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1. I NTRODUCTION

Solutions of singular perturbation problems (SPPs) exhibit sharp boundary or/and interior
layers in narrow regions where solution has steep gradient. Typical applications of SPPs are
boundary layers appearing in viscous fluid flow and concentration or thermal layers in mass
and heat transfer. Because of the presence of the perturbation parameter, standard numerical
methods on uniform meshes fail to give accurate approximation. Unless a sufficiently large
number of mesh points are used inside the layer, the layers are not been resolved and the rate
of convergence is far less than the non singularly perturbed problems. This phenomenon leads
to develop the concept ofε-uniform numerical methods; in which the order of convergence and
the error constant are independent of the singular perturbation parameterε.

If the location and width of the layer are knownapriori, one can invoke this knowledge to
construct a suitableapriori layer adapted mesh. Several work are done by usingapriori chosen
meshes (for e.g.,well known piecewise-uniform Shishkin mesh, Bakhvalov mesh) to get uni-
form convergence (see [12]). Recently there is much interest in the generation of layer adapted
meshes using the computed numerical solution, where solution adaptive algorithm attempts to
automatically detect the location, height and thickness of the boundary layer. This paper is
concerned to generate layer adapted mesh for system of weakly coupled (coupled through the
reaction terms) convection-diffusion problems.

In recent years,apriori grid generation for system of boundary-value problems have attracted
several authors. A variety of uniformly convergent numerical methods on reaction-diffusion as
well as for convection-diffusion system of equations is developed. For the weakly coupled
convection-diffusion system of equations, Bellew and O’Riordan [4], Linß [10] and Zhongdi
[13] carried out the analysis onapriori chosen Shishkin and Bakhvalov meshes. Singularly
perturbed system of reaction-diffusion problems are considered by Das and Natesan [7] where
a hybrid scheme is proposed on Shishkin type meshes.

In this article, we consider the following system of weakly coupled singularly perturbed
convection-diffusion boundary-value problem (BVP):

(1.1)

{
Lu ≡ − Eps u′′(x)− A(x)u′(x) + B(x)u(x) = f(x), x ∈ Ω = (0, 1),

u(0) = u(1) = 0,

whereL = (L1, · · · ,Lk)
T , Eps = diag(ε1, ε2, · · · , εk), A(x) = diag(a11(x), a22(x), · · · ,

akk(x)), B(x) = (bij(x))k×k, f(x) = (f1(x), f2(x), · · · , fk(x))
T and u(x) = (u1(x), · · · ,

uk(x))
T .

Without loss of generality, we shall assume thatmin
{
a11(x), a22(x), · · · , akk(x)

}
≥ α > 0,

for x ∈ Ω = [0, 1]. The analysis provided here, can be extended for a more general class
of system of BVPs, where allaii(x) are bounded away from zero by a positive constant. We
shall consider the matrixB = (bij)

k
i,j=1, as aL0-matrix (i.e., off-diagonals are nonpositive and

diagonals are positive) with

(1.2) min
x∈[0,1];m=1:k

{ k∑
j=1

bmj(x)

}
≥ β > 0.

It will be assumed that the entries of the coefficient matricesA, B, f, i.e.,aii, bij, fi are inC2(Ω)
for i, j = 1, · · · , k.

A commonly used technique in adaptive grid generation is based on the idea of equidistribu-
tion. A grid ΩN ≡ {0 = x0 < x1 < · · · < xN = 1} is said to be equidistributed, if

(1.3)
∫ xi

xi−1

M
(
s, u(s)

)
ds =

∫ xi+1

xi

M
(
s, u(s)

)
ds, i = 1, . . . , N − 1,
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whereM
(
x, u(x)

)
(> 0) is called the monitor function. Equivalently, (1.3) can be expressed as

(1.4)
∫ xi

xi−1

M
(
s, u(s)

)
ds =

1

N

∫ 1

0

M
(
s, u(s)

)
ds, i = 1, . . . , N.

It is common to use monitor functions which are bounded away from zero to maintain an
appropriate distribution of mesh points throughout the domain. In practice, the monitor func-
tion is often based on simple functions, involving the derivatives of the unknown solution.
In this context, Beckett and Mackenzie proposed a curvature–type monitor function for both
convection-diffusion [2] as well as reaction-diffusion [3] type problem for a scalar BVP. These
monitor function are based on the singular component of the solution.

This article is devoted for a system of weakly coupled convection-diffusion BVPs by gener-
alizing the monitor function proposed by Beckett and Mackenzies [2, 3]. It should be noted that
in [2], Beckett and Mackenzie carried out the convergence analysis by assuming the convection
term as a constant, and the grid is obtained by using the equidistribution of the exact solution.
For our case, we have carried out the analysis with a general convection term.

The structure of this paper is as follows: In Section 2, we relate the analytical solution bound
of the system of equations with the solution bound of a scalar convection-diffusion BVP and
provide a stability bound of the solution. Bounds for the derivatives of the continuous solu-
tion are also provided. Then, in Section 3, we outline the numerical discretization of (1.1)
using the upwind finite difference scheme, with a discrete stability bound. The main result,
first-order uniform convergence using the proposed monitor function is derived here using the
discretel∞ norm, from a sufficient condition of uniform convergence. In Section 4, a semi-
linear convection-diffusion system of BVPs is introduced. Numerical results using an adaptive
algorithm are given in Section 5, to show that the rate of convergence predicted by our analysis
holds true in practice. Finally in Section 6, we make a concise conclusion.

Notation. Throughout this paperC, denotes a generic positive constant independent of the
grid pointsxi and the parametersεk andN (the number of mesh intervals) which may take
different values at different places. For any mesh function{φi}N

i=0 defined on a nonuniform
meshΩN , we define the following norms

‖φ‖ = max
Ω

|φ(x)|, ‖Φ‖ = max
1≤i≤k

|φi(x)| whereΦ = (φ1, φ2, · · · , φk)
T .

Another discrete norm defined by

(1.5) ||v||−1,∞,ΩN = min
γ∈R

max
i=0,··· ,N−1

∣∣∣∣ N−1∑
j=i

hj+1vj − γ

∣∣∣∣,
will be used for our later analysis. Herehi = xi − xi−1. Whenever we writeφ = O(ψ), we
mean that|φ| ≤ C|ψ|. To simplify the notation, we setgi = g(xi) for any functiong, whileGi

orGN
i denote a discrete approximation ofg atxi.

2. CONTINUOUS PROBLEM AND SOLUTION BOUNDS

This section provides the stability property of the analytical solutionu of (1.1). We start by
recalling the stability of the scalar convection-diffusion BVP, which is used to derive the stabil-
ity of the solutionu. The following lemma (see fore.g.,[11]) provides the stability estimate of
the general scalar BVP.

Lemma 2.1. Assume the coefficients of the following SPP

(2.1)

{
−εu′′ − a(x)u′ + b(x)u = f(x), for x ∈ Ω,

u(0) = u(1) = 0,
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4 PRATIBHAMOY DAS AND SRINIVASAN NATESAN

satisfiesa(x), b(x), f(x) ∈ C(Ω) with ε > 0, a(x) ≥ α > 0, b(x) ≥ β > 0 for all x ∈ Ω. Then,
for anyu ∈ C2(Ω) ∩ C(Ω), we have the following stability estimate

||u|| ≤ min

{∥∥∥∥fa
∥∥∥∥,∥∥∥∥fb

∥∥∥∥}
.

Now, with the help of above lemma the stability for each component ofu is addressed here.

Lemma 2.2. Let u be the solution of (1.1) and assume that the coupling matrixB satisfy the
L0-matrix condition (1.2). Then

||um|| ≤
k∑

l=1

(Υ−1)ml min

{∥∥∥∥ fl

all

∥∥∥∥,∥∥∥∥ fl

bll

∥∥∥∥}
,

where thek × k matrixΥ = Υ(A,B) = (γml)k×k is such that

γml = −min

{∥∥∥∥ bml

bmm

∥∥∥∥,∥∥∥∥ bml

amm

∥∥∥∥}
, for m 6= l andγmm = 1.

Proof. A single equation from the system of BVPs (1.1) can be written as

(2.2) − εmu
′′
m − ammu

′
m + bmmum = fm −

k∑
l=1,l 6=m

bmlul, for m = 1, · · · , k.

Under the condition ofL0-matrix, Lemma 2.1 yields

||um|| −
k∑

l=1,l 6=m

min

{∥∥∥∥ bml

bmm

∥∥∥∥,∥∥∥∥ bml

amm

∥∥∥∥}
||ul|| ≤ min

{∥∥∥∥ fm

amm

∥∥∥∥,∥∥∥∥ fm

bmm

∥∥∥∥}
, m = 1, · · · , k.

Now define ak × k matrixΥ = Υ(A,B) = (γml)k×k such that

γml = −min

{∥∥∥∥ bml

bmm

∥∥∥∥,∥∥∥∥ bml

amm

∥∥∥∥}
, for m 6= l andγmm = 1.

If we assumeΥ to be inverse monotonei.e.,Υ−1 ≥ 0, then

||um||+
k∑

l=1,l 6=m

γml||ul|| ≤ min

{∥∥∥∥ fm

amm

∥∥∥∥,∥∥∥∥ fm

bmm

∥∥∥∥}
, m = 1, · · · , k.

The matrixB is assumed to be anL0-matrix from (1.2). Therefore,Υ will be inverse monotone.
Hence, we get the required stability bound.

As a consequence the stability of the continuous solutionu(x) can be obtained. It should be
noted that, one can directly compute the inverse of the matrixΥ from the definition ofΥ. Its
sign pattern for the condition of inverse monotonicity can also be checked. Therefore, in order
to get the stable solution of (1.1), theL0-matrix condition is not necessary for the matrixB.

The following theorem provides the derivative estimates of the solutionu.

Theorem 2.3. Under the assumptions from (1.2), the solutionu of the system (1.1) and its
derivatives satisfy the following bounds forx ∈ Ω,

|u(n)
m | ≤ C

[
1 + ε−n

m exp

(
−αmx

εm

)]
, whereamm(x) ≥ αm, for n = 0, 1,

and

|u(2)
m | ≤ C

[
1 +

k∑
p=1

ε−2
p exp

(
−αpx

εp

)]
, whereapp(x) ≥ αp, for m, p = 1, · · · , k.
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Proof. The bounds of the solutionu and its first-order derivative are given by Linß [10], where a
standard technique, provided in Kellog and Tsan [9] for scalar operators is used. The proof pro-
vided in Zhongdi [13] for two equations can be extended to bound the second-order derivative
of the solution of the system (1.1).

3. NUMERICAL SCHEME AND NONUNIFORM GRIDS

This section is devoted for the discretization of the continuous problem. The monitor function
is obtained through the error analysis, which can be equidistributed to get parameter uniform
convergence.

3.1. Discrete problem. Here, we shall consider the finite difference approximation of (1.1)
on a nonuniform gridΩN ≡ {0 = x0 < x1 < · · · < xN = 1} with the step sizeshi =
xi − xi−1, i = 1, · · · , N. Given a discrete function{vi}N

i=0, define the forward and backward
difference operators

D+vi =
vi+1 − vi

hi+1

, and D−vi =
vi − vi−1

hi

,

respectively, where~i = (hi + hi+1)/2. Let U be the discrete approximation of the continuous
solutionu(x). Then, by denotingUi = U(xi), the discretized problem of (1.1) is defined as
follows: 

FindU1, · · · ,UN−1 satisfying

[LNU]i = fi, for i = 1, 2, · · · , N − 1,

U0 = UN = 0,

i.e.,findUm,1, · · · , Um,N−1, for m = 1, · · · , k satisfying

(3.1)

{
[LN

mU]i ≡ [ΛN
mUm]i +

∑k
l=1,l 6=m bmlUl;i = fm;i, with i = 1, 2, · · · , N − 1,

Um,0 = Um,N = 0,

whereLN = (LN
1 ,L

N
2 , · · · ,LN

k )T is the discrete analogue ofL and

[ΛN
mv]i ≡ −εmD

+D−vi − amm;iD
+vi + bmm;ivi.

In a similar way, ifamm is negative, then the upwind scheme will be defined as

[ΛN
mv]i ≡ −εmD

−D+vi − amm;iD
−vi + bmm;ivi.

The discrete solution satisfies the following stability result (see fore.g.,[1, 10]).

Lemma 3.1. Under theL0-matrix condition, we have

||v||ΩN ≤
∥∥∥∥ΛN

mv

bmm

∥∥∥∥
ΩN

, for v ∈ RN+1,

and

(3.2) ||v||ΩN ≤ C||ΛN
mv||−1,∞,ΩN = C min

V :D+V =ΛN
mv
||V ||ΩN .

Let E = u − U be the error of the discrete solution obtained by the finite difference scheme
(3.1), whereEm,i = um,i − Um,i, m = 1(1)k, i = 0(1)N, i.e., E ∈ (RN+1)k. We divide the
errorE in two componentsℵ, < such thatE = ℵ+ < satisfies
(3.3)

[ΛN
mℵm]i = [LN

m(U− u)]i, i = 1, 2, · · · , N − 1, ℵm,0 = ℵm,N = 0, m = 1, 2, · · · , k,

AJMAA, Vol. 10, No. 1, Art. 14, pp. 1-17, 2013 AJMAA

http://ajmaa.org
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and
(3.4)

[ΛN
m<m]i = −

k∑
l=1,l 6=m

bml,iEl,i, i = 1, 2, · · · , N−1, <m,0 = <m,N = 0, m = 1, 2, · · · , k.

From Lemma 3.1, it follows that

||Em||ΩN ≤ ||ℵm||ΩN + ||<m||ΩN ≤ ||ℵm||ΩN +
k∑

l=1,l 6=m

∥∥∥∥ bml

bmm

∥∥∥∥
ΩN

||El||ΩN , m = 1, 2, · · · , k,

which leads to

(3.5) ||U− u||ΩN ≤ C||ℵ||ΩN .

Now, using the stability inequality from Lemma 3.1 for the discrete solution and the solution
bound from Theorem 2.3, it is easy to derive the following lemma.

Lemma 3.2. The solution of (3.3) i.e., the componentsℵm of the termℵ satisfy

||ℵm||ΩN ≤ C max
i=1,··· ,N

∫ xi

xi−1

[
1 +

k∑
m=1

|u′m(x)|
]
dx,

whereC is independent of the perturbation parametersεm and the number of mesh intervals
N .

Proof. This result is proved in Linß [10].
Hence, the inequality (3.5) reduces to the following result.

Theorem 3.3.Letu be the solution of the system (1.1) andU be the finite difference approximate
solution of (3.1), then we have

||u− U||ΩN ≤ C max
i=1,··· ,N

∫ xi

xi−1

[
1 +

k∑
m=1

|u′m(x)|
]
dx,

whereC is independent of the perturbation parametersεm and the number of mesh intervals
N .

The next theorem provides a sufficient condition for choosing an appropriate monitor func-
tion, whose equidistribution will lead to the layer-adapted mesh.

Theorem 3.4. Assume that there exist positive constantsC1, C2 andC3 independent of the
perturbation parametersεm, such that a monitor functionM(x, u(x)) satisfies

(3.6)
∫ xi

xi−1

[
1 +

k∑
m=1

|u′m(x)|
]
dx ≤ C1

∫ xi

xi−1

M(x, u(x))dx, for i = 1, · · · , N,

(3.7)
∫ 1

0

M(x, u(x))dx ≤ C2,

and

(3.8) M(x, u(x)) ≥ C3.

Then
||U− u||ΩN ≤ CN−1,

whereC is independent of the perturbation parametersεm and the number of mesh intervals
N .
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Proof. Note that from the definition of equidistribution principle (1.4), we have

C3hi ≤
∫ xi

xi−1

M(x, u(x))dx =
1

N

∫ 1

0

M(x, u(x))dx ≤ C2N
−1

which implies that
hi ≤ C2C

−1
3 N−1.

Now using (3.6)-(3.8) with the equidistribution principle (1.4), we obtain

||ℵm||ΩN ≤ Cmax
i

∫ xi

xi−1

[
1 +

k∑
m=1

|u′m(x)|
]
dx

≤ C

∫ xi

xi−1

M(x, u(x))dx ≤ CN−1

∫ 1

0

M(x, u(x))dx ≤ CN−1.

Hence, the inequality (3.5) leads to

||U− u||ΩN ≤ CN−1.

Now consider the following monitor function

(3.9) M(x, u(x)) = 1 +
k∑

m=1

|u′′m|1/2.

This monitor function is a generalized form of the monitor function proposed by Beckett and
Mackenzie [2] for a scalar case of (1.1), where the solutionu is decomposed into two com-
ponents, the so called smooth componentv and the singular componentw. In reality, from
theapriori analysis, it is observed that the boundary layer phenomena occurs actually from the
singular component of the solution. It should also be noted that the second-order derivative of
the smooth componentv is bounded. These facts motivate them to consider a monitor function
involving especially derivative of the singular component. This monitor function also works
well for reaction-diffusion type problems [3].

Now, our aim is to show that the monitor function given in (3.9) satisfies all conditions of
Theorem 3.4. To show this, observe that Theorem 2.3 withα = min

m
αm implies

|u′′m(x)|1/2 ≤ C

[
1 +

k∑
p=1

ε−2
p exp

(
− αx

εp

)]1/2

≤ C

[
max

(
1, ε−2

p exp

(
− αx

εp

))]1/2

, for p = 1, 2, · · · , k,

where we have used the fact that for anyn positive functionsg1, g2, · · · , gn, we get( n∑
p=1

gp

)1/2

≤
√
n

[
max

p
(gp)

]1/2

.

Note that ∫ 1

0

[
ε−2

p exp

(
− αx

εp

)]1/2

dx =
α

2

[
1− exp

(
− α

2εp

)]
< βp (say).

Therefore, we have ∫ 1

0

M(x, u(x))dx ≤ max(1, βp) = C2 (say).
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Thus the condition (3.7) is satisfied. Now, from the equation (2.2), we have

u′m =
1

amm

[
− εmu

′′
m +

k∑
l=1

bmlul − fm

]
.

Hence, it follows from Lemma 2.2 that

|u′m| ≤ C[εm|u′′m|+ 1].

Thereafter, it is enough to show that

k∑
m=1

εm|u′′m| ≤ C

k∑
m=1

|u′′m|1/2.

From the given equation (2.2), we can write

(3.10) |εmu
′′

m| ≤ C

[
1 + ε−1

m exp

(
−αmx

εm

)]
.

Now we shall show thatεm|u′′m| ≤ C|u′′m|1/2. Assuming thatu′′m 6= 0, the inequality (3.10) leads
to

|εmu
′′
m|1/2 ≤ C

[
1 + ε−1

m exp

(
− αmx

εm

)]1/2

≤
√

2C

[
max

(
1, ε−1

m exp

(
− αmx

εm

))]1/2

.

Thus, we have

εm|u′′m|1/2 ≤ C
√
εm

[
max

(
1, ε−1

m exp

(
− αmx

εm

))]1/2

≤ C.

That is,
εm|u′′m| ≤ C|u′′m|1/2.

Therefore, we obtain that

||ℵm||ΩN ≤ C max
i=1,··· ,N

∫ xi

xi−1

[
1 +

k∑
m=1

|u′m(x)|
]
dx

≤ C max
i=1,··· ,N

∫ xi

xi−1

[
1 +

k∑
m=1

εm|u′′m(x)|
]
dx

≤ C max
i=1,··· ,N

∫ xi

xi−1

[
1 +

k∑
m=1

|u′′m(x)|1/2

]
dx,

i.e.,

max
i=1,··· ,N

∫ xi

xi−1

[
1 +

k∑
m=1

|u′m(x)|
]
dx ≤ C

∫ xi

xi−1

M(x, u(x))dx.

Again, we have
1 ≤M(x, u(x)).

Thus, conditions (3.6) and (3.8) are satisfied. Hence, Theorem 3.4 implies that

||U− u||ΩN ≤ CN−1.

Now, we state the main result of this paper.
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Theorem 3.5. Let u be the solution of the system (1.1) andU be the numerical solution of the
corresponding discretized problem (3.1), on the meshΩN , which is obtained by equidistributing
the monitor function (3.9). Then there exists a constant C, independent ofN andε, such that

‖u− U‖ΩN ≤ CN−1.

4. SEMILINEAR CONVECTION -DIFFUSION SYSTEM

Consider the following singularly perturbed system of semilinear convection-diffusion BVPs:

(4.1)

{
Lu ≡ −Eps uxx(x)− A(x)ux(x) + f(x, u(x)) = 0, for x ∈ Ω,

u(0) = u(1) = 0,

wheref(x, u) = (f1(x, u), · · · , fk(x, u))T . Here,fm(x, u) can involve nonlinear terms ofu and
the notationsux, uxx are used instead ofu′ andu′′ respectively, for the sake of convenience. We
shall assume that

(4.2)
∂fm

∂ul

(x, u) ≤ 0, m 6= l,

k∑
l=1

∂fm

∂ul

(x, u) ≥ β > 0, m = 1 · · · , k,

on (x, u) ∈ Ω × Rk. Assume that the reduced problem, which is obtained by settingEps = 0
in (4.1), has a unique solution inΩ. Under this assumption, the system of BVP (4.1) admits a
unique solution inΩ. Chang and Howes [6] studied the theoretical aspects corresponding to the
semilinear system of convection-diffusion problems.

To obtain the numerical solution of the system (4.1), the well-known Newton’s quasilin-
earization technique is used. This technique allows us to linearize the system into a sequence
of linear problems, whose solutionsu(p) with a proper initial guessu(0) will converge to the
original solutionu. For each fixed nonnegative integerp, defineu(p+1) to be the solution of the
linear problem
(4.3){

Lu(p+1) ≡ −Eps u(p+1)
xx (x)− A(x)u(p+1)

x (x) + J(x)u(p+1)(x) = F(x, u(p)(x)), for x ∈ Ω,

u(p+1)(0) = u(p+1)(1) = 0,

for p = 0, 1, · · · . HereJ(x) is the Jacobian matrix which is given by

J(x) =


∂f1(x, u(p))

∂u1

· · · ∂f1(x, u(p))

∂uk
...

. ..
...

∂fk(x, u(p))

∂u1

· · · ∂fk(x, u(p))

∂uk


k×k

,

andF(x, u(p)) = J(x)u(p)(x) − f(x, u(p)(x)). It is easy to see that the Jacobian matrixJ(x)
satisfies all the conditions of anL0- matrix defined in (1.2). If the initial guessu(0) is sufficiently
close to the solutionu, then following the proof given in Doolan et. al. [8], one can show
that the sequenceu(p+1) converges to the solutionu. The solution of the associated reduced
problem can be taken as an initial guessu(0)(x). Since, for each fixedp the system (4.3) is a
linear system of the form (1.1), the mesh generation procedure by equidistributing the proposed
monitor function explained in Section 3 can be applied to generate a layer-adapted mesh. The
obtained solutions will converge uniformly to the continuous solution asp increases. We use
the following criteria

|u(p+1)(xi)− u(p)(xi)| ≤ Tol, xi ∈ Ω, p ≥ 0,
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for convergence of the iterative quasi-linearization technique. Here,Tol denotes the user chosen
tolerance bound.

5. NUMERICAL EXPERIMENTS

The generation of the adaptive finite difference solution requires two steps; firstly the adaptive
mesh has to be determined by a mesh generation algorithm and thereafter, the finite difference
solution has to be computed on that mesh. To generate the adaptive mesh, we use the monitor
function given in (3.9).

5.1. Practical Implementation –Adaptive Algorithm. Here, we shall use the following iter-
ative algorithm for generating the new mesh by equidistributing the proposed monitor function.
This algorithm is applied for scalar SPP by Chadha and Kopteva in [5] with the convergence
analysis.

Here our aim is to construct a mesh that solves the following equidistribution problem

Mihi =
1

N

N∑
j=1

Mjhj, for i = 1, · · · , N,

whereMi is the discrete approximation of the monitor functionM(x, u(x)) at the subinterval
(xi−1, xi). Observe that instead of solving the discretized equidistribution problem (1.4) exactly,
it is sufficient that this algorithm can be stopped when the weakly equidistribution principle

Mihi ≤
C0

N

N∑
j=1

Mjhj, for i = 1, · · · , N,

satisfied with a user chosen constantC0 > 1. The constantC0 will be chosen larger enough to
obtain the convergence in a fewer iterations. WhenC0 approaches 1, this algorithm results in
more accurate solution with many iterations.

5.1.1. Algorithm-.

Step 1: Define the initial uniform mesh{x(0) : 0 ≤ i ≤ N, x
(0)
i = i/N} and go to Step-2 with

p = 0.
Step 2: SolveLNU(p)

i = f(p)
i with U(p)

0 = u(0) andU(p)
N = u(1) at the mesh{x(p)

i : 0 ≤ i ≤ N}
for U(p)

i = (U
(p)
1,i , · · · , U

(p)
k,i ) and defineh(p)

i+1 = x
(p)
i+1 − x

(p)
i .

Step 3: Find the discretized monitor function at theith interior node

φ
(p)
i =

[
1 +

k∑
m=1

|D2U
(p)
m,i|1/2

]
, for i = 1, · · · , N − 1,

whereD2 = D+D−. Defineφ̂i = (φ
(p)
i + φ

(p)
i−1)/2 for i = 1, · · · , N, by settingφ(p)

0 =

φ
(p)
1 andφ(p)

N = φ
(p)
N−1. Compute

Φ
(p)
j =

j∑
i=1

h
(p)
i φ̂

(p)

i .

Step 4: Choose a constantC0 > 1. The stopping criteria for the iterative technique is

max
i=1,...,N

h
(p)
i φ̂

(p)

i

Φ
(p)
N

≤ C0

N
.

If it holds true, then go to Step-6, else continue with Step-5.
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Step 5: Generate a new mesh by equidistributing the proposed monitor function using cur-
rent computed solution from Step-2 andΦ

(p)
j from Step-3: SetY (p)

i = iΦ
(p)
N /N for

i = 0, · · · , N . Now interpolate(Y (p)
i , x

(p+1)
i ) to (Φ

(p)
i , x

(p)
i ) using piecewise linear in-

terpolation. Generate a new meshx(p+1) ≡ {0 = x
(p+1)
0 < x

(p+1)
1 < · · · < x

(p+1)
N = 1}

and return to Step-2.
Step 6: Setx∗ = {0 = x∗0 < x∗1 < · · · < x∗N = 1} = x(p+1) andU∗ = U(p+1), whereU∗ is our

desired solution. Stop.

In order to highlight the results of our theoretical findings and to numerically study the various
components of the error estimator, we supply three test problems. For these three test problems,
the maximum point-wise errors and the corresponding rates of convergence are highlighted
through tables.

Example 5.1.Consider the following system of singularly perturbed BVPs:
−ε1u

′′
1(x)− u′1(x) + 2u1(x)− u2(x) = f1(x), x ∈ (0, 1),

−ε2u
′′
2(x)− 2u′2(x)− u1(x) + 4u2(x) = f2(x),

u1(0) = u1(1) = u2(0) = u2(1) = 0,

wheref1(x) andf2(x) are chosen such a way, that the exact solution is given by
u1(x) =

1− exp(−x/ε1)

1− exp(−1/ε1)
+

1− exp(−x/ε2)

1− exp(−1/ε2)
− 2 sin

π

2
x,

u2(x) =
1− exp(−x/ε2)

1− exp(−1/ε2)
− x exp(x− 1).

For any value ofN andε = (ε1, ε2), we calculate the exact maximum point-wise errorsEN
m,ε

for the solution componentsum, m = 1, 2, by

EN
m,ε = max

0≤i≤N
|um(xi)− UN

m,i|,

whereum(xi) is the exact solution andUN
m,i is the numerical solution at the mesh pointxi,

obtained by usingN number of mesh intervals in the domainΩN .
The uniform errors for each fixedN , are defined by taking the maximum over wide range of

ε, say from the setS, namely

EN
m = max

ε∈S
EN

m,ε,

and the corresponding parameter uniform rates of convergence is calculated by the following
formula

rN
m = log2

(
EN

m

E2N
m

)
.

The second problem considered here, has boundary layers at both the ends.

Example 5.2.Consider the following system of convection-diffusion problem:
−ε1u

′′
1(x) + (5− x2)u′1(x) + (4 + x)u1(x)− u2(x) = 2 exp(x), x ∈ (0, 1),

−ε2u
′′
2(x)− 6u′2(x)− 2u1(x) + (4− x)u2(x) = 10x+ 1,

u1(0) = u1(1) = u2(0) = u2(1) = 0.

Our next problem is a system of semilinear convection-diffusion equations.
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Example 5.3.Consider the system of semilinear SPPs:
−ε1u

′′
1 − 2(x+ 1)2u′1 + u1 − 1− (1− u1)

3 + exp(u1 − u2) = 0, x ∈ (0, 1),

−ε2u
′′
2 − 5u′2 + u2 − 0.5− (0.5− u2)

5 + exp(u2 − u1) = 0,

u1(0) = u1(1) = u2(0) = u2(1) = 0.

Exact solutions for the Example 5.2 and Example 5.3 are not available. So the accuracy of
their numerical solutions will be computed using double mesh principle. For any value ofN ,
the maximum pointwise errorsEN

m,ε for the solutionum,m = 1, 2, will be calculated by

EN
m,ε = max

0≤i≤N
|UN

m − U
2N

m,i|,

whereUN
m is the computed solution withN number of mesh intervals andU

2N

m is the numerical
solution on a mesh, obtained by bisecting the original mesh withN number of mesh intervals.

The uniform errors for each fixedN and the corresponding parameter uniform rates of con-
vergence are calculated by the same formula as for the previous example.

For the numerical experiments of all the test problems, we takeε1 andε2 from the set

S =
{
ε = (ε1, ε2)|ε1 = 1, 2−2, · · · , 2−22; ε2 = 1, 2−2, · · · , 2−22},

and in the numerical computation, we equidistribute (3.9) by takingC0 = 3.
In Tables 5.1 and 5.2, we present the uniform errors and the corresponding orders of conver-

gence for the solution componentsu1 andu2 respectively of Example 5.1, which clearly indicate
that the proposed method isε-uniform first-order accurate. The same behaviour is also observed
for Example 5.2 from Tables 5.3 and 5.4. These tables demonstrate the uniform errors and the
corresponding first-order convergence to the solution componentsu1 andu2 respectively, where
double mesh principle is used to calculate the errors and the rates of convergence.

To show the effectiveness of our proposed monitor function numerically, we solve a system of
semilinear convection-diffusion BVPs in Example 5.3 withTol = 10−8. The numerical results,
that is, the uniform errors and orders of convergence given in Tables 5.5 and 5.6 for Example
5.3 support the theoretical estimates.

In Figure 1 and Figure 2, we display the error plots for Example 5.1 and 5.2 respectively.
These two figures show that the maximum errors occur only in boundary layers regions. Mesh
points are also dense in these regions. In Figure 3 and Figure 4, the maximum point-wise errors
versus number of mesh intervals are plotted for the Example 5.2 and Example 5.3, respectively.
These figures are drawn in logarithmic scale forε1 = 2−12, ε2 = 2−16 andε1 = 2−22, ε2 = 2−16

respectively. Graphically these also suggest that the computed errors are decreasing with the
rate ofO(N−1) as the number of intervalN increases.

Table 5.1: Uniform errors and orders foru1 for Example 5.1.

(ε1, ε2) ∈ S Number of intervalsN
64 128 256 512 1024 2048 4096

EN
1 3.5643e-1 1.3102e-1 5.1964e-2 2.4510e-2 1.1505e-2 5.7534e-3 2.8699e-3

rN
1 1.4438 1.3343 1.0842 1.0911 0.9998 1.0034 -

The advantage of generating the meshes by the adaptive technique is that it does not require
any apriori knowledge about the location and widths of the boundary layers. This technique
leads to an optimal parameter uniform convergence corresponding to the upwind discretization,
by equidistributing the proposed monitor function.
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Table 5.2: Uniform errors and orders foru2 for Example 5.1.

(ε1, ε2) ∈ S Number of intervalsN
64 128 256 512 1024 2048 4096

EN
2 1.5564e-1 6.2899e-2 2.1974e-2 1.0940e-2 5.0224e-3 2.4649e-3 1.2174e-3

rN
2 1.3071 1.5172 1.0063 1.1231 1.0269 1.0177 -
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Figure 1: Error plot forU1 andU2 with N = 128 to the Example 5.2.

Table 5.3: Uniform errors and orders foru1 for Example 5.2.

(ε1, ε2) ∈ S Number of intervalsN
64 128 256 512 1024 2048 4096

EN
1 7.2515e-2 3.2051e-2 1.4278e-2 5.6939e-3 2.9827e-3 1.3425e-3 6.3003e-4

rN
1 1.1779 1.1666 1.3263 0.93282 1.1517 1.0914 -

6. CONCLUSION AND DISCUSSION

In this article, we present the analysis for the discretization of singularly perturbed weakly
coupled system of BVPs of the form (1.1) by using upwind finite difference scheme. The
numerical solution is obtained on a suitable layer-adapted nonuniform grid, based on the idea
of equidistribution principle. The error analysis for the numerical solution is carried out by
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Figure 2: Error plot forU1 andU2 with N = 128 to the Example 5.2.

Table 5.4: Uniform errors and orders foru2 for Example 5.2.

(ε1, ε2) ∈ S Number of intervalsN
64 128 256 512 1024 2048 4096

EN
2 1.2823e-1 5.5770e-2 2.0224e-2 8.0535e-3 3.4903e-3 1.7726e-3 8.1647e-4

rN
2 1.2012 1.4634 1.3284 1.2063 0.9775 1.1184 -

Table 5.5: Uniform errors and orders foru1 for Example 5.3.

(ε1, ε2) ∈ S Number of intervalsN
64 128 256 512 1024 2048 4096

EN
1 1.1940e-2 5.3763e-3 2.4913e-3 1.2613e-3 5.9573e-4 2.8808e-4 1.5506e-4

rN
1 1.1511 1.1097 0.9820 1.0821 1.0482 0.8936 -

using the maximum norm. It is shown that the errors are first-order convergent, which are
independent of the singular perturbation parameters. Numerical results, obtained for linear and
semilinear system of BVPs, validate the efficiency of the proposed monitor function, which lead
to first-order parameter uniform accuracy.
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Figure 3: Error plot forU1 andU2 to the Example 5.2.

Table 5.6: Uniform errors and orders foru2 for Example 5.3.

(ε1, ε2) ∈ S Number of intervalsN
64 128 256 512 1024 2048 4096

EN
2 5.5380e-3 2.6561e-3 1.2129e-3 5.7023e-4 2.8811e-4 1.3645e-4 6.5712e-5

rN
2 1.0601 1.1308 1.0889 0.9849 1.0782 1.0542 -
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