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ABSTRACT. Inthis article, we consider a system of singularly perturbed weakly coupled convection-
diffusion equations having diffusion parameters of different magnitudes. These small parameters
give rise to boundary layers. An upwind finite difference scheme on adaptively generated mesh
is used to obtain a suitable monitor function that gives first-order convergence which is robust
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ear and semilinear system of differential equations to support the effectiveness of our preferred
monitor function obtained from theoretical analysis.
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1. INTRODUCTION

Solutions of singular perturbation problems (SPPs) exhibit sharp boundary or/and interior
layers in narrow regions where solution has steep gradient. Typical applications of SPPs are
boundary layers appearing in viscous fluid flow and concentration or thermal layers in mass
and heat transfer. Because of the presence of the perturbation parameter, standard numerical
methods on uniform meshes fail to give accurate approximation. Unless a sufficiently large
number of mesh points are used inside the layer, the layers are not been resolved and the rate
of convergence is far less than the non singularly perturbed problems. This phenomenon leads
to develop the concept efuniform numerical methods; in which the order of convergence and
the error constant are independent of the singular perturbation parameter

If the location and width of the layer are knowapriori, one can invoke this knowledge to
construct a suitablapriori layer adapted mesh. Several work are done by usmmmri chosen
meshesfor e.g.,well known piecewise-uniform Shishkin mesh, Bakhvalov mesh) to get uni-
form convergence (see [12]). Recently there is much interest in the generation of layer adapted
meshes using the computed numerical solution, where solution adaptive algorithm attempts to
automatically detect the location, height and thickness of the boundary layer. This paper is
concerned to generate layer adapted mesh for system of weakly coupled (coupled through the
reaction terms) convection-diffusion problems.

In recent yearsapriori grid generation for system of boundary-value problems have attracted
several authors. A variety of uniformly convergent numerical methods on reaction-diffusion as
well as for convection-diffusion system of equations is developed. For the weakly coupled
convection-diffusion system of equations, Bellew and O’Riordan [4], Lin [10] and Zhongdi
[13] carried out the analysis aapriori chosen Shishkin and Bakhvalov meshes. Singularly
perturbed system of reaction-diffusion problems are considered by Das and Naiesan [7] where
a hybrid scheme is proposed on Shishkin type meshes.

In this article, we consider the following system of weakly coupled singularly perturbed
convection-diffusion boundary-value problem (BVP):

Lu= —Epsu(z) — A(x)U'(z) + B(z)u(z) = f(x), € Q= (0,1),
{ u(0) =u(l) =0,

whereL = (Ly,---,L;)", Eps = diagey, o, , 1), Alz) = diaga;(z), ag(z), -,
amz@;;;, B(x) = (biy(@))sir F(x) = (file), falw), -~ fil2))” andu(z) = (ui(a),---,
Up\T .

Without loss of generality, we shall assume thah { a1 (), ax(z), -+, aw(z)} > a >0,
forz € Q = [0,1]. The analysis provided here, can be extended for a more general class
of system of BVPs, where all;;(x) are bounded away from zero by a positive constant. We
shall consider the matriB = (b;;);,_,, as aL,-matrix (.., off-diagonals are nonpositive and
diagonals are positive) with

(1.2) min {ibmj(x)} > 3> 0.

z€[0,1];m=1:k

(1.1)

It will be assumed that the entries of the coefficient matrikeB, f, i.e.,a;;, b;;, f; are ine2(Q)
fori,j=1,--- k.

A commonly used technique in adaptive grid generation is based on the idea of equidistribu-
tion. AgridQY = {0 =29 < 7, < --- < 2y = 1} is said to be equidistributed, if

(1.3) /x M (s,u(s))ds = /%M M(s,u(s))ds, i=1,...,N—1,
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whereM (z,u(z))(> 0) is called the monitor function. Equivalentl.3) can be expressed as

(1.4) /% M(s,u(s))ds = %/0 M(S,u(s))ds, i=1,...,N.

It is common to use monitor functions which are bounded away from zero to maintain an
appropriate distribution of mesh points throughout the domain. In practice, the monitor func-
tion is often based on simple functions, involving the derivatives of the unknown solution.
In this context, Beckett and Mackenzie proposed a curvature—type monitor function for both
convection-diffusion([2] as well as reaction-diffusion [3] type problem for a scalar BVP. These
monitor function are based on the singular component of the solution.

This article is devoted for a system of weakly coupled convection-diffusion BVPs by gener-
alizing the monitor function proposed by Beckett and Mackenzies [2, 3]. It should be noted that
in [2], Beckett and Mackenzie carried out the convergence analysis by assuming the convection
term as a constant, and the grid is obtained by using the equidistribution of the exact solution.
For our case, we have carried out the analysis with a general convection term.

The structure of this paper is as follows: In Secfipn 2, we relate the analytical solution bound
of the system of equations with the solution bound of a scalar convection-diffusion BVP and
provide a stability bound of the solution. Bounds for the derivatives of the continuous solu-
tion are also provided. Then, in Sectiph 3, we outline the numerical discretization pf (1.1)
using the upwind finite difference scheme, with a discrete stability bound. The main result,
first-order uniform convergence using the proposed monitor function is derived here using the
discretel., norm, from a sufficient condition of uniform convergence. In Sedtion 4, a semi-
linear convection-diffusion system of BVPs is introduced. Numerical results using an adaptive
algorithm are given in Sectign} 5, to show that the rate of convergence predicted by our analysis
holds true in practice. Finally in Sectiph 6, we make a concise conclusion.

Notation. Throughout this papet’, denotes a generic positive constant independent of the
grid pointsz; and the parameters, and N (the number of mesh intervals) which may take
different values at different places. For any mesh func{iop}’, defined on a nonuniform
meshQ”, we define the following norms

6]l = max|s(a)l,  [19] = mavx |6,(x)] where® = (¢, .-+ )"

Another discrete norm defined by

(1.5) [Vll-1000v = min _max

N—-1
Sl 71,
J=t

will be used for our later analysis. Hetge = z; — x;_;. Whenever we write) = O(v), we
mean thato| < C'|v|. To simplify the notation, we set = g(x;) for any functiong, while G;
or GV denote a discrete approximationgpét z;.

2. CONTINUOUS PROBLEM AND SOLUTION BOUNDS

This section provides the stability property of the analytical solutiai (1.1). We start by
recalling the stability of the scalar convection-diffusion BVP, which is used to derive the stabil-
ity of the solutionu. The following lemma (see fa.g.,[11]) provides the stability estimate of
the general scalar BVP.

Lemma 2.1. Assume the coefficients of the following SPP
{ —eu” — a(x)u + b(x)u = f(x), for z€Q,

2.1
@D u(0) = u(1) =0,
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satisfiesu(), b(z), f(x) € () withe > 0,a(z) > a > 0,b(z) > 3 > 0forall x € Q. Then,
for anyu € ¢%(Q) N e(), we have the following stability estimate

i f}‘

ol < win {22
a
Now, with the help of above lemma the stability for each componentisfaddressed here.

9

allllb

Lemma 2.2. Letu be the solution of (1]1) and assume that the coupling m&rsatisfy the
Lo-matrix condition [(1.R). Then

k
] < SO mm{
=1
} , form # [l and~,,,, = 1.

where thek x k matrix T = T(A,B) = (7, )kxk IS Such that
Proof. A single equation from the system of BVPs (1.1) can be written as

5

an

N
by

)

bml bml

?

le:_min{‘

bmm amm

fm

? )

Fn
bmm

bmm amm

Yol = —min{

bmm amm

Y

k
(2.2) — el — Uy 4 Dy U, = [ — Z bpyug, form=1,--- k.
I=1,l#m
i b b
. 'ml 'ml .
— _m e < =1.--- k.
ool =5 i {22 |22 | ) < i | b=t
1=1,l#m
Now define & x k matrix T = T (A, B) = (7,,;)kxx Such that
If we assumeX to be inverse monotoriee., Y~ > 0, then
f_m f_m},mzlj__'%‘
I=1,l#m mm
The matrixB is assumed to be aiy-matrix from (1.2). ThereforeY will be inverse monotone.
As a consequence the stability of the continuous solutian can be obtained. It should be
noted that, one can directly compute the inverse of the matrisom the definition ofY. Its
to get the stable solution df (1.1), tlig-matrix condition is not necessary for the matBix
The following theorem provides the derivative estimates of the solution
derivatives satisfy the following bounds foE €,
)| < C {1 + e, exp (——amx)

Under the condition of,-matrix, Lemma 2.]1 yields
mi i } , form #landy,,,, = 1.
k
linll 3 ] < min { |22

a mm
Hence, we get the required stability bound. ]
sign pattern for the condition of inverse monotonicity can also be checked. Therefore, in order
Theorem 2.3. Under the assumptions frorp (IL.2), the solutiomf the system] (1].1) and its

, Wherea,,,,(x) > ay,, forn=0,1,

and

k
1+ 25;2 exp (—%)] , Wherea,,(z) > a,, form,p=1,--- k.

ul)| < C
p=1 €p
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Proof. The bounds of the solutiamand its first-order derivative are given by Linl3[10], where a
standard technique, provided in Kellog and Tsan [9] for scalar operators is used. The proof pro-
vided in Zhongdi[[13] for two equations can be extended to bound the second-order derivative
of the solution of the systeri (1.1). -

3. NUMERICAL SCHEME AND NONUNIFORM GRIDS

This section is devoted for the discretization of the continuous problem. The monitor function
is obtained through the error analysis, which can be equidistributed to get parameter uniform
convergence.

3.1. Discrete problem. Here, we shall consider the finite difference approximatior] of| (1.1)
on a nonuniform grid2¥ = {0 = 2y < 21 < --- < xy = 1} with the step size#; =

T; —x;1, i = 1,---, N. Given a discrete functiofw;}YY,, define the forward and backward
difference operators

Vit1 — g _ Vi — Ui—1
Dty =22 and D v =—-——21
hita hi

respectively, wheré; = (h; + h;;1)/2. LetU be the discrete approximation of the continuous
solutionu(xz). Then, by denotindJ; = U(z;), the discretized problem of (1.1) is defined as

follows:
FindU,,--- ,Uy_; satisfying

[LNU], =f,, for i=1,2--- ,N—1,
Uo=Uxy =0,
Le,findU,, 1, - ,Upn-1,fOorm =1,--- k satisfying
) { LAV = [ANUn)i + 30 i btk = frmgs With i =1,2,-- [N —1,
Uno=Unn =0,
whereL" = (LY, LY, --. | LN)7 is the discrete analogue hfand
[ANV); = =, DT D™ v; — A D05 + b0
In a similar way, ifa,,,, is negative, then the upwind scheme will be defined as
[ANV]; = —em D™ D05 — @y D05 + bm:ivs.
The discrete solution satisfies the following stability result (see fos,[1, [10]).

Lemma 3.1. Under theLy-matrix condition, we have

N
A

|v]lovy < ’ , forv e RNV
mm ||[QN
and
(3.2 lollos < ClIAN| 1omas =€ min  [[Vi]ox

Let E = u — U be the error of the discrete solution obtained by the finite difference scheme
(3.1), whereE,,; = wn; — Uni, m = 1(1)k, i = 0(1)N, i.e.,E € (R¥*1)k. We divide the
errorE in two component®, R such thaE = N + R satisfies
(3.3)

AR, =LYU—-w];, i=1,2--- ,N—1, R,0=N,x=0, m=12---k
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and
(3.4)

[ANR,); Z boiiBri, i=1,2-- N=1, Rpo=Rpn=0, m=12---k
I=1,l#m
From Lemma 311, it follows that

bml
[ Emlloy < [Rin|lon + [[Rin]lov < [Rinf|ov + Z

I=1,l#m

||EIHQN7 m:1727"'7k7
QN

which leads to
(3.5) U — uflax < C|[N[[qx.

Now, using the stability inequality from Lemma B.1 for the discrete solution and the solution
bound from Theorein 2.3, it is easy to derive the following lemma.

Lemma 3.2. The solution of[(3]3) i.e., the componeNts of the termX satisfy

< !/
Pl € [ 143 o o

where(' is independent of the perturbation parametessand the number of mesh intervals
N.

Proof. This result is proved in Linf [10]. n
Hence, the inequality (3.5) reduces to the following result.

Theorem 3.3.Letu be the solution of the system (1.1) e the finite difference approximate
solution of (3.11), then we have

z; k
— < /
[Ju—Ul|gn < Ci:r{{.@’(N /ZH [1 + 21 ’um(ﬂc)‘] dx

whereC' is independent of the perturbation parametessand the number of mesh intervals
N.

The next theorem provides a sufficient condition for choosing an appropriate monitor func-
tion, whose equidistribution will lead to the layer-adapted mesh.

Theorem 3.4. Assume that there exist positive constafis C; and (5 independent of the
perturbation parameters,,, such that a monitor functiod/ (z, u(x)) satisfies

(3.6) /xl [1+Z|u ]dz<C’1/ M(z,u(zx))dz, fori=1,--- N,

(3.7) /1 M(z,u(x))dx < Cy,
and

(3.8) M(z,u(z)) > Cs.
Then

IU —ullgv <CNTH
where(' is independent of the perturbation parametessand the number of mesh intervals
N.

AJMAA Vol. 10, No. 1, Art. 14, pp. 1-17, 2013 AJMAA


http://ajmaa.org

SYSTEM OF SINGULARLY PERTURBED PROBLEM ON ADAPTIVE MESH 7

Proof. Note that from the definition of equidistribution princip]EQlA), we have
T; 1 1
Csh; < / M(z,u(x))dx = N/ M(z,u(z))dr < CoN~!
Ti—1 0

which implies that
hi < CoC3' N7
Now using [(3.6){(3.8) with the equidistribution principfe (1.4), we obtain

T; k
Wollor < Cmax [ |14 3 )] o
Ti—1 m=1

x; 1
<c <M@uK@Mx§Cm7{/]W@J&ﬂﬂngNl.
0

Ti—1
Hence, the inequality (3.5) leads to
|lU—uljoqv <CNL. "

Now consider the following monitor function

k
(3.9) M(z,u(x) =1+ |ul|'>.

This monitor function is a generalized form of the monitor function proposed by Beckett and
Mackenzie [[2] for a scalar case ¢f (JL.1), where the solutida decomposed into two com-
ponents, the so called smooth componerind the singular component. In reality, from
theapriori analysis, it is observed that the boundary layer phenomena occurs actually from the
singular component of the solution. It should also be noted that the second-order derivative of
the smooth componentis bounded. These facts motivate them to consider a monitor function
involving especially derivative of the singular component. This monitor function also works
well for reaction-diffusion type problems|[3].

Now, our aim is to show that the monitor function given|in {3.9) satisfies all conditions of
TheorenT_BTrl. To show this, observe that The 2.3 wi:thrr%riln a,, implies

! (z)]Y? <C 1+i82€xp - v
m = - P c

p= p

1/2
SCl:maX(l,gpQQXp(—%))} ,fOfp:LZ,---,k‘,
€p

where we have used the fact that for angositive functionsy, g2, - - - , g, We get

(pzn;gp) " < \/ﬁ[mgX(gp)]

1/2

Note that

1 1/2
[l
0 €p

Therefore, we have

[1 — exp ( — %)} <3, (say)

/o M (z,u(r))dr <max(1,5,) = Cy (say)

e
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Thus the conditior (3]7) is satisfied. Now, from the equatfion (2.2), we have

k
1
u;n: [_gmu%+zbmlul_fm:|‘
=1

amm

Hence, it follows from Lemmp 2|2 that
|ty | < Clemlug,| + 1.
Thereatfter, it is enough to show that
k k
> emlin <O Jup .
m=1 m=1

From the given equatiof (2.2), we can write

(3.10) e, < C [1 + e Texp <—amx)] :
Em
Now we shall show that,,|u/,| < Clul,|'/%. Assuming that./, # 0, the inequality[(3.10) leads
to
o\ 12
lemul” [V2 < C[l + e, exp ( — L)}
Em
o 1/2
< \/QC’[max (1,5m1 exp ( - l))] .
Em
Thus, we have
o 1/2
Emull |12 SC\/sm{max (l,qfexp(—L))] <C.
Em

That is,
Emltp| < Clull |2,

Therefore, we obtain that

x; [ k
< /
Malley <€ s, [ [0 37 o)

< : "
<C L%v/xu _1+Z€m|um(x)|}dx

1=
m=1

x; [ k_
< " 1/2
< Ci:r?’.a. y /mi_l _1 + 2_1 [t ()] }d%

k

max / {1 £y |um(x)]} iz < c/ M(z, u(z))dz.

=1
Again, we have
1 < M(z,u(x)).
Thus, conditions (3]6) anfl (3.8) are satisfied. Hence, Theforgm 3.4 implies that
U —ullov <CN L.

Now, we state the main result of this paper.
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Theorem 3.5. Letu be the solution of the system (1.1) dddbe the numerical solution of the
corresponding discretized proble@.l), on the meShwhich is obtained by equidistributing
the monitor function(3]9). Then there exists a constant C, independahaatle, such that

lu—Ulloy < ON7L.

4. SEMILINEAR CONVECTION -DIFFUSION SYSTEM

Consider the following singularly perturbed system of semilinear convection-diffusion BVPs:

{ Lu = —Eps U, (z) — A(z)u,(z) + f(z,u(z)) =0, for z¢€Q,

(4.1)

u(0) =u(l) =0,

wheref(z,u) = (fi(z,u),- -, fu(x,u))T. Here,f,,(z,u) can involve nonlinear terms ofand

the notations,, u,, are used instead of andu” respectively, for the sake of convenience. We
shall assume that

9 fm

4.2) 9w

——(z,u) <0, m#l, Z (z,u)> (>0, m=1---k,

on (z,u) € Q x R¥. Assume that the reduced problem, which is obtained by sdijig= 0

in (4.1), has a unique solution . Under this assumption, the system of BYP [4.1) admits a
unique solution iff2. Chang and Howe$[6] studied the theoretical aspects corresponding to the
semilinear system of convection-diffusion problems.

To obtain the numerical solution of the systgm |4.1), the well-known Newton’s quasilin-
earization technique is used. This technique allows us to Iinearize the system into a sequence
of linear problems, whose solutions” with a proper initial guess ) will converge to the
original solutionu. For each fixed nonnegative integerdefineu”*!) to be the solution of the
linear problem
(4.3)

{ Lu®t) = —Eps U™ (z) — A()u?™(2) + I(@)uP ) (z) = F(z,u® (z)), forz €,

u(p+1)(0) — u(p+1)(1) — 0’

forp=20,1,---. HereJ(z) is the Jacobian matrix which is given by
0f(z,u®) 0f1(z,u?)
J(x) = : : ;
f(z, u(p)) of(x, u(p))
S owm dwe

andF(z,u®) = J(2)u®(z) — f(z,u® ()). It is easy to see that the Jacobian mattix)
satisfies all the conditions of dny- matrix defined in2). If the initial guess? is sufficiently

close to the solutiom, then following the proof given in Doolan et. al.![8], one can show
that the sequence”*!) converges to the solutiom. The solution of the associated reduced
problem can be taken as an initial gues3(z). Since, for each fixeg the system3) is a
linear system of the fornj (11.1), the mesh generation procedure by equidistributing the proposed
monitor function explained in Secti¢f 3 can be applied to generate a layer-adapted mesh. The
obtained solutions will converge uniformly to the continuous solutiop asreases. We use

the following criteria

U (z,) —u®(z)| <Tol, z;,€Q, p>0,
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for convergence of the iterative quasi-linearization technique. Hetelenotes the user chosen
tolerance bound.

5. NUMERICAL EXPERIMENTS

The generation of the adaptive finite difference solution requires two steps; firstly the adaptive
mesh has to be determined by a mesh generation algorithm and thereafter, the finite difference
solution has to be computed on that mesh. To generate the adaptive mesh, we use the monitor
function given in[(3.p).

5.1. Practical Implementation —Adaptive Algorithm. Here, we shall use the following iter-
ative algorithm for generating the new mesh by equidistributing the proposed monitor function.
This algorithm is applied for scalar SPP by Chadha and Kopteva in [5] with the convergence

analysis.
Here our aim is to construct a mesh that solves the following equidistribution problem

N
1 )
luihi: N]El Mjhj, for = 1, ,N,

whereM; is the discrete approximation of the monitor functidbh(x, u(z)) at the subinterval
(zi—1,2;). Observe that instead of solving the discretized equidistribution probleimn (1.4) exactly,
it is sufficient that this algorithm can be stopped when the weakly equidistribution principle

Co - .
MthSW;Mjhja for i=1,---,N,

satisfied with a user chosen constagt> 1. The constant’y will be chosen larger enough to
obtain the convergence in a fewer iterations. Whgrapproaches 1, this algorithm results in
more accurate solution with many iterations.

5.1.1. Algorithm-.

Step 1: Define the initial uniform meg® : 0 < i < N, 2% = i/N} and go to Step-2 with

p=0.
Step 2: Solvd.VU® = ") with U = u(0) andU'®) = u(1) at the mesHz!” : 0 < i < N}
for ng) = (Ul(i), e U,gf’i)) and definehfi)1 = ngfl — :cz(”).

Step 3: Find the discretized monitor function at ttteinterior node
k
o = [1+ Y |DUWV, fori=1,- N — 1,
m=1

whereD? = DD~ Defineg, = (¢V + ¢\*,)/2fori = 1,--- | N, by settingp?) =
o) andg'?) = ¢\ | Compute

J
() _ (p) 2(P)
o) =D H%
=1

Step 4: Choose a constarif > 1. The stopping criteria for the iterative technique is

N A o )
- N

If it holds true, then go to Stef;else continue with Step-

AJMAA Vol. 10, No. 1, Art. 14, pp. 1-17, 2013 AJMAA
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Step 5: Generate a new mesh by equidistributing the proposed monitor function using cur-
rent computed solution from Step-2 ad¢”’ from Step-3: Set”’ = /N for
i=0,---,N. Now interpolate(Y;”, 2"V} to (% z!")) using piecewise linear in-
terpolation. Generate a new mesgh) = {0 = 27" < 2P < .. < 2T — 1y
and return to Step-2.

Step 6: Setr* = {0 = zf < a7 < --- < 2’ = 1} = 2®+D andU* = UP*YD whereU* is our
desired solution. Stop.

In order to highlight the results of our theoretical findings and to numerically study the various
components of the error estimator, we supply three test problems. For these three test problems,

the maximum point-wise errors and the corresponding rates of convergence are highlighted
through tables.

Example 5.1. Consider the following system of singularly perturbed BVPs:

—eruy(z) — vy (2) + 2ui () —us(x) = fi(x), =€ (0,1),
—equy () — 2uh(x) — uy (2) + dus(2) = fo(2),
u1(0) = uy(1) = uz(0) = ug(1) =0,

wheref,(x) and f,(z) are chosen such a way, that the exact solution is given by

” (I’) _ - eXp( .’L'/El) 1- eXp(_:U/EQ) — 94in E$
! } — eXp(( 1?51)) 1 —exp(—1/e3) 27
—exp(—x/eq
us(z) = T~ exp(—1/22) —zexp(r —1).

For any value ofV ande = (¢4, ¢2), we calculate the exact maximum point-wise errEﬁ)éE
for the solution components,,, m = 1,2, by

En]\zfs = Oglax (U () — Uélv,i )

whereu,,(z;) is the exact solution andi ; is the numerical solution at the mesh point
obtained by usingV number of mesh intervals in the domai .

The uniform errors for each fixell, are defined by taking the maximum over wide range of
e, say from the sef, namely

EYN = maxE

ceS
and the corresponding parameter uniform rates of convergence is calculated by the following

formula
EN
T = 108, (E—Q”}V> .

The second problem considered here, has boundary layers at both the ends.
Example 5.2. Consider the following system of convection-diffusion problem:

—erwf () + (5 — 2)ui(z) + (4 + )us(z) — uz(x) = 2exp(z), € (0,1),
—equl(x) — 6uh(z) — 2ui(x) + (4 — x)ug(z) = 10z + 1,

Our next problem is a system of semilinear convection-diffusion equations.
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Example 5.3. Consider the system of semilinear SPPs:
—eu] —2(x + 1% +u; — 1 — (1 —up)® +exp(ug —up) =0, =€ (0,1),
—equly — Buly + uy — 0.5 — (0.5 — us)’ + exp(uy — uy) = 0,
u1(0) = u1(1) = u2(0) = ug(1) = 0.

Exact solutions for the Examp]e $.2 and Exanjple 5.3 are not available. So the accuracy of
their numerical solutions will be computed using double mesh principle. For any valdie of
the maximum pointwise errots;) _ for the solutionu,,, m = 1,2, will be calculated by

EY = max |UY -

m,e 0<i<N m,z|’

whereU is the computed solution witly number of mesh intervals amian is the numerical
solution on a mesh, obtained by bisecting the original mesh Wittumber of mesh intervals.
The uniform errors for each fixe and the corresponding parameter uniform rates of con-
vergence are calculated by the same formula as for the previous example.
For the numerical experiments of all the test problems, wedak@ds, from the set

S = {5 =(e1,8)|le1=1,27% .-+ 27y =1,272 ... 272}

and in the numerical computation, we equidistribfite|(3.9) by taking- 3.

In Tableg 5.]L anfd 5]2, we present the uniform errors and the corresponding orders of conver-
gence for the solution componentsandu, respectively of Example 5.1, which clearly indicate
that the proposed methoddsuniform first-order accurate. The same behaviour is also observed
for Examplg 5.P from Tablds 5.3 ahd b.4. These tables demonstrate the uniform errors and the
corresponding first-order convergence to the solution compone@atsdu, respectively, where
double mesh principle is used to calculate the errors and the rates of convergence.

To show the effectiveness of our proposed monitor function numerically, we solve a system of
semilinear convection-diffusion BVPs in Example|5.3 withl = 10~8. The numerical results,
that is, the uniform errors and orders of convergence given in Tables 5[5 @nd 5.6 for Example
[5.3 support the theoretical estimates.

In Figure[1 and Figurg]2, we display the error plots for Examiple 5.1 and 5.2 respectively.
These two figures show that the maximum errors occur only in boundary layers regions. Mesh
points are also dense in these regions. In Figlire 3 and Figure 4, the maximum point-wise errors
versus number of mesh intervals are plotted for the Example 5.2 and ExXamjple 5.3, respectively.
These figures are drawn in logarithmic scalesfoe= 2712, ¢, = 27 ande; = 2722, gy = 2716
respectively. Graphically these also suggest that the computed errors are decreasing with the
rate ofO(N~!') as the number of intervay increases.

Table 5.1: Uniform errors and orders far, for Examplg 5.]1.

(e1,e9) € S Number of intervalgV
64 128 256 512 1024 2048 4096
E{V 3.5643e-1 1.3102e-1 5.1964e-2 2.4510e-2 1.1505e-2 5.7534e-3 2.8699e-3
r{v 1.4438 1.3343 1.0842 1.0911 0.9998 1.0034 -

The advantage of generating the meshes by the adaptive technique is that it does not require
any apriori knowledge about the location and widths of the boundary layers. This technique
leads to an optimal parameter uniform convergence corresponding to the upwind discretization,
by equidistributing the proposed monitor function.
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Table 5.2: Uniform errors and orders far, for Examplg 5.]1.

(e1,62) € 8 Number of intervalgV
64 128 256 512 1024 2048 4096
Eév 1.5564e-1 6.2899e-2 2.1974e-2 1.0940e-2 5.0224e-3 2.4649e-3 1.2174e-3
ré\’ 1.3071 1.5172 1.0063 1.1231 1.0269 1.0177 -

s Error for U1

¢ Error for U2

Error

Figure 1: Error plot for U; andU; with N = 128 to the Examplg 5]2.

Table 5.3: Uniform errors and orders far, for Examplg 5.p.

(e1,82) € S Number of intervalgV
64 128 256 512 1024 2048 4096
E{V 7.2515e-2 3.2051e-2 1.4278e-2 5.6939e-3 2.9827e-3 1.3425e-3 6.3003e-4
r{V 1.1779 1.1666 1.3263 0.93282 1.1517 1.0914 -

6. CONCLUSION AND DISCUSSION

In this article, we present the analysis for the discretization of singularly perturbed weakly
coupled system of BVPs of the for (IL.1) by using upwind finite difference scheme. The
numerical solution is obtained on a suitable layer-adapted nonuniform grid, based on the idea
of equidistribution principle. The error analysis for the numerical solution is carried out by
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Figure 2: Error plot for U; andU, with N = 128 to the Examplg 5]2.
Table 5.4: Uniform errors and orders far, for Examplg 5.p.
(e1,62) € S Number of intervalgV
64 128 256 512 1024 2048 4096
EY 1.2823e-1 5.5770e-2 2.0224e-2 8.0535e-3 3.4903e-3 1.7726e-3 8.1647e-4
ry 1.2012 1.4634 1.3284 1.2063 0.9775 1.1184 -
Table 5.5: Uniform errors and orders far; for Examplg 5.8.
(€1,e2) € S Number of intervalsV
64 128 256 512 1024 2048 4096
EN 1.1940e-2 5.3763e-3 2.4913e-3 1.2613e-3 5.9573e-4 2.8808e-4 1.5506e-4
r 1.1511 1.1097 0.9820 1.0821 1.0482 0.8936 -

using the maximum norm. It is shown that the errors are first-order convergent, which are
independent of the singular perturbation parameters. Numerical results, obtained for linear and
semilinear system of BVPs, validate the efficiency of the proposed monitor function, which lead
to first-order parameter uniform accuracy.
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Figure 3: Error plot for U; andU;, to the Examplg 5]2.
Table 5.6: Uniform errors and orders far, for Examplé 5.8.
(€1,e9) € S Number of intervalgV
64 128 256 512 1024 2048 4096
EY 5.5380e-3 2.6561e-3 1.2129e-3 5.7023e-4 2.881le-4 1.3645e-4 6.5712e-5
ry 1.0601 1.1308 1.0889 0.9849 1.0782 1.0542 -
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