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2 NASSEREDDINE TATAR

1. INTRODUCTION

We shall consider the following wave equation with a temporal non-local term

t
uy — Auy = Au— [ h(t — s)Au(s)ds, in Q@ x Ry
0

u=0, onI'x Ry
u(z,0) = ug(x), ue(x,0) = ur(x), in

(1.1)

where(2 is a bounded domain iR with smooth boundary' = 0f2. The functionsu,(z) and

uy(x) are given initial data and the (nonnegative) relaxation functighwill be specified later

on. The equation ifi I]1 describes the equation of motion of a viscoelastic body with fading
memory (se€ [6],[21]). The memory term, represented by the convolution term in the equation,
expresses the fact that the stress at any ingtd@pends on the past history of strains which the
material has undergone from timeup tot.

Global existence and uniform decay of solutions have been discussed for similar and related
problems in([2] - [5], [7] - [14], [16] - [20], [23] - [24] and in a general setting in [15]. In all
these works the kernels were assumed to be of an exponentiakfdfms > 0, singular (in a
neighborhood of zera) *, 0 < a < 1 (in this case no rate of convergence was found), of the
formt=2e=% 3 > 0,0 < a < 1, summable functions satisfyirig(t) < —¢h(t), forallt > 0
or —&,h(t) < W (t) < —=&,h(t), forall £ > 0 for some positive constan{s &, and¢,.

The memory term produces a (weak) dissipation which drives the system to rest. In some
works an exponential decay rate was proved and in some other works only convergence results
were established.

In [12], the present author (with M. Medjden) proved an exponential decay result for a similar
problem. The commonly used assumptions mentioned above were somewhat relaxed to non-
increasing kernels satisfying*h(t) € L'(0,00) for somea > 0. The authors introduced
a new functional and used the modified energy method. In turn, this result was improved in
[13]. Exponential decay has been proved under the only assumptioftfiatt h(t)] e €
L'(0, o) for somea, £ > 0. In particular, no decreasingness of the kernel was imposed.

In this paper, we prove exponential decay of solutions for proplem 1.1 under new assumptions
on the kerneli(t). We do not assume any condition on the derivativéi@) and consider
functionsh(t) such thae**h(t) € L'(0,00) ande>th(t) is (strongly) positive definite for some
a > 0. The argument is different from the previous ones. It makes use of a crucial lemma (see
Lemma 2 below) and a Lyapunov type functional which was introduced for the first time by the
author in [23].

The well posedness is standard. Using the Faedo Galerkin method one can prove the global
existence of a weak solution to problém|1.1 (see for instance |3]/[4], [14], [15]).

Theorem 1.1.Letuy, u; € Hy(Q) andh(t) be a nonnegative summable kernel. Then there
exists at least one weak solutiario probleni 1.[l such that

u € L0, 00; Hy (), u; € L™ (O,oo; Hé(Q)) cuy € L2 (O, 00; H&(Q)) )

In Sectior] 2 we prepare some material needed to prove our result. §ection 3 is devoted to the
statement and proof of the exponential decay result for (strongly) positive definite kernels.
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2. PRELIMINARIES

We define the (classical) energy by

B0 = [ (5l + 31Vul + 5 1Tul) d

Then by the equatidn J,1it is easy to see that

t

(2.1) E'(t) = /Vut/h(t—s)Vu(s)dsdx.

Q 0
Observe that’(t) is of an undefined sign. Consider the modified energy
(2.2) V(t) = E(t) —ed(t) + ¥(¢)
with
(2.3) d(t) = /utudx+/VutVudx,

Q Q

and
(2.4) W(t) = //Ha (t— ) (n|Vul* + |V |?) dsde

whereH, (t) := e [ h(s)e**ds for somezs, n, ;> 0 to be determined.

Proposition 2.1. There existg > 0 andey, > 0 such thatV (t) > {E(t) for all ¢ > 0 and
e € (0,¢e0).

Proof. : By the inequalities

1
/utudxg §/|ut|2dm+%/|VU|2d$
Q Q

Q

1 1
/VutVu < 5 / |V |” dz + 3 / \Vu|® da
Q Q Q
whereC,, is the Poincare constant, we have
V() 2 (3-5) o lul do+ (3= 5) [ 1Vl

b (1= = 5) falVa o s ()

and

Therefore, ife < 1+_c we obtainV'(t) > ¢ E(t) for some constarg > 0. 1

The following inequality will be used repeatedly in the sequel.
Lemma 2.2. We have

2
ab§5a2+z—6, a,be R, § >0.
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Definition 2.1. We say that a functiok € L}, [0, +c0) is positive definite if

t s

/w(s)/k(s —2)w(z)dzds >0, t >0

0 0

for everyw € C|0, 4+00).

Definition 2.2. A function k(¢) is said to be strongly positive definite if there exists a positive
constantr such that the mapping— k(t) — oe™" is positive definite.

Forw € C([0,T]; L*(Q2)), T > 0, we define

Q(w,t, k) := /t/w(s,x)/sk(s—T)w(T,x)dexds, vt € [0,T7.

By A, andD,, we denote the expressions, fbr> 0 and0 < h < T
Apw(z,t) == w(z,t+h) —w(z,t), € Q,te[0,T —hl,

and
t

(Dpw)(z,t) = /Ahw(x,s)ds, reQ, tel0,T—h

for everyw € C([0,T]; L*(£2)) respectively.

The next lemma is a consequence of Lemma 2.4lin [1], the proof of which uses Lemma 2.5
of [11]. This latter lemma in turn is based on an inequality in [22] Lemma 4.2. We state it here
together with a direct proof.

Lemma 2.3. For any strongly positive definite functiarit) there exists a constadt’ > 0 such
that

¢
Jw?(z, t)dx + [ [ w?(x, s)dxds
0 00
<M [w?(z,0)dr + MQ(w,t, k(t)) + M liminf),_o 7> Q(Apw, t, k(t)),
0

vt € [0, T, for everyw € C([0,T]; L*(2)).

Proof. In the definition ofQ(A,w, ¢, e™*) we perform an integration by parts, we find

¢
Q(Ayw,t,e7t) = [(Dyw)(x,t) [ e~ Apw(z, 7)drdx
Q 0

(2.5) +ff (Dpw)(x,s) fse S (Apw)(w, T)drdrds,
%f(lo?hw) (z,t)dx.
0

A second integration by parts in the second term on the right hand didg of 2.5 yields
t
Q(Apw,t, et = %I(th z,t)dr — [(Dyw)(z,t) [ e~ Dyw(z, 7)drdx
Q Q 0

(26) t S t
—ff (Dpw)(z, s) [ e (Dyw)(z, 7)drdrds + [ [(Dyw)?(x, s)dxds.
0 00
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Next, dividing both sides ¢f 2,6 by? and passing to the limit ds — 0, it appears that

liminf;_.q h—ng(Ahw t eit)

= %g{[w(m,t - dI%—be{ — w(z,0)]* dzds
=7 — [ [w(z,t) —w(z,0) fte =) [w(z, 7) — w(z,0)] drdzs
0 0
off w(z,0)] fe =) [w(z, 7) — w(z,0)] drdxds

After developing the right-hand side|[of 2.7 we obtain
lim infy, o 5 Q(Apw, t, ")
t
= %S{uﬂ(az,t)dx + %({wQ(x,O)dx + 0f{j;uﬂ(x,s)dacds

t
(2.8) —fw z,t) [ e~ w(z, s)dsdr — [w(x,t)w(z,0)etdx
0 0

t
—Q(w, t,e™) = [ [w(x, s)w(x,0)e *drds.
00

Clearly by the algebraic inequality in Lemina]2.2, we have

t

1
(2.9) /w(m,t)/6_(t_s)w(ac,s)dsdm < /\/ (x,t)dx + 8—/\//111 x, s)dxds,
0 Q

Q 0 Q

(2.10) /w(m,t)w(m,())e_tdx < 7/ (x,t)dx + %/w
Q

Q Q
and

t t
1
(2.11) //w(m,s)w(w, 0)e *dxds| < n//wQ(x,s)dxder 8—/w2(:€,0)d$.
U
0 Q 0 Q Q

Gathering these estimafes]|2[9 - 2.11 we entalil 2.8 that

(%—)\—fy)f{uﬂ(x,t)dx—i-(l— ——)ffw (z, s)dxds

< (—% + % + #) [ w?(z,0)dx + Q(w,t, e
+lim infh_f; =Q(Apw, t,e7?).
Itis easy to see that we may choose positive constantandy such that the factor@ — A= 7) ,
(1—-7n—5) and (—— +4 + —> are positive (pick for instance, = 2, v = {; andn = ;).

The conclusion follows from the strong positive definiteness of the kernel since then there
exists a positive constantsuch that

Q(w,t, e <o 'Q(w,t, k(t)) forall t €[0,T].
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3. ASYMPTOTIC BEHAVIOR

In this section we state and prove our result. First, we suppose that the ké¢théd a
C'(R., R,) function satisfying

(H1) e“h(t) € L*(R,) for somea > 0.

(H2) e2th(t) is strongly positive definite withr > 4.
In (H2), o is as in Definitior) 2.2. We denote By, the value

o0

he = /e“th(t)dt.

0

Theorem 3.1. Assume that the hypothegé#1) — (H2) hold. Then the energy pf 1.1 decays to
zero exponentially, that is, there exist positive constah&ésd 3 > 0 such that

Et)<Ce ™ t>0
provided thath,, is sufficiently small.

Proof. : A differentiation of V' (¢) (sed 2.2 and 23) with respectitalong solutions df 1]1 gives

¢
VI(t) = [V [h(t — 8)Vu(s)dsdr — ¢ [ |w|* dx — ¢ [ |Vuy| da
(31) Q Ot Q Q
—¢ [ Vu [ h(t — 5)Vu(s)dsdr + ¢ [ |Vul|* dz + U'(t).
QO 0 Q

Multiplying V' (¢) by e** and differentiating with respect towe get

(3.2) 4 [V (t)] = ae™V (t) + e™V'(t).

dt

We substitute 3]1 ih 3|2 and integrate ort) to obtain

t
eV (t) — =2 [ [ (Jw]* + |Vul” + |Vu|?) dwds
0 0
t
—ae [ e* [wudrds — ozafeas fVuVutdxds + ozfeo‘s\ll )ds
0 0
t s
+ [e* [ Vuy [ h(s — z2)Vu(z)dzdzds — gfeasf | dads
00 0 0 0

t

t
—¢ [ e [ |Vu|* dxds + ¢ [ e [|Vu|® deds
Q o0

s t
—e [e* [Vu [ h(s — 2)Vu(z)dzdzds + [ W'(s)e**ds.
Q0 0

Equivalently,
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t
eV (t) =V (0)+ (5 - f [ e uldxds + (2 +¢) [ [ e |Vul* deds
0

0Q

D%ﬁ@%

¢
+(2 —e) [ [ e |Vuy|* duds + ozfeas\I' s)dx — ae [ [ e*uudads
00 0 0
(3.3 . . 5
—ae [ [ e*VuVudrds + [ [ e**Vu, [ h(s — 2)Vu(z)dzdzds
0 Q 0 Q 0
t s t
—e [ [e*Vu [ h(s — 2)Vu(z)dzdzds + [ e*V'(s)ds.
0

0 Q 0

By Lemmd 2.2 (with) = 1/2c andé = 1/4«, respectively) and Poincaré inequality, we have

t
(3.4) [ [ wudzds < = ffufdxds—i— 2% ff \Vu|? dzds,
0Q 0Q
and
t t t
(3.5) [ [ Vu,Vudzds < £ [ [|Vu]* +a [ [|Vul” dzds.
0Q 0Q 0Q

With the help of these two estimations we find

eV (t +8ff6°‘sVufh s — z2)Vu(z)dzdzds
0 Q
<V(0) + (e + o — 2) ftg{eQ suldwds + ozfte"‘s‘ll(s)ds
0 0
+3 [0%e(Cp + 2) + o + 2¢] Oft({eo‘s \Vul|? dzds
+1(2a — 3¢) OfthGQ’\S |V |? dads + bfeas\I//(s)ds
-I—ftfe“SVutjh(s — 2)Vu(z)dzdzds.
0 Q 0
A differentiation of U'(¢) with respect ta gives

V(1) = ha [ (n]Vul + 1 |Vu,?) de
Q

t
— [ [t —s) (n|Vul® + 1 |Vu|?) dsdz — a ¥ (2).
Q0
Therefore

t
e W (s)ds = ho [ e [ (n|Vul® + p|Vu|?) dods
(3.6) 0@

]
e

Now, by Lemma 2.2 (withh = £/16), we can write

t
h(s — 2) (n|Vu(2)]* + p |V (2)[?) dzdads — o [ e**T(s)ds.
0
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t s
[ [e*Vu; [ h(s — 2)Vu(z)dzdzds
0 Q 0

Qg
25

)

h(s — 2)e25*)e2*Vu(z)dzdrds

= J e

t t
Sf—ﬁffeo‘s|Vut| da:ds+§ff
00 00

o%m

2

[ h(s —2)e2=De22Vu(2)dz| dxds.
0

But ,
Ofsh(s —2)e27e2*Vudz| < hypo Ofs h(s — 2)e2=2)e® |Vu(z)[* dz
< l_za/geasfsh(s —2) ]Vu(z)|2 dz.
Therefore, 0
jfeaSVutjh(s — 2)Vu(z)dzdzds < %jfeas |V |* dzds
(3.7) 0 Q 0 0 Q
B

_ t s
4 2hos2 [ gos [ [ (s — 2) [Vu(2)|? dzdads.
0 Q0

We also have by the definition of the quadratic teptw, ¢, k), that

ftfeasvufsh(s — 2)Vu(z)dzdzds

t s
(3.8) = [ [e2°Vu [ h(s — 2)e272e2*Vu(z)dzdzds
00 0

=Q (e2'Vu,t,h(t)e2") > 0.
Taking into accourjt 3]4[- 3.8 [n 3.3 we obtain

t

eV (1) +2Q (e21Vu, b, h(t)est) < V(0) + S+ a — 2¢) [ [ e®uZdads
0Q
_ t
+(8a + 16ph, — 11e) [ [ € |Vu,|* dzds
0Q

ot
(3.9) +1[a2e(C, +2) + a + 22 + 2nhy] [ [ € |Vu|? dxds
00

—uffeasfh ]Vut( )| dzdads.

LetusaddQ ((e2'Vu), ,t, h(t)e2") to both sides 9 and make use of the following estima-
tion obtained with the help of Lemma 2.2 (with= 1/2) and the inequalitya+b)? < 2a*+2b?,

2

t
Q (h(t)e2',t, (e2'Vu),) < %Offe“s \Vul? dzds

t t s
+3 [ [e |V |* deds + % h a2 [ € [ [ h(s—z) \Vu(z2)|* dzdzds
0 0 0

2
0 Q

t s
Lhasa [ [ [ h(s — 2) |[Vu(2)|* dzdxds
0 Qo0
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we find
eV (t) +e[Q (h(t)e2t t,e2'Vu) + Q (h(t)e2',t, (e2'Vu),)]

t
<V(0)+ %(8 +a—2¢) [ [e*uidrds
0 Q
B t
+ 2 (8a + 16ph, — 3¢) [ [ € |Vuy|* duds
0Q
t
+3 ["‘725(40 +9) +a+2+2p a} [ [ e |Vul® dxds
0 Q
+ |:4hg/2 —n+ e ha/2:| fg{‘eas‘({‘h Z) |VU(Z)|2 dzdrds
Taking . = —J‘;” andn = (‘;‘ + %) ha2, this last relation reduces to

e'V(t)+e[Q (h

<V(

)ffe th s — 2) |Vuy(2)]? dzdads.

Ot

(t)es! te2tVu)+Q( ()es',t, (e2'Vu),)]
)+ %(54—04—28 ffeo‘s 2dxds
0 O
t
(3.10) +45(8a + 16phe — 32) [ [ € |Vuy|* davds
0Q

+3 [%(40,3 +9)+a+ 2+ QnBa} Oftge"‘s \Vul® dzds.
Next, in view of Lemma 23, we infer frofn 3.[LO that
eV (t) + {5L -3 [%(40,3 +9) +a+2+ 27]710[} } Oftgjl"e‘“ \Vul|? dzds
< V(0) + 5 (8c + 16ph, — 3¢) Oftg{eas |V |* dds
+€L§{ \Vuol|® dzds + (e + a — 2¢) jgeasufda:ds
with L > 2. If a« < ¢/8, h, < e/16 ande < 1/(1 + C,), then we clearly end up with

(3.11) UV (H) < V(0) + L / Vo |? duds.
The conclusion follows frorp 3.11 and Propositjon| A 1.
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