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ABSTRACT. Letu;, — V?u = f(z) := 2%:1 amd(x — ) In D x [0,00), whereD C R3

is a bounded domain with a smooth connected boundary,, = const, é(x — x,,) is the
delta-function. Assume that(xz,0) = 0, w = 0 on S. Given the extra data(yx, t) := by(t),

1 < k < K, can one findV, a,,, andx,,? HereK is some number. An answer to this question
and a method for findingd/, a.,,, andzx,, are given.
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2 A. G. RaAMM

1. INTRODUCTION

Let D C R? be a bounded domain with a smooth connected bounfarfonsider the
problem

M
(1.1) uy — Viu = f(z) = Z A0 (T — Xy (x,t) € D x [0, 00),
(1.2) u(z,0) =0, ulg =0,

whereM, a,, andzx,, are not knowng,,, are some numbers. Thus, we want to recover a special
type of source from some extra data. The standard data from which the time-independent source
f of general type can be recovered uniquely are the datal’), whereT > 0 is an arbitrary

fixed number. Let us first describe the solution to this problem, which is known, but we present
this solution in the form useful for our purposes. et = V* be the Dirichlet Laplacian i,

and letv; be its normalized ir.?( D) eigenfunctions:

LUj+)\jUj =0 in D, Uj|S:O,

where); > 0 are the eigenvalueim; ., A\; = co. The unique solution to problern (1.1)-(L.2)
is

o 1t PO
(1.3) u(zw,t) = Z . Z Vjp(T)Cjp,

j=1 J p=1
whereP(j) is the multiplicity of the eigenvalug;, {v;, }1<,<p(;) is the orthonormal eigenbasis
in the eigenspace corresponding to the eigenvalyendc;, = (f,v;,), where(h, g) is the
inner product inZ?(D). If the numbers:;, are known, then the unknowfican be uniquely
recovered by equation (1), namely,

f = Ut — LU,

whereu is given by formula[(1.3). Therefore if

o | T PO)
u(z,T) = Z SV Z vjp(T)Cjp
j=1 N
is known, then the coefficients
1 — eAjT

(w(@, T),vjp) = =
J

can be calculated, then the numbeys can be calculated, them(z, t) can be calculated by
formula (1.3) for allz € D and allt > 0, and, finally, f can be calculated by equatign (1.1)
(see, e.qg./]1], where other inverse problems for parabolic equations are also considered).

The aim of this note is to consider different data, the data which are often easier to measure
in practice. Namely, we assume that the extra data are the funétignsl < & < K, wherekK
is some number, ang (t) := u(yx, t) are known for all sufficiently large > 0 at some points
yr € D, which we can choose and at which we can measure the temperature at all tnles

The inverse problem is:

Can one determiné/, a,, and z,,, from the datab,(¢) known for allt > 0 and all k =
1,2,...K?

How large should one choog€?

Our main result is an answer to these questions. Let us assume that

(1.4) K :=max P(j) < 0.
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This assumption is valid not for all domains. For exampld)ifs a ball, thenP(j) = 25 + 1,
so thatP(j) — oo asj — oo. While generically one expects < oo, evenK = 1, but for
domains with certain symmetry the multiplicity of eigenvalues may be not uniformly bounded
as a function ofj, as the example of a ball shows.

For a general sourcg(x), which is a function of three variables,, x4, z3, intuitively one
does not expect that unique recoveryfas possible from the datgb, (¢) }1<x<x consisting of
finitely many functions of one variabte However, for the special sourge defined in equation
(L.3), it is possible to recovef, i.e., the numben/, the A/ numbersa,,, and theA/ points
(vectors)z,,, from the above data provided that (1.4) holds.

Moreover, if K = 1, then one can determine an arbitrary soufce C3(D) from just one
data functionu(y,, t) known for all sufficiently large > 0 at a suitably chosen poipt. Thus,
if P(j) = 1 for all j, then one function:(y;,t) of one variablet determines a functiorf of
three variables = (x1, z2, 23) uniquely provided thag;, € D is suitably chosen.

Indeed, ifP(j) = 1 for all j, then

“l—e N
u(y,t) = e
; J

J=1

Ast — oo, one can determine uniquely from the above data the numbgygc; for all j. If
vy, is chosen so that;(y;) # 0 for all j, then the numbers; are uniquely determined for all
Consequently, the function

u(z,t) = Z

1 — e—/\jt

¥ v;(T)c;

is uniquely determined for alt € D because the eigenfunctionsare known. Therefore, by
equation|[(1.11), the sourgéis uniquely determined.

Theorem 1.1.If ) holds then one can choose poigtso that the datd (v, t) }1<k<r, vi>o
determineM, a,,, andzx,, uniquely.

We will outline a method for findingV/, a,,, andx,,. The main tool in the proof are the
following two lemmas.

Lemmal.2.lfv,, 1 <p < K,isalinearly independent system of continuous functions, defined
in a domainD, then there exist pointg, € D, 1 < k < K, such that the matrik, (yx)|1<p.r<r
is nonsingular.

Lemma 1.3. The data{b; (t) }1<k<x, vi>0 determine the numbers, in (1.3) uniquely.

Remark 1.1. Our results and proofs can be easily extended to the case of other selfadjoint
boundary conditions, inhomogeneous boundary conditions, non-zero initial conditions, and a
general selfadjoint second-order elliptic operatbrs

In Sectior] 2 proofs are given.

2. PROOFS

Proof of Lemm& 1]2If K = 1 then the conclusion of Lemma 1.2 is true, because if it fails, then
vi1(y) = 0 for everyy € D, which contradicts the linear independence. Assume that Lemma
[1.7 holds for allk < K and let us prove that it holds fdr < K + 1. Denoteyx; := v.
Assuming that Lemm@.z fails, one ge¥s . := deti<pp<i+1vp(yx) = 0 forall yx 1 =y,
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anddet; <, k< i vp(yx) := Ax # 0. A cofactor expansion of the determinakj ., yields:

(2.1) 0= A1 = Agvka(y) + Y v(y)A,, VyeD,

where A, are cofactors which do not depend gnBecauseA, # 0 does not depend on,
equation|[(2.J1) implies thatx(y) is a linear combination of,(y),1 < p < K. This con-
tradicts the linear independence of the sysiem. . vk ;. This contradiction proves Lemma

1.2.n
Proof of Lemma 1]|3Using (1.3), one gets
it PO)

J
Z Vjp(Yr)Cjp-

(2.2) ulpiot) = 3

=t
One has\; < Ay < ..., lim;_., A\; = co. Therefore the data

o'} P(j)

(2.3) By(t) = wi(y. t Ze MZ% () esm

=1

allow one to find

P(j)
bk = Y Uip(Yk)Csp
p=1
forall jand allk = 1,2,... K. Namely:
(2.4) bk, = hm e ut (yk, t Ze “va Yk ) Cip) -

For a fixed; we have a linear algebraic system for flndlng the numbgrs

J
(25) bjk = Zvjp(yk)ij.
p=1

We have assumed th&t(j) < K < co. By Lemma 1.2, we can choogg such that for any
fixed j the determinantlet v,,(yx) # 0, so that the numbers,, are uniquely determined by
linear algebraic system (2.5). Lemmal1.3 is proved.

Proof of Theorer I]1From formulas[(1]1) and (1.3) one gets:

0o P(j) M
(2.6) Z Z Vjp(T)esy = A0 (T — Xy,
7j=1 p=1 m=1
so that
M
(2.7) Z AmVjp(Tim,).-

If the numbersc;, are known for allj and allp, 1 < p < P(j), thenu(z,t) is uniquely
determined by formula (1.3), and then formyla[1.1) determines unidudely,, andz,,. Thus,
Theorenj 1.1 will be proved if we prove that all the numhsggsare uniquely determined by the
data. But this is the conclusion of Lemina]1.3. Theofern 1.1 is prawed.
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Remark 2.1. A concrete choice of;,, can be made for eigenfunctions known analytically. For
example, ifD isacylinder) < p <1, 0 < z < 7, thenv;; = Kps cOS(MP) Iy (Vinnp) sin(sz),
where k,,.,,s IS the norming constant/,,(p) is the Bessel functiony,,,, are its zeross =
1,2,...,m=0,1,2,..., (p, ¢) are polar coordinates on the plange z,, z = x3, v;, is defined
similarly to v;; with cos(m¢) replaced byin(me), andm = 1,2, ..., the role ofj is taken by
the setj = {m,n, s}, \; = 12, + s, andK = 2 in this example. The choice gf can be done

in many ways. For example, chooge= (py, ¢, zx), kK = 1,2, so thatsin[m(¢, — ¢,)] # 0
forallm = 1,2,..., 21 = 2 = ( andsin(s¢) # Oforall s = 1,2,..., p, = p, = r and

I (Vinr) # 0forallm = 0,1,2... and alln = 1,2,.... Then the determinant used in the
proof of Theoren 1]1 does not vanish.

Our arguments show that in this example, whén= 2, one can recover uniquely/, a,,,
andz,, from two data functions.(ys, t), known for allt > 0 and for a suitably chosen points
Yky k= 1, 2.

In the proof of Theorer 1]1 we assume that the data are exact. The inverse problem under
discussion is ill-posed: small perturbation of the data may threw the data out of the set of
admissible data. For example, the solutigfx, t) is infinitely differentiable (even analytic)
with respect ta in the regiort > 0, while the perturbed data(y,, t) do not have this property,
in general. The ill-posedness of the inverse problem is also seen in the algorithm for finding
the quantities\, a,,,, andx,,,. For example, although it is possible to find a pajrguch that
sin(s¢) # Oforalls =1,2,...,i.e.,s¢ # g, whereq is an integer, but the set of points
is dense in0, 7) whens andq run through the set of all positive integers. Therefore, for large
s,n, m, one has a small divisors problem.

Similarly one can consider the case wherns a box with sides;w, i = 1,2, 3, whereq,; are

such that the equatiok; = Zf’zl Z—z has a unique solution in integers. This happens if, for
example, the numbers are mutudlly incommensurate. In this case the equation

i=1 ! =1
wheren; andm; are integers, implies, = m;. ConsequentlyP(j) = 1, and one extra data
u(y1,t) determines uniquely the source. The eigenfunctions of the Dirichlet Laplacian in this
case are known:
n1xy

UPED n3xrs

EL) (22 sin (2,

wherey,, ., .. are the known norming constants. Thus, in this case one can chooseéch
thatv;(y;) # 0 for all 7, i.e., for alln,, n, andns.

Uj = Un11n27n3 = Mn1,n2,n3 Sln(

After this paper has been finished, the author learned of a recent paper "ldentification of a
point source in a linear advection-dispersion-reaction equation: application to a pollution source
problem" by A.Badia et. al., Inverse Problems, 21, (2005), 1121-1136. In this paper a simpler
problem with one-dimensional heat operator is considered and different arguments are used to
investigate this simpler problem. If the heat operator is one-dimensional, then the difficulty with
the multiplicity K > 1 of the eigenfunctions does not arise.
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