
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 6, Issue 1, Article 3, pp. 1-9, 2009

ON THE CONVERGENCE IN LAW OF ITERATES OF RANDOM–VALUED
FUNCTIONS
KAROL BARON

Special Issue in Honor of the 100th Anniversary of S.M. Ulam

Received 23 January, 2009; accepted 23 February, 2009; published 4 September, 2009.
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ABSTRACT. Given a probability space (Ω,A, P ), a separable and complete metric space X
with the σ–algebra B of all its Borel subsets and a B ⊗ A–measurable f : X × Ω → X we
consider its iterates fn, n ∈ N, defined on X × ΩN by f1(x, ω) = f(x, ω1) and fn+1(x, ω) =
f(fn(x, ω), ωn+1), provide a simple criterion for the convergence in law of (fn(x, ·))n∈N to a
random variable independent of x ∈ X , and apply this criterion to linear functional equations in
a single variable.
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2 KAROL BARON

1. INTRODUCTION

Throughout the paper (Ω,A, P ) is a probability space and (X, %) is a separable metric space.
Let B denote the σ–algebra of all Borel subsets of X . We say that f : X × Ω → X is

a random–valued function (an rv–function for short) if it is measurable with respect to the
product σ–algebra B ⊗A. The iterates of such an rv–function are given by

f 1(x, ω1, ω2, . . .) = f(x, ω1), fn+1(x, ω1, ω2, . . .) = f(fn(x, ω1, ω2, . . .), ωn+1)

for x from X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. Note that fn : X × Ω∞ → X is an
rv–function on the product probability space (Ω∞,A∞, P∞). More precisely, the n–th iterate
fn is B ⊗An–measurable, where An denotes the σ–algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}

with A from the product σ–algebra An (see [4, Sec. 1.4], [2]).
A result on the a.s. convergence of (fn(x, ·))n∈N for X the unit interval may found in [4, Sec.

1.4B]. The paper [2] by R. Kapica brings theorems on the convergence a.s. and in L1 of those
sequences of iterates in the case where X is a closed subset of a Banach lattice. It is the aim of
this note to provide a simple criterion for the convergence in law of (fn(x, ·))n∈N to a random
variable independent of x ∈ X and to apply it to the iterative equations

(1.1) ϕ(x) =

∫
Ω

ϕ(f(x, ω))P (dω) + F (x).

2. WASSERSTEIN METRIC

By a distribution (on X) we mean any probability measure defined on B. Recall that a
sequence (πn)n∈N of distributions converges weakly to a distribution π if

lim
n→∞

∫
X

u(x)πn(dx) =

∫
X

u(x)π(dx)

for any continuous and bounded function u : X → R. It is well known (see [1, Th. 11.3.3])
that this convergence is metrizable by the (Fortet–Mourier, Lévy–Prohorov, Wasserstein) metric

‖π1 − π2‖W = sup

{∣∣∣∣∫
X

udπ1 −
∫
X

udπ2

∣∣∣∣ : u ∈ Lip1(X), ‖u‖∞ ≤ 1

}
,

where

Lip1(X) = {u : X → R| |u(x)− u(z)| ≤ %(x, z) for x, z ∈ X}

and ‖u‖∞ = sup{|u(x)| : x ∈ X} for a bounded u : X → R.
Following an idea of A. Lasota from [5], we will consider also the Hutchinson distance of

distributions:

dH(π1, π2) = sup

{∣∣∣∣∫
X

udπ1 −
∫
X

udπ2

∣∣∣∣ : u is in Lip1(X) and bounded
}

which may be infinite for some distributions. Clearly

(2.1) ‖π1 − π2‖W ≤ dH(π1, π2)

for any distributions π1 and π2 on X .
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3. MAIN RESULT

Fix an rv–function f : X × Ω→ X and let πn(x, ·) denote the distribution of fn(x, ·), i.e.,

(3.1) πn(x,B) = P∞(fn(x, ·) ∈ B)

for n ∈ N, x ∈ X and B ∈ B. Clearly π1(x, ·) is the distribution of f(x, ·):

(3.2) π1(x,B) = P (f(x, ·) ∈ B) for x ∈ X and B ∈ B.

Our main result reads as follows.

Theorem 3.1. Assume that (X, %) is complete and separable. If

(3.3)
∫

Ω

%(f(x, ω), f(z, ω))P (dω) ≤ λ%(x, z) for x, z ∈ X

with a λ ∈ (0, 1), and

(3.4)
∫

Ω

%(f(x, ω), x)P (dω) <∞ for x ∈ X,

then there exists a distribution π on X such that for every x ∈ X the sequence πn(x, ·))n∈N
converges weakly to π; moreover,

(3.5) ‖πn(x, ·)− π‖W ≤
λn

1− λ

∫
Ω

%(f(x, ω), x)P (dω) for x ∈ X and n ∈ N.

Proof. Fix a bounded function u ∈ Lip1(X) and define v : X → R by

v(x) =

∫
Ω

u(f(x, ω))P (dω).

Then, according to (3.3), 1
λ
v ∈ Lip1(X). Hence and from (3.1) we infer that∣∣∣∣∣∣

∫
X

u(y)πn+1(x, dy)−
∫
X

u(y)πn(x, dy)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Ω∞

u
(
fn+1(x, ω)

)
P∞(dω)−

∫
Ω∞

u(fn(x, ω))P∞(dω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Ω∞

u (f(fn(x, ω1, ω2, . . .), ωn+1))P∞(d(ω1, ω2, . . .))

−
∫

Ω∞

u
(
f(fn−1(x, ω1, ω2, . . .), ωn)

)
P∞(d(ω1, ω2, . . .))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Ω∞

v(fn(x, ω))P∞(dω)−
∫

Ω∞

v
(
fn−1(x, ω)

)
P∞(dω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
X

v(y)πn(x, dy)−
∫
X

v(y)πn−1(x, dy)

∣∣∣∣∣∣
≤ λdH(πn(x, ·), πn−1(x, ·))
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and
dH(πn+1(x, ·), πn(x, ·)) ≤ λdH(πn(x, ·), πn−1(x, ·))

for x ∈ X and n ∈ N, where π0(x, ·) is the point mass at x:

π0(x, ·) = δx for x ∈ X.
Consequently

(3.6) dH(πn+m(x, ·), πn(x, ·)) ≤ λn

1− λ
(1− λm)dH(π1(x, ·), π0(x, ·))

for x ∈ X and m,n ∈ N. Moreover, taking (3.2) into account,
dH(π1(x, ·), π0(x, ·))

= sup


∣∣∣∣∣∣
∫
X

u(y)π1(x, dy)−
∫
X

u(y)δx(dy)

∣∣∣∣∣∣ : u is in Lip1(X) and bounded


= sup


∣∣∣∣∣∣
∫
Ω

(u(f(x, ω))− u(x))P (dω)

∣∣∣∣∣∣ : u is in Lip1(X) and bounded


≤
∫
Ω

%(f(x, ω), x)P (dω)

for x ∈ X . Hence and from (2.1) and (3.6) we infer that

‖πn+m(x, ·)− πn(x, ·)‖W ≤
λn

1− λ
(1− λm)

∫
Ω

%(f(x, ω), x)P (dω)

for x ∈ X and m,n ∈ N. This and the Prohorov theorem on the completeness of the space
of all distributions on X with the Wasserstein metric (see [1, Cor. 11.5.5]) prove the weak
convergence of (πn(x, ·))n∈N to a distribution π(x, ·) for every x ∈ X and gives

‖π(x, ·)− πn(x, ·)‖W ≤
λn

1− λ

∫
Ω

%(f(x, ω), x)P (dω) for x ∈ X and n ∈ N.

It remains to show that π(x, ·) = π(z, ·) for x, z ∈ X . To this end, fix a bounded u in
Lip1(X). Since, from (3.3) by induction,

(3.7)
∫

Ω∞
%(fn(x, ω), fn(z, ω))P∞(dω) ≤ λn%(x, z) for x, z ∈ X and n ∈ N,

according to (3.1) we have∣∣∣∣∣∣
∫
X

u(y)πn(x, dy)−
∫
X

u(y)πn(z, dy)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Ω∞

u(fn(x, ω))P∞(dω)−
∫

Ω∞

u(fn(z, ω))P∞(dω)

∣∣∣∣∣∣
≤
∫

Ω∞

%(fn(x, ω), fn(z, ω))P∞(dω) ≤ λn%(x, z)

for x, z ∈ X and n ∈ N. Passing to the limit we get∫
X

u(y)π(x, dy) =

∫
X

u(y)π(z, dy) for x, z ∈ X.
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This ends the proof.

Remark 3.1. If (3.3) holds with a λ ∈ (0,∞) and∫
Ω

%(f(x0, ω), x0)P (dω) <∞ for an x0 ∈ X,

then we have also (3.4).

4. APPLICATIONS AND EXAMPLES

In what follows π denotes the limit distribution obtained from Theorem 3.1.

Corollary 4.1. Assume that (X, %) is complete and separable, (3.3) holds with a λ ∈ (0, 1) and
(3.4) is satisfied.

(i) If F : X → R is Borel and bounded, then any continuous and bounded solution ϕ :
X → R of (1.1) has the form

(4.1) ϕ(x) = c+
∞∑
n=1

∫
Ω∞

F (fn(x, ω))P∞(dω) + F (x) for x ∈ X

with a real constant c; in particular, if (1.1) has a continuous and bounded solution
ϕ : X → R, then

(4.2) lim
n→∞

∫
Ω∞

F (fn(x0, ω))P∞(dω) = 0

for any x0 ∈ X .
(ii) Let F : X → R be continuous and bounded. If (1.1) has a continuous and bounded

solution ϕ : X → R, then

(4.3)
∫
X

F (y)π(dy) = 0;

in particular, if in addition F is nonnegative, then

(4.4) π(F−1({0}) = 1,

and if F is nonnegative and F−1({0}) is a singleton {x0}, then π = δx0 ,

(4.5) lim
n→∞

P∞({ω ∈ Ω∞ : %(fn(x, ω), x0) ≥ ε}) = 0 for ε ∈ (0,∞)

and x ∈ X , and this convergence is uniform on every bounded subset of X .
(iii) If F : X → R is bounded,

(4.6) |F (x)− F (z)| ≤ L%(x, z) for x, z ∈ X
with an L ∈ [0,∞), and (4.2) holds for an x0 ∈ X , then for any c ∈ R, formula (4.1)
defines a solution ϕ : X → R of (1.1) and

(4.7) |ϕ(x)− ϕ(z)| ≤ L

1− λ
%(x, z) for x, z ∈ X.

Proof. Fix a Borel and bounded F : X → R and let ϕ : X → R be a continuous and bounded
solution of (1.1). It follows from (1.1) and (3.1) that

ϕ(x) =

∫
Ω∞

ϕ(fn(x, ω))P∞(dω) +
n−1∑
k=1

∫
Ω∞

F (fk(x, ω))P∞(dω) + F (x)

=

∫
X

ϕ(y)πn(x, dy) +
n−1∑
k=1

∫
Ω∞

F (fk(x, ω))P∞(dω) + F (x)
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for x ∈ X and n ∈ N. Moreover, since (πn(x, ·)) converges weakly to π,

lim
n→∞

∫
X

ϕ(y)πn(x, dy) =

∫
X

ϕ(y)π(dy) for x ∈ X.

Consequently, for every x ∈ X the series occurring in (4.1) converges and we have (4.1) with

c =

∫
X

ϕ(y)π(dy).

Passing to the proof of (ii), assume that F is continuous. Then, as follows from (3.1) and (4.2),

(4.8)
∫
X

F (y)π(dy) = lim
n→∞

∫
X

F (y)πn(x0, dy) = lim
n→∞

∫
Ω∞

F (fn(x0, ω))P∞(dω) = 0,

and it remains to consider the case where F ≥ 0 and F−1({0}) = {x0} with an x0 ∈ X . In
this case (4.4) means that π = δx0 and applying [1, Prop. 11.1.3] we see that for every x ∈ X
the sequence (fn(x, ·))n∈N converges to x0 in probability, i.e., (4.5) holds. To show that the
convergence in (4.5) is uniform on bounded subsets ofX, it is enough to observe that on making
use of the Markov inequality (see, e.g., [6, Sec. 9.3.A]) and (3.7) for every ε ∈ (0,∞), x ∈ X
and n ∈ N we get

P∞({ω ∈ Ω∞ : %(fn(x, ω), x0) ≥ ε})

≤ P∞
({
ω ∈ Ω∞ : %(fn(x, ω), fn(x0, ω)) ≥ ε

2

})
+ P∞

({
ω ∈ Ω∞ : %(fn(x0, ω), x0) ≥ ε

2

})
≤ 2

ε

∫
Ω∞

%(fn(x, ω), fn(x0, ω))P∞(dω) + P∞
({
ω ∈ Ω∞ : %(fn(x0, ω), x0) ≥ ε

2

})
≤ 2

ε
λn%(x, x0) + P∞

({
ω ∈ Ω∞ : %(fn(x0, ω), x0) ≥ ε

2

})
.

To prove (iii), define M : X → [0,∞) by

(4.9) M(x) = (L+ ‖F‖∞)
1

1− λ

∫
Ω

%(f(x, ω), x)P (dω)

and observe that by applying (3.1) and (4.2) we have (4.8). Hence (4.3) holds and taking into
account (3.1), (4.3), (4.6), (3.5) and (4.9) we see that

(4.10)

∣∣∣∣∣∣
∫

Ω∞

F (fn(x, ω))P∞(dω)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
X

F (y)πn(x, dy)−
∫
X

F (y)π(dy)

∣∣∣∣∣∣
≤ (L+ ‖F‖∞)‖πn(x, ·)− π‖W ≤M(x)λn

for x ∈ X and n ∈ N. This shows that for every x ∈ X the series in (4.1) converges. Fix a
c ∈ R and define ϕ : X → R by (4.1). Making use of (4.6) and (3.7) we easily get (4.7).

It remains to show that ϕ solves (1.1). To this end, note that by applying (4.1) and (4.10) we
have

|ϕ(x)| ≤ |c|+ ‖F‖∞ +
λ

1− λ
M(x) for x ∈ X.

Moreover, according to the Fubini theorem, the function M given by (4.9) is Borel and an
obvious application of (3.3), (3.4) and (4.9) gives

M(x) ≤ c1%(x, x0) + c2 for x ∈ X
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with some constants c1, c2 ∈ [0,∞). Consequently, taking (3.4) and (4.7) into account, we
obtain in turn the integrability ofM ◦f(x, ·) and of ϕ◦f(x, ·) for every x ∈ X . Finally, making
use of (4.10), the integrability of M ◦f(x, ·) and the Lebesgue dominated convergence theorem
we see that∫

Ω

 ∞∑
n=1

∫
Ω∞

F (fn(f(x, ω0), ω1, ω2, . . .))P
∞(d(ω1, ω2, . . .))

P (dω0)

=
∞∑
n=1

∫
Ω

 ∫
Ω∞

F (fn(f(x, ω0), ω1, ω2, . . .))P
∞(d(ω1, ω2, . . .))

P (dω0)

=
∞∑
n=1

∫
Ω∞

F (fn+1(x, ω))P∞(dω)

whence∫
Ω

ϕ(f(x, ω))P (dω) = c+
∞∑
n=1

∫
Ω∞

F (fn+1(x, ω))P∞(dω) +

∫
Ω

F (f(x, ω))P (dω)

= c+
∞∑
n=1

∫
Ω∞

F (fn(x, ω))P∞(dω) = ϕ(x)− F (x)

for every x ∈ X .

Example 4.1. Let ξ : Ω→ R be an integrable random variable, fix an α ∈ (−1, 1) and consider
the rv–function f : R× Ω→ R given by

f(x, ω) = αx+ ξ(ω).

According to Theorem 3.1 for every x ∈ R the sequence (fn(x, ·))n∈N of its iterates converges
in law and the limit distribution π is independent of x. Note that if ξ is not a.s. constant, then
this sequence does not converge in probability. In fact, if x ∈ R, then for every n ∈ N we have

fn(x, ·) = αfn−1(x, ·) + ξn,

where

(4.11) ξn(ω1, ω2, . . .) = ξ(ωn) for (ω1, ω2, . . .) ∈ Ω∞.

Hence, supposing that (fn(x, ·))n∈N converges in probability we obtain the convergence in prob-
ability of (ξn)n∈N. Since it is a sequence of independent and identically distributed random
variables, this implies that they are a.s. constant.

It follows from Corollary 4.1(i) that every continuous and bounded solution ϕ : R → R of
the equation

(4.12) ϕ(x) =

∫
Ω

ϕ(αx+ ξ(ω))P (dω)

is a constant function. Observe, however, that if α ∈ Q \ {0} and ξ(Ω) ⊂ Q, then 1Q is a
(bounded and nonconstant) solution of (4.12).

The following modification of [3, Example 2.7] by R. Kapica and J. Morawiec shows that the
assumption on the boundedness of solutions also cannot be omitted in Corollary 4.1(i).
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Example 4.2. Let p1, p2 be positive reals with p1 + p2 = 1 and let L1 be a real number such
that

p1L
2
1 < 1 and p1|L1|+

(
p2(1− p1L

2
1)
)1/2

< 1.

Putting Ω = {1, 2} and P ({j}) = pj for j ∈ {1, 2}, consider the rv–function f : R× Ω→ R
defined by

f(x, j) = Ljx,

where
|L2| =

(
(1− p1L

2
1)/p2

)1/2
.

Then ∫
Ω

|f(x, ω)− f(z, ω)|P (dω) = (p1|L1|+ p2|L2|)|x− z| for x, z ∈ R,

p1|L1|+ p2|L2| = p1|L1|+
(
p2(1− p1L

2
1)
)1/2

< 1,∫
Ω

|f(0, ω)|P (dω) = 0

and (1.1) takes the form

(4.13) ϕ(x) = p1ϕ(L1x) + p2ϕ(L2x) + F (x).

Since
p1L

2
1 + p2L

2
2 = 1,

the function x 7→ x2, x ∈ R, solves (4.13) with F = 0.
Note that in the case considered we have f(0, ω) = 0 for ω ∈ Ω, whence also fn(0, ω) = 0

for ω ∈ Ω∞ and n ∈ N. Consequently, any F : R → R vanishing at zero satisfies (4.2) with
x0 = 0. According to Corollary 4.1(iii) for any Lipschitzian, bounded and vanishing at zero
F : R→ R equation (4.13) has a Lipschitzian solution ϕ : R→ R.

We end with an example showing that (3.3) with λ = 1 (and (3.4)) does not force the conver-
gence in law of (fn(x, ·))n∈N.

Example 4.3. Let ξ : Ω→ R be an (integrable) random variable and consider the rv–function
f : R× Ω→ R given by

f(x, ω) = x+ ξ(ω).

Then

(4.14) fn(x, ·) = x+
n∑
k=1

ξk for x ∈ R and n ∈ N,

where (ξn)n∈N is defined by (4.11). Fix an x ∈ R. We will show that (fn(x, ·))n∈N converges in
law if and only if ξ = 0 a.s.

Denote by ϕn the characteristic function of fn(x, ·) and by ϕ the characteristic function of ξ.
According to (4.14) and (4.11) we have

ϕn(t) = eitxϕ(t)n for t ∈ R and n ∈ N.

Hence, assuming that (fn(x, ·))n∈N converges in law, we see that the sequence of powers
(ϕn)n∈N converges pointwise to a continuous function mapping R into C. Consequently (cf.
[6, Sec. 14.1]) ξ is a.s. constant, which jointly with (4.11) and (4.14) gives ξ = 0 a.s.
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