof of Lemma 1.2.If K = 1 then the conclusion of Lemma 1.2 is true, because if it fails, then
v1(y) = 0 for everyy ∈ D, which contradicts the linear independence. Assume that Lemma
1.2 holds for allk ≤ K and let us prove that it holds fork ≤ K + 1. DenoteyK+1 := y.
Assuming that Lemma 1.2 fails, one gets∆K+1 := det1≤p,k≤K+1 vp(yk) = 0 for all yK+1 = y,
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anddet1≤p,k≤K vp(yk) := ∆K 6= 0. A cofactor expansion of the determinant∆K+1 yields:

(2.1) 0 = ∆K+1 = ∆KvK+1(y) +
K∑

p=1

vp(y)Ap, ∀y ∈ D,

whereAp are cofactors which do not depend ony. Because∆K 6= 0 does not depend ony,
equation (2.1) implies thatvK+1(y) is a linear combination ofvp(y), 1 ≤ p ≤ K. This con-
tradicts the linear independence of the systemv1, . . . vK+1. This contradiction proves Lemma
1.2.

Proof of Lemma 1.3.Using (1.3), one gets

(2.2) u(yk, t) =
∞∑

j=1

1− e−λjt

λj

P (j)∑
p=1

vjp(yk)cjp.

One hasλ1 < λ2 < . . . , limj→∞ λj = ∞. Therefore the data

(2.3) Bk(t) := ut(yk, t) =
∞∑

j=1

e−λjt

P (j)∑
p=1

vjp(yk)cjp

allow one to find

bjk :=

P (j)∑
p=1

vjp(yk)cjp

for all j and allk = 1, 2, . . . K. Namely:

(2.4) bjk = lim
t→∞

eλjt[ut(yk, t)−
j−1∑
i=1

e−λit

P (i)∑
p=1

vip(yk)cip].

For a fixedj we have a linear algebraic system for finding the numberscjp:

(2.5) bjk =

P (j)∑
p=1

vjp(yk)cjp.

We have assumed thatP (j) ≤ K < ∞. By Lemma 1.2, we can chooseyk such that for any
fixed j the determinantdet vjp(yk) 6= 0, so that the numberscjp are uniquely determined by
linear algebraic system (2.5). Lemma 1.3 is proved.

Proof of Theorem 1.1.From formulas (1.1) and (1.3) one gets:

(2.6)
∞∑

j=1

P (j)∑
p=1

vjp(x)cjp =
M∑

m=1

amδ(x− xm),

so that

(2.7) cjp =
M∑

m=1

amvjp(xm).

If the numberscjp are known for allj and all p, 1 ≤ p ≤ P (j), thenu(x, t) is uniquely
determined by formula (1.3), and then formula (1.1) determines uniquelyM , am andxm. Thus,
Theorem 1.1 will be proved if we prove that all the numberscjp are uniquely determined by the
data. But this is the conclusion of Lemma 1.3. Theorem 1.1 is proved.
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Remark 2.1. A concrete choice ofyk can be made for eigenfunctions known analytically. For
example, ifD is a cylinder0 ≤ ρ ≤ 1, 0 ≤ z ≤ π, thenvj1 = κmns cos(mφ)Jm(νmnρ) sin(sz),
whereκmns is the norming constant,Jm(ρ) is the Bessel function,νmn are its zeros,s =
1, 2, . . . , m = 0, 1, 2, . . . , (ρ, φ) are polar coordinates on the planex1, x2, z = x3, vj2 is defined
similarly to vj1 with cos(mφ) replaced bysin(mφ), andm = 1, 2, . . . , the role ofj is taken by
the setj = {m, n, s}, λj = ν2

mn + s2, andK = 2 in this example. The choice ofyk can be done
in many ways. For example, chooseyk = (ρk, φk, zk), k = 1, 2, so thatsin[m(φ1 − φ2)] 6= 0
for all m = 1, 2, . . . , z1 = z2 = ζ andsin(sζ) 6= 0 for all s = 1, 2, . . . , ρ1 = ρ2 = r and
Jm(νmnr) 6= 0 for all m = 0, 1, 2 . . . and alln = 1, 2, . . . . Then the determinant used in the
proof of Theorem 1.1 does not vanish.

Our arguments show that in this example, whenK = 2, one can recover uniquelyM, am,
andxm from two data functionsu(yk, t), known for allt > 0 and for a suitably chosen points
yk, k = 1, 2.

In the proof of Theorem 1.1 we assume that the data are exact. The inverse problem under
discussion is ill-posed: small perturbation of the data may threw the data out of the set of
admissible data. For example, the solutionu(x, t) is infinitely differentiable (even analytic)
with respect tot in the regiont > 0, while the perturbed datau(yk, t) do not have this property,
in general. The ill-posedness of the inverse problem is also seen in the algorithm for finding
the quantitiesM, am, andxm. For example, although it is possible to find a pointζ such that
sin(sζ) 6= 0 for all s = 1, 2, . . . , i.e., sζ 6= qπ, whereq is an integer, but the set of pointsqπ

s
is dense in(0, π) whens andq run through the set of all positive integers. Therefore, for large
s, n, m, one has a small divisors problem.

Similarly one can consider the case whenD is a box with sidesaiπ, i = 1, 2, 3, whereai are
such that the equationλj =

∑3
i=1

n2
i

a2
i

has a unique solution in integersni. This happens if, for
example, the numbersai are mutually incommensurate. In this case the equation

3∑
i=1

n2
i

a2
i

=
3∑

i=1

m2
i

a2
i

,

whereni andmi are integers, impliesni = mi. Consequently,P (j) = 1, and one extra data
u(y1, t) determines uniquely the source. The eigenfunctions of the Dirichlet Laplacian in this
case are known:

vj := vn1,n2,n3 = µn1,n2,n3
sin(

n1x1

a1

) sin(
n2x2

a2

) sin(
n3x3

a3

),

whereµn1,n2,n3
are the known norming constants. Thus, in this case one can choosey1, such

thatvj(y1) 6= 0 for all j, i.e., for alln1, n2 andn3.

After this paper has been finished, the author learned of a recent paper "Identification of a
point source in a linear advection-dispersion-reaction equation: application to a pollution source
problem" by A.Badia et. al., Inverse Problems, 21, (2005), 1121-1136. In this paper a simpler
problem with one-dimensional heat operator is considered and different arguments are used to
investigate this simpler problem. If the heat operator is one-dimensional, then the difficulty with
the multiplicityK > 1 of the eigenfunctions does not arise.
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