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ABSTRACT. This paper is concerned with second-order linear noncanonical delay difference
equations of the form

A(p(t)Ay(t) + p(t)y(s(t)) = 0.
The authors prove new oscillation criteria by first transforming the equation into canonical form
and then obtaining some new monotonic properties of the positive solutions of the transformed
equation. By using a comparison with first-order delay difference equations and a generalization
of a technique developed by Koplatadze, they obtain their main results. Examples illustrating
the improvement over known results in the literature are presented.
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2 R. DEEPALAKHMI AND S. SARAVANAN AND J. R. GQRAEF AND E. THANDAPANI

1. INTRODUCTION

Consider the linear second-order noncanonical delay difference equation

(E) A(u(t)Ay(t)) + p(t)y(o(t)) =0

wheret, is a positive integer ante N(ty) = {to,to + 1,t0 + 2,... }. Throughout this paper
we assume that the following conditions hold:

(Hy) {u(t)} and{p( )} are positive real sequences forialt N(t¢);
(Hy) {o(t)}i |s a sequence of integers wittit) <t — 1, A¢(t) > 0, andlim;_, ¢(t) = oo;

(Hs) Alt) = Z ﬂ with A(to) < oc.

Recall that asolutlon of (E) is a nontrivial real-valued sequen¢g(t)} satisfying [(E) for
allt > ¢y + %itn o(t). A solution{y(t)} of (B)) is calledoscillatoryif it is neither eventually
0

negative nor eventually positive, and it is calle@hoscillatoryotherwise. Equatior (E) itself is
called oscillatory if all its solutions are oscillatory.

Oscillatory phenomena occur in different models described by difference and differential
equations that arise in real-world problems; for example,se€ [1, 7, 10, 12] and the references
therein. The problem of obtaining oscillation criteria for difference equations with deviating
arguments has received great interest among researchers over the past few decades (see [2, 3, 11,
4,16,[8/9[5, 15, 16, 13, 14]; references to many known results can be found in the monographs
by Agarwalet al. [2,[3].

In particular, for a canonical type delay difference equation

(1.1) A%y(t) +p(t)y(t — o) =0,
whereo is a positive integer, Koplatadze |11] proved that](1.1) is oscillatory if

. . 1 2 1
(1.2) h}figif n Z sp(s) > —.

Also in [2], it can be seen thdt (1.1) is oscillatory if
t—1

o (o+1)
(1.3) lim inf (s —o)p(s) > ( ) .

t—o00 U—|—1

s=t—o

Later, in [4,[6], the authors proved the following result to guarantees the oscillatigrj of (E),
namely,

o(t)—1 t—1

(1.4) limsup A((t) Y p(s)+ > Als+1)p(s)

t—o00

1 o0
T A60) Z; Als + 1)A(¢<S))p(s)} > 1.

From a review of the literature, we see that there is a great interest in extending and improving
conditions[(1.R)+(114) to more general difference equations. Following this trend, in this paper
we investigate the oscillatory behavior pi (E) by transforming it into a canonical type equation,
deriving some new monotonic properties of positive solutions of the canonical equation, and
then using these to obtain oscillation criteria fof (E). The results are demonstrated by some
specific examples. Due to the linearity |of (E), we only need to consider positive soluti¢rs of (E)
in all proofs.
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2. OSCILLATION CRITERIA

Throughout this paper, we use the following notation:

) = WDAMAC+ ). B =Y 5
o) =4 Q) = Alt+ DAGHH)

We begin with the following lemma which significantly simplifies the studyj ¢f (E).
Lemma 2.1. Assume that#{,)—(Hs) hold. Then,
1 y(t)

T (r0awae+ 0a (52)) = M),
Proof. By a direct calculation, we can show th@at (2.1) holds for any sequy¢g}. Indeed,

ﬁA (u(t)A(t)A(t +1)A (%))

1

- 20T A (u(t)A(t)Ay(t) + y(t))

_ A<t1+ 3 A+ DA (10 Ay(0) = Ay(0) + Ay(1)

= Au(t)Ay(t)).

(2.1)

Moreover,

- 1 1 1
= lim — — = 00,
; pOADAE+1) = A(L) Allo)
so the operator on the left side ¢f (2.1) is in canonical form. This completes the proof of the
lemma.n

In view of Lemmg 2.]L, we can see th@t (E) can be written in the equivalent form

A <u(t)A(t)A(t LA (%)) FAG + Dp()y((8) = 0,

or
(Ec) A(b(t)An(t)) + Q(t)n(¢(t)) = 0.
Theorem 2.2. The noncanonical difference equatifif) possesses a solutidp(¢)} if and only

if the canonical equatioEd) has the solutioqn(t)} = {%}

Corollary 2.3. The noncanonical difference equatifi) is oscillatory if and only if the canon-
ical equation(Ed) is oscillatory.

Corollary[2.3 simplifies the study of the noncanonical equafion (E) sincg fpbr (Ec), we see that
any eventually positive solution df (Ec) satisfies (see [1, Theorem 1.8.11])

(2.2) n(t) >0, An(t)>0, and A(b(t)An(t)) <0

for all t € N(¢y). The proof is elementary and the details are omitted.
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Lemma 2.4. Let (H,)—(H3) hold and assume that

(2.3) > B(e(1)Q(t) =

t=to

Then for any positive solutiofy)(¢) } of (EQJ),

(2.4) {%} is decreasing a”dE?o % =0.

Proof. Assume tha{n(t)} is a positive solution of (Ec). Itis easy to see thaft)} is increasing
and

(2.5) ~A (b(t)B(t)B(t + 1A (%)) = B(t+ 1)Q(t)n(6(t)).

Let M = n(to) — B(to)b(to)An(ty). Then a summation of (2.5) from to ¢t — 1 yields

@) —oBOB(+ 1A () 2 M+ (o) Y Bls+ Q) — o«

by (2.3). HenceA (%) < 0 eventually, and Sl{%} is decreasing analt/ > 0 for large
t, say fort > t; > t.
Next, in order to obtain a contradiction, we assume lhat% [ > 0. In view of (2.6),

the sequencéz(t)} = {%} satisfies

2.7y  Az(t)+

Summing|[(2.J7) front; to co, we obtain

z(to) —1 > Z e Z B(u+1)Q(u)B(d(w)z(d(w) > 1Y B(6(s)Qs)

s=t1 u=t1 s=t1

which contradictg (2]3). Therefore= 0, and this proves the lemma.
Theorem 2.5. Let (H;)—(H3) and (2.3) hold. If ¢(t) = t — k, wherek is a positive integer, and

k k+1
(2.8) hnlgf Z ZB (u+1 — k)Q(u) > (k:—+1>

where d(t)=b(t)B(t)B(t+1), therfE) is oscillatory.
Proof. Assume that{y(¢)} is a positive solution of[(E). Then by Theorém|2{2)(t)} is a

positive solution of[(Ec) and satisfigs (2.2). Now, the sequgn¢s} = {%} satisfies
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(2.9), that is,
%( ZBs+ k:)Q()+M>

—2(t — )ZB3+1)B( k)@@)).

s=

Since{z(t)} is decreasing angim z(t) = 0, we see tha{z(¢)} is a positive solution of the
difference inequality

(1)
which contradicts] (2]8). This proves the theoram.

(2.9) (dLZBsH (s — k)Q(s )>z(t—k)§o,

S

In the following result, we improve the conclusign (2.4). For convenience, let

t—1

ZB (s+ 1)B(s — k)Q(s) and B,(t) = [ (1 + cu(s)).

s=to s=to

Lemma 2.6. Let (H,)—(H3) and (2.3)hold. Then for every positive solutign ()} of (Ed), the

sequencéz(t)} = {%} satisfies

(2.10) {z(t)3,(t)} is eventually decreasing.
Proof. Assume tha{n(t¢)} is a positive, and so increasing, solution[of|(Ec). Then, the sequence
{z(t)} satisfies
Az(t) +ai(t)z(t+1) <0
by (2.9) and the fact thdt:(¢)} is decreasing. It follows that

2+ 1)1+ aa(t) — 2(t) <0,

and multiplying byH(l + ay(s)) gives

s=to

t t—1

A+ 1) TT 0+ arls)) = [T +anls))z0) < 0.

s=tp s=to

Therefore A(z(t)3,(t)) < 0, which proves the lemma

Using this new monotonic property given in (2.10), we are able to obtain some new and
improved oscillation criteria for equation](E).
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Theorem 2.7.Let (H,)—(H3) and (2.3) hold, and letp(¢) = ¢t — k, where k is a positive integer.
If

= Bi(s— k) (= BC+1D)BC - kK)Q(C) R
@10 h%ﬂéo“fZW@ ER(ET )>(k—+1) ’

s=t—k C=to

then(E) is oscillatory.
Proof. Assume that{y(¢)} is a positive solution of[ (E). Then by Theorém [2{(t)} =

{—Z((?)} is a positive solution of] (Ec) and satisfi¢s (2.2). As in the proof of The 2.5,

we see tha{z(t)} = {%} satisfies[(2]9), which in view of (2.1L0) implies thgi(t)} is a

positive solution of the difference inequality

t—1

Bt —k) 5~ B(s +1)B(s — k)Q(s)
d(t) 2 Brls — k)

This contradictg (2.11) and completes the prgof.

(2.12) Az(t) + ( ) z(t — k) <0.

s=tg

Next, we present a result that improves the oscillation criterion given ih (1.4).

Theorem 2.8. Let (H,)—(H3) and (2.3) hold. If ¢(t) = t — k, wherek is positive integer, and

t—o0

(2.13) limsup {%g: ]]3 i B(S;—lg?(z)— k?)Q(S)

s=t1

+53,(t — k) X_: %Jr/?(t—k)ZQ(s)} > 1,

then(E) is oscillatory.
Proof. Assume that{y(¢)} is a positive solution of[(E). Then by Theor¢m|2{2)(t)} is a
positive solution of[(Ec) and satisfids (2.2). Summing (Ec) ftdmoo, yields

An(t) = Wlt) S Qs)n(s — k).

Summing this fronmt; > ¢, to¢t — 1 and then using summation by parts gives

n(t) = z_: B(s+1)Q(s)n(s — k) + B(t) Y Q(s)n(s — k).

s=t1
So, we have

t—k—1 t—1

n(t—k) = Y Bls+1)Q(s)n(s — k) + Bt —k) Y Q(s)n(s — k)

s=t s=t—k

+B(t—k)>_ Qs)n(s — k).
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n(t)
B(t)

Taking into account thafn(¢)} is increasing andz(¢)5,(t)}| = {

ﬂl(t)} is decreasing
by Lemmg 2.5, we obtain

n@—@&@—kﬁ*“B@+ﬁB@—@@@
MR 2T AG-B
t—a-n S 2 )+B<t—k>n<t—k>2@<s>,
<o s=t— s=
Bi(t — k) &= B(s + 1)B(s — k)Q(s)
12{B<t—k> D NPES

+ By(t Zle ZQ }

s=t—k
This contradictg (2.13) and completes the proof of the theogem.

Theorem 2.9. Let (H,)—(H3) and (2.3)hold. If ¢(t) = t — k, where k is a positive integer, and

1
(2.14) hm 1nfB Z Q1(s) > =

4’
whereQ (t) = Q(t)%,

Proof. Assume that{y(¢)} is a positive solution of[ (E). Then by Theorem [2{2)(¢)} is a
positive solution of[(Ec) and satisfigs (2.2). Using the fact l{l gftl)(t) [
from (Ed), we obtain

then(E) is oscillatory.

is decreasing,

A A0(0) + Q) = Pl = ) =
or
215 ABAND) + Q) () <0
Define b At
w(t) = (27(;)7( )20

w(t) =Y Qils)+ D w<8>zv(is> 1)
and so - -
(2.16)  B(tyw(t) = B(t) Y Qu(s)+ B(t)) B(S)ZESZBB(S ;(1 (S +1)
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Letliminf, ., B(t)w(t) = M > 0; then from [2.1p),

M2 + M2,
4
. e 1 o .
sinceB(t) > = 1. This is not possible fod/ > 0, and the proof of the

S b(s)B(s)B(s + 1)
theorem is completes

3. EXAMPLES

In this section we present two examples to illustrate the main results and compare our theo-
rems to others in the literature.

Example 3.1. Consider the second-order Euler type difference equation

(3.1) A(tt+1DAyt) + (t+ py(t —2) =0, t>3,

wherep > 0 is a constant. We have(t) = t(t + 1), ¢(t) =t — 2, p(t) = (t + 1)p, A(t) =

SN

b(t) =1, B(t) = t, Q(t) = %, andk = 2. Condition [2.8) become;i %(t —2) =

> p = oo, that is, condition[(Z13) holds. The transformed equafioh (Ec) becomes

t=3

which is in canonical form. Moreovel(t) = t(t + 1) and condition[(2/8) becomes
t—1 -1

t—1 D 2 3
1. . f d ju— > —
lgg} s fmreo 522 2 ! (3) ,

:t_Q =0

thatis, [2.8) holds if > % Therefore, by Theore@.s, equatipn (3.1) is oscillatopyif %
Notice that in[[4, Theorem 2.2] and|[6, Theorem 3.2], equafion (3.1) is shown to be oscillatory
if p > 0.5, and so Theorein 3.5 improves both of those results.

Example 3.2. Consider the equation

(3.2) AR Ay(t) +p2ly(t—1) =0, t>1,

wherep > 0 is a constant. In this caggt) = 2, p(t) = p2, ¢(t) = t — 1, andk = 1.
t) = o QU) = o2, B(t) ~ 2, d(t) ~ 2,
)

2t’
1+
(— Condition 2.3 -) is clearly satisfied

Simple calculations show that(t) = o

ar(t) = p, B1(t) = (1 +p)" !, andQu(t) =~

and [2.14) becomdém inf; ., 271 "0, (T >2p(p+1) > 1’ that is, [2.14) holds if
1 . . .

plp+1) > 3 Therefore, by Theorem 2.9, we conclude that](3.2) is oscillatgry-if0.11237.

By [6, Theorem 3.6], equatiof (3.2) is found to be oscillatory if 0.16666 and so Theorem
[2.9 improves Theorem 3.6 ofl[6].

\_/[\D
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4. CONCLUSION

In this paper, we obtained new oscillation criteria for second order retarded noncanonical
difference equations by first transforming them into canonical form. We were then able to
derive some new monotonic properties of their positive solutions. The oscillation results we
then obtained are new and improve some results previously reported in the literature. We also
illustrated our results with examples pointing out these improvements.

REFERENCES
[1] R. P. AGARWAL, Difference Equations and Inequalitig3ekker, New York, (2000).

[2] R. P. AGARWAL, M. BOHNER, S. R. GRACE, and D. O'REGANDiscrete Oscillation Theory
Hindwai, New York, (2005).

[3] R. P. AGARWAL, S. R. GRACE, and D. O'REGANDscillation Theory for Difference and Func-
tional Differential EquationsKluwer, Dortecht, (2000).

[4] G. E. CHATZARAKIS and S. R. GRACE, Oscillation of 2nd-order nonlinear noncanonical differ-
ence equations with deviating argumehtNonlinear Model. Anal (2021), pp. 495-504.

[5] G. E. CHATZARAKIS, S. R. GRACE, and I. JADLOVSKA, Oscillation theorems for certain sec-
ond order nonlinear retarded difference equatiteth. Slovaca’1(2021), pp. 871-883.

[6] G. E. CHATZARAKIS, N. INDIRAJITH, E. THANDAPANI, and K. S. VIDYAA, Oscillation
behaviour of second-order noncanonical retarded difference equatiosts,J. Math. Anal. Appl.
18(2021), No. 20, 11pp.

[7] K. GOPALASAMY, Stability and Oscillations in Population Dynamijdsluwer, Boston, (1992).

[8] S. R. GRACE, New oscillation criteria of nonlinear second-order delay difference equations,
Mediterr. J. Math.19 (2022), No. 166, 11 pages.

[9] R. KANAGASABAPATHY, S. SELVARANGAM, J. R. GRAEF, and E. THANDAPANI, Oscilla-
tion results using linearlization of quasilinear second-order delay difference equiedisgrr. J.
Math. 18 (2021), No. 248, 14 pages.

[10] W. G. KELLY and A. C. PETERSONDiIfference Equations: An Introduction with Applications
Acad. Press, New York, (1991).

[11] R. KOPLATADZE, Oscillation of linear difference equations with deviating argumeddsnput.
Math. Appl.42(2001), pp. 477-486.

[12] M. A. RADIN, Difference Equations for Scientists and EngineerMiprld Scientific, New Jersey,
(2019).

[13] S. H. SAKER, Oscillation theorems for second-order nonlinear delay difference equ&toios!.
Math. Hungar47 (2003), pp. 201-213.

[14] S.H.SAKER, Oscillation of second-order nonlinear delay difference equaBoiisKorean Math.
S0c.40(2003), pp. 489-501.

[15] R. SRINIVASAN, S. SARAVANAN, J. R. GRAEF, and E. THANDAPANI, Oscillation of second-
order half-linear retarded difference equations via canonical transféomauton. Dynam. Sy<4.
(2022), pp. 163-169.

[16] B.G.ZHANG and S. S. CHENG, Oscillation criteria and comparison theorems for delay difference
equationsFasc. Math25(1995), pp. 13-32.

AJMAA Vol. 21(2024), No. 2, Art. 13, 9 pp. AIMAA


https://ajmaa.org

	1. Introduction
	2. Oscillation Criteria
	3. Examples
	4. Conclusion
	References

