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ABSTRACT. In the paper we give a property of an operator of generalised difference, defined
earlier, linear on a set of sequences, and use it to establish Euler type transforms for alternating
series. These transforms accelerate the convergence of series under the same conditions as the
transforms of non-alternating series. We also give analysis of an algorithm for computing a
partial sum of the transformed series by using a higher order operator of generalised difference,
and prove a theorem stating its order of complexity.
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1. INTRODUCTION

Let
∑∞

n=0(−1)nanx
n be a convergent real power series and x > 0. The following identity is

well known as Euler transform [2, pp. 384–386]

∞∑
n=0

(−1)nanx
n =

1

1 + x

∞∑
k=0

(−1)k∆k(a0)

(
x

1 + x

)k

.

It is well known also that the Euler transform does not necessarily accelerate the convergence
of a series, i.e. there are examples [4] where the transformed series converges faster as well as
those where it converges slower than the original one.

In papers [3], [4] and [1] a linear operator on a set of number sequences {an}∞n=0 was defined
by

∆1
r1
(an) = ∆r1

(an) = an+1 − r1an,

∆m+1
r1r2...rm+1

(an) = ∆1
rm+1

(∆m
r1r2...rm

(an)) (m = 1, 2, . . .),

where {rm}∞m=1 is a given sequence of real numbers. By means of this operator of generalised
difference, modified Euler transforms stated by the following theorems were established.

Theorem 1 ([3]). Let
∑∞

n=0 an be a real or complex convergent number series and {rk}∞k=1 a
sequence of real numbers such that rk ̸= 1 (k = 1, 2, . . .). For every positive integer p the
following equality holds

∞∑
n=0

an =
a0

1− r1
+

p−1∑
k=1

∆k
r1r2...rk

(a0)

(1− r1) . . . (1− rk+1)

+
1

(1− r1) . . . (1− rp)

∞∑
n=0

∆p
r1r2...rp

(an).

Theorem 2 ([3]). Let
∑∞

n=0 anx
n be a real or complex convergent power series and {rk}∞k=1

a sequence of real or complex numbers such that rkx ̸= 1 (k = 1, 2, . . .). For every positive
integer p the following equality holds

∞∑
n=0

anx
n =

a0
1− r1x

+

p−1∑
k=1

∆k
r1r2...rk

(a0)x
k

(1− r1x) . . . (1− rk+1x)

+
xp

(1− r1x) . . . (1− rpx)

∞∑
n=0

∆p
r1r2...rp

(an)x
n.

Theorem 3 ([1]). Let
∑∞

n=0 an cos(αn+β)x be a real or complex convergent cosine series and
{rk}∞k=1 a sequence of real or complex numbers such that rke±αxi ̸= 1 (k = 1, 2, . . .). For every
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ACCELERATING CONVERGENCE OF SERIES 3

positive integer p the following equality holds

∞∑
n=0

an cos(αn+ β)x =
a0C

1
r1
(0)

1− 2r1 cosαx+ r21

+

p−1∑
k=1

∆k
r1r2...rk

(a0)C
k+1
r1r2...rk+1

(0)

(1− 2r1 cosαx+ r21) . . . (1− 2rk+1 cosαx+ r2k+1)

+
1

(1− 2r1 cosαx+ r21) . . . (1− 2rp cosαx+ r2p)

×
∞∑
n=0

∆p
r1r2...rp

(an)∆
p
r1r2...rp

(cos(αn+ β)x),

where
Cm

r1r2...rm
(n) = ∆m

r1r2...rm
(cos(α(n− 1) + β)x) (m = 0, 1, 2, . . .).

Theorem 4 ([1]). Let
∑∞

n=0 an sin(αn + β)x be a real or complex convergent sine series and
{rk}∞k=1 a sequence of real or complex numbers such that rke±αxi ̸= 1 (k = 1, 2, . . .). For every
positive integer p the following equality holds

∞∑
n=0

an sin(αn+ β)x =
a0S

1
r1
(0)

1− 2r1 cosαx+ r21

+

p−1∑
k=1

∆k
r1r2...rk

(a0)S
k+1
r1r2...rk+1

(0)

(1− 2r1 cosαx+ r21) · · · (1− 2rk+1 cosαx+ r2k+1)

+
1

(1− 2r1 cosαx+ r21) · · · (1− 2rp cosαx+ r2p)

×
∞∑
n=0

∆p
r1r2...rp

(an)∆
p
r1r2...rp

(sin(αn+ β)x),

where
Sm
r1r2...rm

(n) = ∆m
r1r2...rm

(sin(α(n− 1) + β)x) (m = 0, 1, 2, . . .).

We say that a series
∑∞

n=0 an converges faster than a convergent series
∑∞

n=0 bn if limn→∞
an
bn

=
0.

The following remark gives the conditions under which these transforms accelerate the con-
vergence of series. Notice that the conditions are given in terms of the operator ∆k

r1r2...rk
of

generalised difference.

Remark 1. If there exist finite limits

lim
n→∞

∆k
r1r2...rk

(an+1)

∆k
r1r2...rk

(an)
(k = 0, 1, 2, . . . , p− 1),

then for

r1 = lim
n→∞

an+1

an
, rk+1 = lim

n→∞

∆k
r1r2...rk

(an+1)

∆k
r1r2...rk

(an)
(k = 1, 2, . . . , p− 1)

the right–hand side series in Theorems 1, 2, 3 and 4 converge faster than the appropriate series
on the left–hand side.
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Notice that for rk = r (k = 1, 2, . . . , p) statements of Theorems 1, 2, 3 and 4, and Remark 1
are given in [8]. Furthermore, for rk = 1 (k = 1, 2, . . . , p) the transform given by Theorem 2 is
considered in [5].

In the present paper, we give a property of the operator ∆k
r1r2...rk

when applied on an alter-
nating sequence {(−1)nan}∞n=0. Then, we use this property in order to establish modified Euler
transforms for alternating number, power and trigonometric series.

Finally, we present algorithm analysis for all cases of computing the n-th patial sum of trans-
formed series by using the operator of generalised difference of order p, and prove that its order
of complexity is O(p2n).

2. STATEMENT OF RESULTS

Now we formulate our results.

Theorem 5. Let {an}∞n=0 and {rm}∞m=1 be arbitrary sequences of real or complex numbers. For
every positive integers m and n the following equality holds

∆m
r1r2...rm

((−1)nan) = (−1)n+m∆m
−r1−r2...−rm(an).

If we put an := (−1)nan (n = 0, 1, 2, . . .) and rk := −rk (k = 1, 2, . . .) in Theorem 1,
and make use of Theorem 5, we obtain the following modified Euler transform for alternating
number series.

Corollary 1. Let
∑∞

n=0(−1)nan be a real or complex convergent number series and {rk}∞k=1 a
sequence of real numbers such that rk ̸= −1 (k = 1, 2, . . .). For every positive integer p the
following equality holds

(2.1)
∞∑
n=0

(−1)nan =
a0

1 + r1
+

p−1∑
k=1

(−1)k
∆k

r1r2...rk
(a0)

(1 + r1) · · · (1 + rk+1)

+
(−1)p

(1 + r1) · · · (1 + rp)

∞∑
n=0

(−1)n∆p
r1r2...rp

(an).

Specially, for rk = 1 (k = 1, 2, . . . , p) Corollary 1 gives the classical Euler transform for
number series [2, p. 386].

By putting an := (−1)nan (n = 1, 2, . . .) and rk := −rk (k = 1, 2, . . .) in Theorem 2, and
making use of Theorem 5 we obtain the modified Euler transform for alternating power series,
given in [4].

If we put an := (−1)nan (n = 1, 2, . . .) and rk := −rk (k = 1, 2, . . .) in Theorem 3, and
make use of Theorem 5, we obtain the following modified Euler transform for alternating cosine
series.

Corollary 2. Let
∑∞

n=0(−1)nan cos(αn + β)x be a real or complex convergent cosine series
and {rk}∞k=1 a sequence of real or complex numbers such that rke±αxi ̸= −1 (k = 1, 2, . . .).
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For every positive integer p the following equality holds

∞∑
n=0

(−1)nan cos(αn+ β)x =
a0C

1
r1
(0)

1 + 2r1 cosαx+ r21

+

p−1∑
k=1

(−1)k
∆k

r1r2...rk
(a0)C

k+1
r1r2...rk+1

(0)

(1 + 2r1 cosαx+ r21) · · · (1 + 2rk+1 cosαx+ r2k+1)

+
(−1)p

(1 + 2r1 cosαx+ r21) · · · (1 + 2rp cosαx+ r2p)

×
∞∑
n=0

(−1)n∆p
r1r2...rp

(an)∆
p
−r1−r2...−rp(cos(αn+ β)x),

where
Cm

r1r2...rm
(n) = ∆m

−r1−r2...−rm(cos(α(n− 1) + β)x) (m = 0, 1, 2, . . .).

Finally, if we put an := (−1)nan (n = 1, 2, . . .) and rk := −rk (k = 1, 2, . . .) in Theorem 4,
and make use of Theorem 5, we obtain the following modified Euler transform for alternating
sine series.

Corollary 3. Let
∑∞

n=0(−1)nan sin(αn+ β)x be a real or complex convergent sine series and
{rk}∞k=1 a sequence of real or complex numbers such that rke±αxi ̸= −1 (k = 1, 2, . . .). For
every positive integer p the following equality holds

∞∑
n=0

(−1)nan sin(αn+ β)x =
a0S

1
r1
(0)

1 + 2r1 cosαx+ r21

+

p−1∑
k=1

(−1)k
∆k

r1r2...rk
(a0)S

k+1
r1r2...rk+1

(0)

(1 + 2r1 cosαx+ r21) · · · (1 + 2rk+1 cosαx+ r2k+1)

+
(−1)p

(1 + 2r1 cosαx+ r21) · · · (1 + 2rp cosαx+ r2p)

×
∞∑
n=0

(−1)n∆p
r1r2...rp

(an)∆
p
−r1−r2...−rp(sin(αn+ β)x),

where
Sm
r1r2...rm

(n) = ∆m
−r1−r2...−rm(sin(α(n− 1) + β)x) (m = 0, 1, 2, . . .).

Notice that the conditions under which the transforms given in Corollaries 1, 2 and 3 accel-
erate the convergence of series are the same as those given in Remark 1.

3. ALGORITHM ANALYSIS FOR COMPUTING THE TRANSFORMED SERIES

By definition, a power of the generalised difference ∆k
r1r2...rk

(an) could be computed re-
cursively. However, such an approach would produce an algorithm of exponential complexity
O(2p) (see also e.g., [7, Section 2.3]).

In a practical implementation augmented to our paper in a form of an application written
in Java, whose source code is available, e.g. by writing to the authors, we apply a triangular
scheme for computing the differences, as illustrated in Figure 1. We mention that a similar
scheme is applied for computing ordinary differences in algorithms for interpolating functions
by algebraical polynomials [6, pp. 118-120].
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∆4
r1r2r3r4(an)

∆3
r1r2r3(an)

∆3
r1r2r3(an+1)

∆2
r1r2(an)

∆2
r1r2(an+1)

∆2
r1r2(an+2)

∆1
r1(an)

∆1
r1(an+1)

∆1
r1(an+2)

∆1
r1(an+3)

an

an+1

an+2

an+3

an+4

Figure 1: A triangular scheme for computing the differences

Notice that in order to implement the algorithm by using the triangular scheme in Figure 1
storage of different values of the operator (for different values of parameters p and n) is needed.
For this reason, a binary tree data structure could be used.

Theorem 6. Let {an}∞n=0 be an arbitrary sequence of real or complex numbers and r a complex
or real number. For any positive integers p and n, complexity of algorithm for computing a value
∆p

r1r2...rp
(an) of the generalised difference operator is O(p2).

Proof. By implementing the scheme given in Figure 1 in the algorithm, we start computing
the value ∆p

r1r2...rp
(an) from p + 1 values an, an+1,. . . , an+p. Hence, the number of operations

needed for implementing the algorithm is of order

O(1 + 2 + · · ·+ p) = O

(
p∑

i=1

i

)
= O

(
p(p+ 1)

2

)
= O(p2).

Therefore, complexity of an algorithm implemented in this way for computing ∆p
r1r2...rp

(an)
is quadratic with respect to the power p and does not depend on n.

Corollary 4. For a fixed p, complexity of algorithm for computing a partial sum of order n of a
transformed series by using a modified Euler transform (given by Theorems 1, 2, 3 and 4, and
by Corollaries 1, 2 and 3) is of order O(n).

Proof. Since in order to compute each term of transformed series computation of p-th power of
difference operator for the sequence {an}∞n=0 is needed (in the case of a trigonometric series,
also for the appropriate sequences of sines and cosines), taking into consideration Theorem 6
the number of needed operations is of order

O((n+ 1)O(p2)) = O(p2n).

Hence, for fixed p, complexity of the algorithm is O(n).

4. EXAMPLES

We illustrate in numerical examples the acceleration of convergence of series by the trans-
forms. The examples also illustrate the scope of the class of sequences {an}∞n=0 for which the
conditions stated in Remark 1 are satisfied.
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Example 1. In Corollary 1, we put

an :=
1

Aan +Bbn
,

where A, B, a and b are real or complex numbers such that B ̸= 0, |a| < |b| and for all positive
integers n holds Aan +Bbn ̸= 0.

If Aa = 0 and |b| > 1, we have r1 = 1
b
, ∆1

r1
(an) = 0, and for p = 1 the transform gives the

formula for summation of geometric series.
If Aa ̸= 0, the following equalities can be proved by mathematical induction with respect

to k applying them successively:

(4.1) rk = lim
n→∞

∆k−1
r1r2...rk−1

(an+1)

∆k−1
r1r2...rk−1

(an)
=

ak−1

bk
(k = 1, 2, . . . )

and

∆k
r1r2...rk

(an) =
1

bn+k

(a
b

)nk+ 1
2
k(k−1)

(
A

B

)k

×

∏k
j=1

(
1−

(
a
b

)j)
∏k

j=0

(
1 + A

B

(
a
b

)n+j
) (k = 1, 2, . . . ).

Thus, for a given p the acceleration of convergence of the given series by the modified Euler
transform, i.e. the speed by which the fraction ∆p

r1r2...rp
(an)

an
converges to 0 (as n → ∞), is of

order O
(∣∣a

b

∣∣pn).
In particular, put A := −1, B := 1, a = 3

2
and b = 2, we get the following alternating

number series
∞∑
n=1

(−1)n
2n

4n − 3n
.

Making use of the preceding consideration we have rk =
1
2

(
3
4

)k−1
(k = 1, 2, . . . ).

Obviously, for every positive integer p the sequence {rk}∞k=1 satisfies the conditions given in
Remark 1, which means that the acceleration of convergence of the given series provided by the
transform from Corollary 1 is increased by increasing the value of p.

For practical implementation, we rewrite transform (2.1) as a sum of a finite part and an
infinite remainder in the following way

(4.2)
∞∑
n=1

(−1)nan =
a1

1 + r1
+

p−1∑
k=1

(−1)k
∆k

r1r2...rk
(a1)

(1 + r1) · · · (1 + rk+1)

+
(−1)p

(1 + r1) · · · (1 + rp)

q∑
n=1

(−1)n∆p
r1r2...rp

(an) + R̃q+1,

where R̃q+1 is the remainder, given by

R̃q+1 =
(−1)p

(1 + r1) . . . (1 + rp)

∞∑
n=q+1

(−1)n∆p
r1r2...rp

(an).

Now, we choose a value of p, calculate the sum of the first two summands at the right–hand side
of (4.2), and then we iterate with respect to q by calculating the third summand∑q

n=1(−1)n∆p
r1r2...rp

(an) (and approximating the remainder R̃q+1 ≈ 0).
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Table 4.1: The number of iterations

series
given classical modified

ε p = 1 p = 2 p = 3

10−1 3 3 1 1 1
10−2 6 6 2 1 1
10−3 9 9 4 2 1
10−4 12 12 6 4 2
10−5 16 15 9 5 3
10−6 19 18 11 7 4
10−7 22 21 13 9 6
10−8 25 24 15 10 7
10−9 29 27 18 12 9

Table 4.2: Relative errors

δq for series
given classic modified

q p = 1 p = 2 p = 3

1 0.265 0.142 0.238 · 10−1 0.249 · 10−2 0.243 · 10−3

2 0.967 · 10−1 0.570 · 10−1 0.550 · 10−2 0.389 · 10−3 0.266 · 10−4

3 0.401 · 10−1 0.237 · 10−1 0.153 · 10−2 0.753 · 10−4 0.367 · 10−5

4 0.177 · 10−1 0.101 · 10−1 0.470 · 10−3 0.165 · 10−4 0.581 · 10−6

5 0.817 · 10−2 0.439 · 10−2 0.154 · 10−3 0.389 · 10−5 0.100 · 10−6

6 0.385 · 10−2 0.194 · 10−2 0.522 · 10−4 0.965 · 10−6 0.183 · 10−7

7 0.185 · 10−2 0.872 · 10−3 0.183 · 10−4 0.248 · 10−6 0.348 · 10−8

8 0.897 · 10−3 0.396 · 10−3 0.650 · 10−5 0.653 · 10−7 0.679 · 10−9

9 0.439 · 10−3 0.181 · 10−3 0.235 · 10−5 0.175 · 10−7 0.135 · 10−9

10 0.216 · 10−3 0.834 · 10−4 0.857 · 10−6 0.475 · 10−8 0.274 · 10−10

11 0.107 · 10−3 0.387 · 10−4 0.315 · 10−6 0.130 · 10−8 0.560 · 10−11

12 0.528 · 10−4 0.180 · 10−4 0.116 · 10−6 0.359 · 10−9 0.116 · 10−11

13 0.262 · 10−4 0.844 · 10−5 0.431 · 10−7 0.994 · 10−10 0.239 · 10−12

14 0.131 · 10−4 0.397 · 10−5 0.160 · 10−7 0.276 · 10−10 0.499 · 10−13

Table 4.1 illustrates the dependence of the number of iterations needed for an approximate
calculation of the sum of given series for the cases p = 1, p = 2 and p = 3.

It shows, for instance, that in order to calculate the approximate sum of the given series
with an error not greater than 10−6 we must compute the sum of the first 19 terms. To obtain
this accuracy for the classical Euler transform we need 18 summands. Applying the modified
transform from Corollary 1, the same accuracy is obtained by computing the sum of the first 11
terms for p = 1, 7 terms for p = 2, and 4 terms for p = 3.

We mention that the number of operations needed for computing the first q individual sum-
mands for the classical Euler transform, as given in Section 1, is of order O(q2).

Table 4.2 illustrates the relative errors of approximate sums of the series for a given number
of iterations.
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Example 2. We denote by Pk a polynomial of degree k. For non-negative integers l and m,
and A, B, a and b satisfying conditions of Example 1 we put in Corollary 1

an :=
1

Aan +Bbn
Pl(n)

Pm(n)
.

By the same reasoning as in Example 1, it can be proved that the acceleration of convergence
of the given series by the modified Euler transform in this case is of order O

(
1
n

)
.

For example, for the slowly convergent series
∑∞

n=1(−1)n cosnx
n

we apply the transform given
in Corollary 2 with p := 1, r1 := 1 to obtain

∞∑
n=1

(−1)n
cosnx

n
= −1

2
+

1

2 cos x
2

∞∑
n=1

(−1)n
cos(n+ 1

2
)x

n(n+ 1)
.

It is obvious that the transformed series converges faster than the given one.
In particular, for Aa = 0, |b| > 1 and m = 0 we obtain rk = 1

b
(k = 1, . . . , l + 1), and

∆k
r1r2...rk

(an) =
1

bn+kPl−k(n) (k = 1, . . . , l). Hence ∆l+1
r1r2...rl+1

(an) = 0, implying thus that for
p := l + 1 the given series is transformed into a finite sum.

For example, by applying transform given in Corollary 3, for |q| < 1 we obtain

∞∑
n=0

(−1)nqnPl(n) sin(αn+ β)x

=
Pl(0)S

1
q (0)

1 + 2q cosαx+ q2
+

l∑
k=1

qk∆k(Pl(0))S
k+1
q (0)

(1 + 2q cosαx+ q2)k+1
.

A special case, for l := 0, Pl(n) := P0(n) := 1 we obtain the well known formula
∞∑
n=1

(−1)nqn sinnx = − q sinx

1 + 2q cosαx+ q2
.

5. PROOF OF THEOREM 5

Now we prove Theorem 5 given above.

Proof. First we prove that for every positive integers m and n the following equality holds

(5.1) ∆m
r1r2...rm

(an) =
m∑
k=0

(−1)m−kDm−kan+k,

where are

D0 = 1, D1 =
m∑
i=1

ri, D2 =
∑

1≤i<j≤m

rirj,

D3 =
∑

1≤i<j<k≤m

rirjrk, . . . , Dm = r1r2 . . . rm

(i.e. the summation for Dp is performed over all combinations of distinct indices between 1
and m taken p at a time).

Indeed, for m = 1 the equality is implied by the definition of the operator ∆m
r1r2...rm

.
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Under the assumption that equality (5.1) holds for m, we have

∆m+1
r1r2...rm+1

(an) = ∆1
rm+1

(∆m
r1r2...rm

(an))

= ∆1
rm+1

( m∑
k=0

(−1)m−kDm−kan+k

)

=
m∑
k=0

(−1)m−kDm−kan+1+k −
m∑
k=0

(−1)m−krm+1Dm−kan+k

= an+m+1 +
m∑
k=1

(−1)m+1−kan+k(Dm+1−k + rm+1Dm−k)

− (−1)mrm+1Dman,

wherefrom, taking into consideration that for a fixed k such that 1 ≤ k ≤ m holds

Dm+1−k + rm+1Dm−k =
∑

1≤i1<i2<···<im+1−k≤m+1

ri1ri2 . . . rim+1−k
,

we get

∆m+1
r1r2...rm+1

(an) =
m∑
k=0

(−1)m+1−kan+k

×
∑

1≤i1<i2<···<im+1−k≤m+1

ri1ri2 . . . rim+1−k
+ an+m+1.

Since, relaying on the definition of numbers Dp, for p ≥ 1 holds

Dp =
∑

1≤i1<i2<···<ip≤m

ri1ri2 . . . rip ,

equality (5.1) is true for every m ∈ N.
Now, equality (5.1) yields

∆m
r1r2...rm

((−1)nan) =
m∑
k=0

(−1)m−kDm−k(−1)n+kan+k.

Since for m− k > 0 holds

Dm−k =
∑

1≤i1<i2<···<im−k≤m

m−k∏
j=1

rij

= (−1)m−k
∑

1≤i1<i2<···<im−k≤m

m−k∏
j=1

−rij = (−1)m−kD′
m−k,

we obtain

∆m
r1r2...rm

((−1)nan) = (−1)n+m

m∑
k=0

(−1)m−kD′
m−kan+k

= (−1)n+m∆m
−r1−r2...−rm(an).

This completes the proof of Theorem 5.
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the Euler-Abel transform for convergent series, J. Natur. Sci. Math. 29, no. 1 (1989), pp. 1–9, [MR
91g:40008].

[5] W. NIETHAMMER, Numerical application of Euler’s series transformation and its generalizations,
Numer. Math. 34, no. 3 (1980), pp. 271–283, [MR 81g:65003].

[6] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, and BRIAN P. FLANNERY, Numerical
recipes, Cambridge University Press, Cambridge, (2007), The art of scientific computing, Third
edition, [MR 1880993 (2003a:65005)].

[7] R. SEDGEWICK, Algorithms in Java: Parts 1-4, Algorithms in Java, Pearson Education, (2002).

[8] G. A. SOROKIN, O nekotorykh preobrazovanyakh ryadov, Izv. Vyssh. Uchebn. Zaved. Mat. no. 11
(1984), pp. 34–40, 83, [MR 86f:40003].

AJMAA, Vol. 21 (2024), No. 1, Art. 15, 11 pp. AJMAA

https://ajmaa.org

	1. Introduction
	2. Statement of results
	3. Algorithm analysis for computing the transformed series
	4. Examples
	5. Proof of Theorem 5
	References

