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2 EDWARD NEUMAN

1. I NTRODUCTION AND DEFINITIONS

Product formulas for special functions and orthogonal polynomials are of great importance
in theory of special functions and their applications (see, e.g., [1], [7, 8, 9, 10]). Most of the
product formulas have been obtained with the aid of either analytic or algebraic methods.

Let us introduce some notation which will be used throughout the sequel. In what follows the
symbolsR> andC> will stand for the positive semiaxis and the set of all complex numbers with
a positive real part, respectively. Also, letU = {z ∈ C : z 6= 0,−1, . . .}. As usual, the symbol
2F1 will stand for the Gauss hypergeometric function. Forµ, α, β ∈ C (α, β 6= −1,−2, . . .) we
let λ = α + β + 1. Also, letx > −1 andy < 1 whenµ ∈ U and letx, y ∈ R if −µ ∈ N – set
of all nonnegative integers. The product discussed in this paper is defined as follows

(1.1) π(x, y) = 2F1

(
−µ, λ+ µ;α+ 1;

1− x

2

)
2F1

(
−µ, λ+ µ; β + 1;

1 + y

2

)
.

It is demonstrated (see Theorem 2.1) thatπ(x, y) can be expressed as the double Dirichlet aver-
age of the normalized Gegenbauer functionCλ

2µ (see (2.4)). Also, the product in question can
be expressed as a double integral (see (2.6)) and also as the infinite series of Jacobi polynomials
(see (2.8)). For the related results the interested reader is referred to [8, 9, 10].

For the reader’s convenience, we recall definitions of Dirichlet average and double Dirichlet
average of a univariate function. We need more notation. For0 ≤ u, v ≤ 1, let ū = [u, 1− u],
v̄ = [v, 1 − v], b = [b1, b2] ∈ C2

> , and letd = [d1, d2] ∈ C2
> . The Dirichlet measureµb on the

unit interval[0, 1] is defined as [7]

(1.2) µb(u) =
1

B(b1, b2)
ub1−1(1− u)b2−1,

whereB(·, ·) stands for the beta function.

Definition 1.1. [7, (5.2-1)] Dirichlet average of a holomorphic functionf defined on conv(x̄) –
the convex hull of̄x is given by

(1.3) F (b; x̄) =

∫ 1

0

f(ū · x̄)µb(u) du,

whereū · x̄ is the dot product of vectors̄u andx̄. In what follows the symbolRa will stand for
the Dirichlet average of the power functionta (t > 0).

In [4] B. C. Carlson has introduced the notion of the double Dirichlet average of a function
of one variable. LetA be a 2-by-2 real or complex matrix with entriesaij (1 ≤ i, j ≤ 2) and
let conv(A) denote the convex hull ofA. In what follows the symbol̄u ·A · v̄ will stand for the
vector-matrix-vector product, i.e.,

u · A · v = ua11v + ua12(1− v) + (1− u)a21v + (1− u)a22(1− v)

andµd will denote the Dirichlet measure on[0, 1] with parametersd ∈ C2
> (see (1.2)).

Definition 1.2. [4, p. 421] Letf be a holomorphic function defined on a domainD and assume
that conv(A) ⊂ D. The double Dirichlet average off , denoted byF(b;A; d), is defined by

(1.4) F(b;A; d) =

∫ 1

0

∫ 1

0

f(ū · A · v̄)µb(u)µd(v) du dv.

The double Dirichlet averages ofta (t > 0) andet will be denoted byRa andS, respectively.

Among numerous properties of the double Dirichlet average the following ones are of special
interest:

(a) Transposition property:F(b;A; d) = F(d;AT ; b).
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PRODUCT FORMULAS INVOLVING GAUSS HYPERGEOMETRICFUNCTIONS 3

(b) The averageF is holomorphic in the elements ofb,A andd on its domain of definition.
(c) F can be continued analytically in the parameters ofb andd and variablesaij as long

asb1 + b2, d1 + d2 ∈ U and all variables remain inD, providedD is simply connected.

This paper is organized as follows. The main result is presented in Section 2. Applications
to Jacobi polynomials, Jacobi functions, and the Bessel functions of the first kind are obtained
in Section 3. Some of the previously established results are also included in this section.

2. M AIN RESULT

Before we shall state and prove the main result of this paper let us introduce more notation.
Forα+ 1

2
, β + 1

2
∈ C> let

(2.1) b =

[
α+

1

2
, α+

1

2

]
, d =

[
β +

1

2
, β +

1

2

]
.

Also, let

(2.2) X =

[
r + s r − s

−r + s −r − s

]
,

where

(2.3) r2 = (1− x)(1− y)/4, s2 = (1 + x)(1 + y)/4.

Recall (see Section 1) thatx > −1 andy < 1 whenµ ∈ U andx, y ∈ R when−µ ∈ N. Also,
the symbolCλ

2µ will stand for the Gegenbauer function of degree2µ with parameterλ.

Theorem 2.1.Let the numbersµ, α, β, x, andy satisfy conditions stated above. Then

(2.4) π(x, y) = F(b;X; d),

whereλ = α+ β + 1. HereF is the double Dirichlet average of

(2.5) f(z) = Cλ
2µ(z)/Cλ

2µ(0).

Moreover, the following formulas

(2.6) π(x, y) =

∫ π

0

∫ π

0

[
Cλ

2µ(r cosψ + s cos θ)/Cλ
2µ(0)

]
dm(ψ, θ),

where

(2.7) dm(ψ, θ) =
Γ(α+ 1)Γ(β + 1)

πΓ
(
α+ 1

2

)
Γ

(
β + 1

2

)(sinψ)2α(sin θ)2βdψ dθ

and

(2.8) π(x, y) =
∞∑

m=0

(−µ,m)(λ+ µ,m)

(α+ 1,m)(β + 1,m)

(
x+ y

2

)m

P (α,β)
m

(
1 + xy

x+ y

)
hold true. Here(a, 0) = 1, (a,m) = a(a+ 1) · . . . · (a+m− 1) is the Appell symbol (see, e.g.,
[7, Chap. 2]) andP (α,β)

m stands for themth Jacobi polynomial of order(α, β).

Proof. In order to establish the product formula (2.4) we shall use Appell’s hypergeometric
functionF4 . Recall that

F4(a, a
′; c, c′;x, y) =

∞∑
m=0

∞∑
n=0

(a,m+ n)(a′,m+ n)

(c,m)(c′,m)m!n!
xmyn
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4 EDWARD NEUMAN

(a, a′, x, y ∈ C, c, c′ ∈ U , |x|1/2 + |y|1/2 < 1). (See, e.g., [7, Ex. 7.1-13]). B.C. Carlson [6,
(4.1)] has shown that

F4

(
a, a′; c, 1 + a+ a′ − c; z(1− w), w(1− z)

)
= R−a(a

′, c− a′; 1− z, 1)R−a(a
′, 1 + a− c; 1− w, 1).

Lettinga = −µ, a′ = λ+ µ, c = α+ 1, z = (1− x)/2, w = (1 + y)/2 and using the following
formula [7, (5.9-11)]

R−a(a
′, c− a′; 1− z, 1) = 2F1(a, a

′; c; z)

(Rec > Rea′ > 0, a ∈ U , z < 1) followed by application of (1.1) we obtain

(2.9) π(x, y) = F4(−µ, λ+ µ;α+ 1, β + 1; r2, s2),

wherer2 ands2 are defined in (2.3). On the other hand, lettinga = −µ, a′ = λ+ µ, c = α+ 1,
c′ = β + 1, x = r, andy = s in

F4(a, a
′; c, c′;x2, y2)

=
∞∑

m=0

(a,m)(a′,m)(
1
2
,m

)
m!

R2m

(
c− 1

2
, c− 1

2
;W ; c′ − 1

2
, c′ − 1

2

)
,

where

W =

[
x+ y x− y

−x+ y −x− y

]
(see [6, (2.9)]) we obtain

(2.10) F4(−µ, λ+ µ;α+ 1, β + 1; r2, s2) =
∞∑

m=0

(−µ,m)(λ+ µ,m)(
1
2
,m

)
m!

R2m(b;X; d),

whereb andd are defined in (2.1) and the matrixX is given in (2.2). To complete the proof
of (2.4) it suffices to show that the right side of (2.10) is equal toF(b;X; d). Using a series
expansion of the functionf(z) defined in (2.5) we have

f(z) = Cλ
2µ(z)/Cλ

2µ(0) = 2F1

(
−µ, λ+ µ;

1

2
, z2

)
=

∞∑
m=0

(−µ,m)(λ+ µ,m)(
1
2
,m

)
m!

z2m.

Averaging the first and last members we obtain

(2.11) F(b;X; d) =
∞∑

m=0

(−µ,m)(λ+ µ,m)(
1
2
,m

)
m!

R2m(b;X; d).

This in conjunction with (2.10) gives

F4(−µ, λ+ µ;α+ 1, β + 1; r2, s2) = F(b;X; d).

Combining this with (2.9) gives the desired result (2.4). In order to establish formula (2.6) we
apply (1.4) to the right side of (2.4) to obtain

F(b;X; d) =

∫ 1

0

∫ 1

0

f
[
(2u− 1)r + (2v − 1)s

]
µb(u)µd(v) du dv,

wheref is defined in (2.5),

µb(u) =
[
u(1− u)

]α− 1
2/B

(
α+

1

2
, α+

1

2

)
,
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and

µd(v) =
[
v(1− v)

]β− 1
2/B

(
β +

1

2
, β +

1

2

)
.

Letting 2u− 1 = cosψ, 2v − 1 = cos θ (0 ≤ ψ, θ ≤ π) and next using1/B
(
α+ 1

2
, α+ 1

2

)
=

Γ(2α+ 1)/
[
Γ

(
α+ 1

2

)]2
followed by application of Legendre’s duplication formula

Γ(2z) = 22z−1Γ(z)Γ

(
z +

1

2

)
/
√
π

(2z ∈ U ) we obtain

(2.12) F(b;X; d) =

∫ π

0

∫ π

0

f(r cosψ + s cos θ) dm(ψ, θ),

wheredm(ψ, θ) is defined in (2.7). This completes the proof of (2.6). The product formula
(2.8) follows immediately by use of

R2m(b;X; d) =

(
1
2
,m

)
m!

(α+ 1,m)(β + 1,m)

(
x+ y

2

)m

P (α,β)
m

(
1 + xy

x+ y

)
(see [12, (3.19)]) on (2.11). The proof is complete.

3. APPLICATIONS

In this section we shall show, among other things, how some known product formulas can be
derived from the theorem contained in Section 2.

Using a group theoretic method, Dijksma and Koornwinder [8] have proven the following.

Corollary 3.1. Letα+ 1
2
, β + 1

2
∈ C> , x, y ∈ R. Then

(3.1)

P
(α,β)
n (x)P

(α,β)
n (y)

P
(α,β)
n (1)P

(α,β)
n (−1)

=

∫ π

0

∫ π

0

[
Cλ

2n(r cosψ + s cos θ)/Cλ
2n(0)

]
dm(ψ, θ),

whereCλ
2n is the Gegenbauer polynomial of degree2n with parameterλ = α + β + 1 and

dm(ψ, θ) is defined in(2.7).

Proof. Apply

(3.2) P (α,β)
n (x)/P (α,β)

n (1) = 2F1

(
−n, λ+ n;α+ 1;

1− x

2

)
and

(3.3) P (α,β)
n (y)/P (α,β)

n (−1) = 2F1

(
−n, λ+ n; β + 1;

1 + y

2

)
to (2.6) to obtain the assertion (3.1).

An analytic proof of (3.1) appears in [10]. In his proof the author used, among other things,
a formula which is due to Bateman [3] and is contained in the following.
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6 EDWARD NEUMAN

Corollary 3.2. We have

(3.4)

P
(α,β)
n (x)P

(α,β)
n (y)

P
(α,β)
n (1)P

(α,β)
n (−1)

=
n∑

m=0

(−n,m)(λ+ n,m)

(α+ 1,m)(β + 1,m)

(
x+ y

2

)m

P (α,β)
m

(
1 + xy

x+ y

)
.

Proof. In (1.1) and (2.8) putµ = n and next use (3.2) and (3.3).

We shall now deal with the Jacobi functionsφ(α,β)
t . For t ∈ C andα + 1

2
, β + 1

2
∈ C> they

are defined in terms of Gauss’ hypergeometric function

(3.5) φ
(α,β)
t (p) = 2F1

(
λ+ it

2
,
λ− it

2
;α+ 1;−(sinh p)2

)
,

wherep ≥ 0 andλ = α + β + 1 (see, e.g., [1, (2.48)], [9, (2.1)]). Jacobi functions form
a continuous orthogonal system of functions on[0,∞) with respect to the weight function
(sinh t)2α+1(cosh t)2β+1. For later use we define a product

(3.6) π
(α,β)
t (p, q) = φ

(α,β)
t (p)φ

(β,α)
t (q)

and two numbers

(3.7) r = i(sinh p)(cosh q), s = i(cosh p)(sinh q).

In what follows the symbolX will stand for the matrix defined in (2.2) withr ands as defined
in (3.7).

We are in a position to state and prove the following.

Corollary 3.3. The following formulas

(3.8) π
(α,β)
t (p, q) = F(b;X; d),

whereF stands for the double Dirichlet average of the function

f(z) = Cλ
−(λ+it)(z)/C

λ
−(λ+it)(0) = 2F1

(
λ− it

2
,
λ+ it

2
;
1

2
; z2

)
,

π
(α,β)
t (p, q) =

∫ π

0

∫ π

0

f(r cosψ + s cos θ) dm(ψ, θ),(3.9)

wheredm(ψ, θ) is defined in(2.7), and

(3.10)

π
(α,β)
t (p, q)

=
∞∑

m=0

(
(λ+ it)/2,m

)(
(λ− it)/2,m

)
(α+ 1,m)(β + 1,m)

(s2 − r2)mP (α,β)
m

(
s2 + r2

s2 − r2

)
(p 6= q) are valid.

Proof. In order to prove the product formula (3.8) we substituteµ = −(λ+ it)/2 into (1.1) and
(2.5). Lettingx = 1 + 2(sinh p)2 andy = −1− 2(sinh q)2 in (2.3) we obtain (3.7). Thus (3.8)
is a special case of (2.4). Withµ andf as defined earlier, we see that formula (3.9) follows
immediately from (2.6). With the same substitution forµ, x, andy one easily obtains using
(3.7), the desired result (3.10).

The Mehler-Dirichlet formula for the Jacobi functions is a special case of (3.9). We have the
following.
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Corollary 3.4. Letα+ 1
2
, β + 1

2
∈ C> , t ∈ C, andp ≥ 0. Then

(3.11)

φ
(α,β)
t (p) =

2

B
(
α+ 1

2
, 1

2

)(sinh p)−2α

·
∫ p

0

coshx

(sinh2 p− sinh2 x)
1
2
−α

2F1

(
λ+ it

2
,
λ− it

2
;
1

2
;−(sinhx)2

)
dx.

Proof. First, we letq = 0 in (3.6) and next use (3.5) to obtain

(3.12) π
(α,β)
t (p, 0) = φ

(α,β)
t (p).

Letting q = 0 in (3.7) we obtainr = i sinh p ands = 0. It follows from (2.7) that

dm(ψ, θ) =
1

B
(
α+ 1

2
, 1

2

)
B

(
β + 1

2
, 1

2

)(sinψ)2α(sin θ)2βdψ dθ.

This in conjunction with (3.12) and (3.9) gives

π
(α,β)
t (p) =

1

B
(
β + 1

2
, 1

2

) ∫ π

0

(sin θ)2βdθ

· 1

B
(
α+ 1

2
, 1

2

) ∫ π

0
2F1

(
λ+ it

2
,
λ− it

2
;
1

2
;−(sinh p cosψ)2

)
(sinψ)2αdψ.

Taking into account that ∫ π

0

(sin θ)2βdθ = B

(
β +

1

2
,
1

2

)
and introducing a new variable of integrationx, wheresinh x = sinh p cosψ we obtain, after a
little algebra, the desired formula (3.11).

A third product discussed in this section involves Bessel functions of the first kind. For
x, y ∈ C let

(3.13) πJ(x, y) = x−αJα(x)y−βJβ(y).

For later use, let

c(α, β) =
[
2α+βΓ(α+ 1)Γ(β + 1)

]−1

and

X =

[
x+ y x− y

−x+ y −x− y

]
.

Corollary 3.5. Letf(z) = cos z. The following product formulas

(3.14) πJ(x, y) = c(α, β)F(b;X; d)

and

(3.15)

πJ(x, y) =
1

π2α+βΓ
(
α+ 1

2

)
Γ

(
β + 1

2

)
·
∫ π

0

∫ π

0

f(x cosψ + y cos θ)(sinψ)2α(sin θ)2βdψ dθ

(α+ 1
2
, β + 1

2
∈ C>) are valid.
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Proof. The following result

(3.16) πJ(x, y) = c(α, β)S(b;Y ; d),

whereS stands for the double Dirichlet average ofs(z) = exp(z) andY = iX is mentioned in
[4, p. 427]. Application of

S(b;Y ; d) =
∞∑

m=0

1

m!
Rm(b;Y ; d)

(see [4, (6.4)]) to (3.16) together with the use ofR2m+1(b;Y ; d) = 0 (see [5, (5.8)]) and
R2m(b;Y ; d) = (−1)mR2m(b;X; d) gives

(3.17) πJ(x, y) = c(α, β)
∞∑

m=0

(−1)m

(2m)!
R2m(b;X; d) = c(α, β)F(b;X; d),

where in the last step we have used the fact that the double Dirichlet average of

f(z) = cos z =
∞∑

m=0

(−1)m

(2m)!
z2m

is equal toF(b;X; d). Koornwinder’s formula (3.15) (see [10, (4.4]) follows immediately from
(3.14) and (2.12).

We close this section with a new proof of the following result of Bateman [2, p. 113–114].

Corollary 3.6. Let c(α, β) be the same as in Corollary 3.5 and letIα stand for the modified
Bessel function of the first kind of orderα. Then forx, y ∈ C (x, y 6= 0)

(3.18)

x−βJβ(x)y−αIα(y)

= c(α, β)
∞∑

m=0

(−1)m (x2 + y2)m

(α+ 1,m)(β + 1,m)22m
P (α,β)

m

(
x2 − y2

x2 + y2

)
.

Proof. In (3.13) we interchangeα with β and next we lety := iy. Use of

(iy)−αJα(iy) = y−αIα(y)

together with (3.14) and (3.17) yields

(3.19) x−βJβ(x)y−αIα(y) = c(α, β)
∞∑

m=0

(−1)m

(2m)!
R2m(b;Z; d),

where

Z =

[
x+ iy −x+ iy
x− iy −x− iy

]
.

Here we have used the transposition property (a). SinceR2m is homogeneous of degree2m in
its variables

(3.20) R2m(b;Z; d) = (x2 + y2)mR2m(b;W ; d),

where

W =

[
eiθ/2 −eiθ/2

eiθ/2 −eiθ/2

]
,

with cos(θ/2) = x/(x2 + y2)1/2 andsin(θ/2) = y/(x2 + y2)1/2. Application of

R2m(b;W ; d) =

(
1
2
,m

)
m!

(α+ 1,m)(β + 1,m)
P (α,β)

m

(
x2 − y2

x2 + y2

)
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(see [5, (5.10)]) to the right side of (3.20) followed by use of (3.19) and(
1
2
,m

)
m!

(2m)!
=

1

22m

completes the proof of Bateman’s formula (3.18).
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