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2 EDWARD NEUMAN

1. INTRODUCTION AND DEFINITIONS

Product formulas for special functions and orthogonal polynomials are of great importance
in theory of special functions and their applications (see, e.g.,[I1],/[7,18,/9, 10]). Most of the
product formulas have been obtained with the aid of either analytic or algebraic methods.

Let us introduce some notation which will be used throughout the sequel. In what follows the
symbolsR.. andC.. will stand for the positive semiaxis and the set of all complex numbers with
a positive real part, respectively. Also, l[ét={z € C: z # 0,—1,...}. As usual, the symbol
o F1 will stand for the Gauss hypergeometric function. kotv, 5 € C (o, 3 # —1,—2,...) we
let\ = a+ 3+ 1. Also, letx > —1 andy < 1 wheny € U and letz,y € Rif —p € N —set
of all nonnegative integers. The product discussed in this paper is defined as follows

1+y

1 —
(1.1) m(z,y) =211 (—M,A+u;oc+ L; Tx> o [y (—M,A+u;ﬂ+ L T) :

Itis demonstrated (see Theorgm|2.1) that, y) can be expressed as the double Dirichlet aver-

age of the normalized Gegenbauer functﬁm (seel(Z2.1)). Also, the product in question can

be expressed as a double integral (5ee (2.6)) and also as the infinite series of Jacobi polynomials
(see[(2.B)). For the related results the interested reader is referredto [8, 9, 10].

For the reader’s convenience, we recall definitions of Dirichlet average and double Dirichlet
average of a univariate function. We need more notationOForu, v < 1, letu = [u, 1 — ul,
v=1[v,1=v],b=[b,bs] € C2,and letd = [dy,dy] € C%. The Dirichlet measurg, on the
unit interval|0, 1] is defined ag7]

1
,ub(u) - B(bl,bg)
whereB(-, -) stands for the beta function.

Definition 1.1. [[7} (5.2-1)] Dirichlet average of a holomorphic functigrdefined on coniz) —
the convex hull ofz is given by

(1.3) FW@zLﬂw@Mwm

wherew - 7 is the dot product of vectorg andz. In what follows the symboR,, will stand for
the Dirichlet average of the power functigh(t > 0).

(1.2) w1 — w2

In [4] B. C. Carlson has introduced the notion of the double Dirichlet average of a function
of one variable. Letd be a 2-by-2 real or complex matrix with entries (1 < 7,5 < 2) and
let con A) denote the convex hull 0. In what follows the symboi - A - v will stand for the
vector-matrix-vector product, i.e.,

u-A-v=muapv+ua(l —v)+ (1 —wu)ayv+ (1 —u)ax(l —v)
andy, will denote the Dirichlet measure d6, 1] with parameterg € C2 (see[(T.R)).

Definition 1.2. [4], p. 421] Letf be a holomorphic function defined on a domairand assume
that conyA) C D. The double Dirichlet average ¢f denoted byF(b; A; d), is defined by

1 1
(1.4) Fltsaia) = [ [ st Ao wpgto) duds
0 0
The double Dirichlet averages t5f (¢ > 0) ande! will be denoted byR, andS, respectively.

Among numerous properties of the double Dirichlet average the following ones are of special
interest:

(a) Transposition propertyF(b; A; d) = F(d; AT;b).
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(b) The averagé- is holomorphic in the elements 6f A andd on its domain of definition.
(c) F can be continued analytically in the parameter$ ahdd and variables:;; as long
asb; + by, d; + dy € U and all variables remain iy, providedD is simply connected.

This paper is organized as follows. The main result is presented in Sgttion 2. Applications
to Jacobi polynomials, Jacobi functions, and the Bessel functions of the first kind are obtained
in Sectior] B. Some of the previously established results are also included in this section.

2. MAIN RESULT

Before we shall state and prove the main result of this paper let us introduce more notation.
Fora+3,3+1eC. let

(2.1) b:{a+%,a+%], d:[ﬂ+%,ﬁ+%].
Also, let

@2 =l ot

where

(2.3) r=1-2)1-y)/4, s=01+z)(1+y)/4

Recall (see Sectidn 1) that> —1 andy < 1 wheny € U andz,y € R when—p € N. Also,
the symbolCQH will stand for the Gegenbauer function of degigewith parameten.

Theorem 2.1. Let the numberg, «, 3, z, andy satisfy conditions stated above. Then

(2.4) m(z,y) = F(b; X;d),
where\ = a + 3 + 1. Here F is the double Dirichlet average of
(2.5) f(2) = C3,(2)/ C3,,(0).
Moreover, the following formulas
(2.6) (x,y) = / / [CQ)‘M(T' cos 1) + S cos 6)/05;(0)} dm(v,0),
0 0
where
F<Oé + 1)F(5 + 1) . 20 (. 2
2.7 dm(y,0) = “(sin 0)*di) df
(2.7) m.0) = ST (g 1) ) )
and

_ - (_Mvm)()‘+uvm> Tty " @, H—ZE?J
(2.8) 7T@vy)—7;)(04+1,m)(6+1,m)( 2 ) P%m(ﬁy)

hold true. Hereg(a,0) = 1, (a,m) = a(a+1)-...- (a+m — 1) is the Appell symbol (see, e.g.,
[7, Chap. 2) and P> stands for thenth Jacobi polynomial of ordefa, 3).

Proof. In order to establish the product formula (2.4) we shall use Appell's hypergeometric
function F; . Recall that

o
Fi(a,d’;e.dimy) =
m=

On

= (a,m 4 n)(dmtn)
; (e, m)(c,m)m!n!
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(a,d',z,y € C,c,d € U, |z|'? + |y|'/? < 1). (See, e.g.[]7, Ex. 7.1-13]). B.C. Carlson [6,
(4.1)] has shown that

Fi(a,dje,1+a+d —cz(1—w),w(l—z))
=R ,(d,c—d;1—2z 1R _,(d,14+a—c1—w,1).
Lettinga = —p, ' = A+ p,c=a+1,z=(1—12)/2,w = (1+y)/2 and using the following
formula [7, (5.9-11)]
R_,(d',c—d;1—21)=9F(a,d;c;2)
(Rec > Red > 0,a € U, z < 1) followed by application of[(1]1) we obtain
(2.9) m(x,y) = Fa(—p A+ s+ 1,8+ 1,72, 5%),

wherer? ands? are defined in(2]3). On the other hand, letting —y, a’ = A+ p, c = a + 1,
d=p0+1,z=r,andy = sin

Fy(a,d’;c, c"xZ,yz)

(a,m) 1 r., 1, 1
- § RQm( _éac_ﬁauvc_§7c_§>)
where

W:[ Tty x—y}
—x+y —Tr—yY

(seell6, (2.9)]) we obtain

m)(A+ p,m

(%,m) m)!

(210)  F(-mA+ma+1,8+10787) = s )Rzm(b;X;d),

m=0
whereb andd are defined in[(2]1) and the matri is given in [2.2). To complete the proof
of (2.4) it suffices to show that the right side pf (2.10) is equaFid; X; d). Using a series
expansion of the functioffi(z) defined in[(2.5) we have

£(2) = G321/ C4(0) = (—u, A i)

)(A
B Z + W, )z2m
ml
Averaging the first and last members we obtaln

m)(A+ p,m
(%,m) m!

)RQm(b; X;d).

(2.11) }%@X@@::ﬁi(_%
m=0

This in conjunction with[(2.710) gives
Fy(—p A+ pa+ 1,8+ 107 8%) = F(b; X; d).

Combining this with[(2.9) gives the desired result[2.4). In order to establish formula (2.6) we
apply [1.4) to the right side of (2.4) to obtain

F(b; X;d) = /0 /0 Fl2u—1)r + (20 — 1)s] py (w) pg(v) du do,
wheref is defined in[(2.p),

%my:@u—uw%%3<a+;a+%),
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and
o) = 1= o)) 45 (54 5.0+ ).

Letting2u — 1 = cosv, 2v — 1 = cos @ (0 < ¢, 6 < 7) and next usind /B (a + %,oz + %) =
F2a+1)/ [T (a+ %)]2 followed by application of Legendre’s duplication formula

['(2z) = 2>7'T'(2)0 (z + %) v
(22 € U) we obtain
(2.12) }"(b;X;d):/Oﬂ/owf(rcos¢+scos€)dm(¢,9),

wheredm(v, 0) is defined in[(2.]7). This completes the proof jof {2.6). The product formula
(2.8) follows immediately by use of

(3.m) m! Ty mP(a,ﬂ) 1+ ay
(a+1,m)(B+1,m) \ 2 " T4y

(see[12, (3.19)]) orf (2.11). The proof is complege.

Rom(b; X;d) =

3. APPLICATIONS

In this section we shall show, among other things, how some known product formulas can be
derived from the theorem contained in Secfion 2.
Using a group theoretic method, Dijksma and Koornwinder [8] have proven the following.

Corollary 3.1. Leta+ 3,3+ 3 € C., z,y € R. Then
P2 @) P (y)
(3.1) PP ()PP (—1)
= / /07r [C3,(rcosp + s cos ) /Cs, (0)] dm(v, 0),

s
0

whereC3, is the Gegenbauer polynomial of degrge with parameter\ = o + 3 + 1 and

dm(1, 8) is defined in(2.7).

Proof. Apply
1—
(3.2) PP (z)/Plef) (1) = o Fy <—n, A+nja+1; 5 m)
and
) () (_1) — . 1ty
(33) Pn’ (y)/Pn’ (—1)—2F1 —n,A—Fn,ﬁ—l—l,T

to (2.6) to obtain the assertidn (B.1).

An analytic proof of [(3.1L) appears in [10]. In his proof the author used, among other things,
a formula which is due to Bateman [3] and is contained in the following.
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Corollary 3.2. We have

Py (@) Py (y)
PP (1) P (<1)

o (nm)A+nm) (e +y\" s (1+xy)
_mz:()(a—I—l,m)(ﬁ—i-l,m)( 2 ) Fon r+y )’
Proof. In (1.1) and[(Z.B) put: = n and next usdg (3}2) and (3.3.

We shall now deal with the Jacobi function§"”. Fort € C anda + %, 5 + 1 € C. they
are defined in terms of Gauss’ hypergeometric function

N A+t A—it
(35) 6" (p) = o ( T 2R+ 1 —(sinhp) >
wherep > 0 and\ = o + 5 + 1 (see, e.g.,[]1, (2.48)][[9, (2.1)]). Jacobi functions form

a continuous orthogonal system of functions [6Bnco) with respect to the weight function
(sinht)22*1(cosh t)27*1, For later use we define a product

(3.4)

(3.6) " (p.a) = 6 ()6} (a)

and two numbers

(3.7) r = i(sinhp)(coshq), s=1i(coshp)(sinhg).

In Ht follows the symboK will stand for the matrix defined in (2.2) withands as defined
in ).

We are in a position to state and prove the following.
Corollary 3.3. The following formulas
(3.8) " p,q) = F(b; X; d),
whereF stands for the double Dirichlet average of the function

A—it A4t 1
10 = Corsan/ o0 =i (5,255 5]

(3.9) 7 (p, q) = /7r /w f(rcosy + scosf) dm(y,0),
0 0
wheredm(1, 0) is defined in(2.7), and
(0. 9)
(3.10) 2 (A +it)/2,m) (A —it)/2,m)

2, .2
+r
2 2mP(a,B) s
Z (a+1,m)(6+1,m) (7= 17" P 5% —r?

m=0

(p # q) are valid.

Proof. In order to prove the product formula (B.8) we substifute —(\ +it)/2 into (1.7) and

(2.8). Lettingz = 1 + 2(sinh p)? andy = —1 — 2(sinh ¢)? in (2.3) we obtain[(3]7). Thu§ (3.8)
is a special case of (2.4). With and f as defined earlier, we see that formyla’(3.9) follows
immediately from[(2.6). With the same substitution forz, andy one easily obtains using

(3.7), the desired resuft (3]10y.

The Mehler-Dirichlet formula for the Jacobi functions is a special cage df (3.9). We have the
following.
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Corollary 3.4. Leta+ 1,3+ 1 € C.,t € C,andp > 0. Then
2

07 (p) = = (sinhp) >

611 Bla+1d)

' P cosh z A+it A—it 1 , 5

. — ———— 2P : ;= —(sinhx)” ) dz.
0 (sinh”p —sinh“x)27¢ 2 2 2
Proof. First, we letg = 0 in (3.6) and next us¢ (3.5) to obtain
(3.12) i (p,0) = 61 (p).
Letting¢ = 0 in (3.7) we obtain- = isinh p ands = 0. It follows from (2.7) that
1
dm(v,0) = (sin1))2*(sin 0)* da) df.

Bla+s5)B(B+3:53)
This in conjunction with[(3.7]2) angl (3.9) gives

1 iy
(@) \ _ 28
@ (p)——/ (sin 0)“"db
t BB+ LY Jo
1 i A+it A—it 1
TS 1 1) F —_— = — inh 2 : 2ad )
B@+ggyé2l< 2 2 2 @mpamm)@mw v

Taking into account that

/Oﬂ(sine)zﬁde =B (5 + % %)

and introducing a new variable of integrationwheresinh x = sinh p cos 1) we obtain, after a
little algebra, the desired formula (3]1%).

A third product discussed in this section involves Bessel functions of the first kind. For
x,y € Clet

(3.13) mi(z,y) = 27 Jo(2)y P J5(y).
For later use, let
e(a, ) = [27T(a+ DI (B+1)]

and

r+vy r—y
X = .
{—x—i—y —x—y]

Corollary 3.5. Let f(z) = cos z. The following product formulas
(3.14) m(z,y) = c(a, B)F(b; X; d)

and
1
m20480 (a+ 3) T (B+ 1)

. /” /7r f(x cos + ycos 9)(Sin¢)2a(sin0)2ﬂdw do
o Jo

w(zr,y) =
(3.15)

(a+1 643 €C.)arevalid.
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Proof. The following result
(3.16) my(z,y) = cla, B)S(b;Y; d),

whereS stands for the double Dirichlet averagesof) = exp(z) andY = ¢ X is mentioned in
[4], p. 427]. Application of

Sb;Y;d) = Z —Rom (b;Y;d)

(see [4, (6.4)]) to[(3.16) together with the use®i,,.1(b;Y;d) = 0 (see [5, (5.8)]) and
Rom(b;Y;d) = (—=1)"Rap(b; X; d) gives

G17)  mowy) = el B) S L Ry (5 X d) = e, H)F (b X d),

= (2m)!

where in the last step we have used the fact that the double Dirichlet average of

o0

f(z) =cosz = Z (_1)mz2m

= (2m)!
is equal taF (b; X; d). Koornwinder’s formula[(3.15) (see [10, (4.4]) follows immediately from
(3.14) and[(2.12)x

We close this section with a new proof of the following result of Baternan [2, p. 113-114].

Corollary 3.6. Letc(a, 3) be the same as in Corollafy 3.5 and [Et stand for the modified
Bessel function of the first kind of order Then forz,y € C (z,y # 0)

2P J5(x)y " Ia(y)

(3.18) B 2 (2% +y*)™ ) (=Y
=P D D e G 1 L (xz—+y2>

Proof. In (3.13) we interchange with 3 and next we ley := iy. Use of
(iy) " Jaliy) =y~ " La(y)

together with[(3.14) andl (3.1L7) yields

(3.19) 7P J5(x)y ™1, Z

m=0

Rme®

where _ _
Z:[x+§y —x+z.y]‘
=1y —T—1y
Here we have used the transposition property (a). SRigeis homogeneous of degrée: in
its variables
(3.20) Rom(b; Z;d) = (2% + y») " Raom(b; W; d),
where 02 o2
e’ —e'
W= Lw/z _619/2} )

with cos(0/2) = z/(x? + y?)/? andsin(6/2) = y /(2 + y?)'/2. Application of

(3,m) m! ples) (M)

(a+1,m)(B+1,m) ™ x? 492

Rom(b; W3 d) =
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(seell®, (5.10)]) to the right side df (3]20) followed by use€/ of (B.19) and
(%, m) m)! 1
2m)l ~ 22m
completes the proof of Bateman'’s formula (3.18).
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