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of analytic functions.
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2 KAREN AVETISYAN

1. INTRODUCTION

Let D be the unit disc in the complex plane afiidits boundary. Iff(z) = f(re?) is a
measurable function iB, then we write as usual

M,(f;r) 0<r<l1, 0<p<oo,

= ”f(r')HLp(T;dm)’

wheredm is the Lebesgue measure @n The collection of analytic functiong(z), for which
| fllz» = sup M,(f;r) < oo, is the usual Hardy spacE”. The quasi-normed space
0<r<1

H(p,q, ) (07< p.q < 0o, a > 0) is the set of those functionz) analytic in the unit dis®,
for which the quasi-norm

1 1/q
(/ (1-— r)aq_lMg(f;r)dr) , 0<qg< oo,
0
sup (1 —r)*My(f;7), q = o0,

0<r<1

Hpr,q,a =

is finite. If (1—r)*M,(f;r) = o(1) asr — 1~, then we writef € Hy(p, oo, a). Forp = ¢ < oo
the spaced(p, ¢, o) coincide with the well-known weighted Bergman spaces, wihite oo
they are known as growth spaces, didp, oo, o) corresponding "little" space.

The mixed norm spaces consisting of harmonic functions will be denotédby, ). In
[1] among others, some continuous inclusions of Hardy—Littlewood—Flett typéiny, o) are
proved in the context of functions-harmonic in the unit polydisc df”.

Theorem 1. The following inclusions are continuous for any3 € R, 0 < p, g < oc:
(i) h(p,g.a) C hip,g.B8), B>a,
7

)
(Z> (p7Q7 ) (p(),q, )7 O<p0 <p§007
(ZZZ> h( ) - h( b, 4o, @ )7 0< q < 4o S 0,
(1v) h(p ,a) Ch(po,q,8), B>a+1/p—1/py, 0<p<py< oo,
U) h(pv Q7 ) - h(p07QO7 )7 5 >a+ 1/]9, 0< Po, 9o S o,
(vi) h(p,q, @) Ch(p,qo,B), B>a,0<q < oo,
(vid) HPCH(po,q,E—Z%J, 0<p<py<o0,0<p<qg<oo.

Of course, the inclusions (i), (ii) are obvious, while some others are much deeper, for instance,
(i), (iv) and (vii) which were originally proved by Hardy and Littlewood [8, Th.31] and Flett
[5, pp.755-756] for functions analytic in the unit disc, see &lso [4, Th.5.[11], [6, Th.3l1], [9].

The purpose of this note is to prove that the inclusions (i)-(vii) for analytic functions are strict
and best possible in a certain sense. See Thedrem 2 below for the precise formulation.

2. ESTIMATES

Throughout the paper, the capital letteréq, 3, . .. ), C, stand for different positive con-
stants depending only on the parameters indicated AFé&r > 0 the notationd ~ B denotes
the two-sided estimat€; A < B < (C;A with some inessential positive constantsandCy
independent of the variable involved.

The estimates appearing in the next lemma were essentially proved by Littlewood in [10,
pp.93-96], see also in[2]. [3, p.14]. Such type inequalities are usually proved by means of
growth estimates for Taylor coefficients, which were due to Faber and Littlewood [10, pp.93—
96], [11, Ch.5,Th.2.31]. Below we give a direct and elementary proof of the estimates avoiding
growth estimates for Taylor coefficients.
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Lemma 1. Suppose that, S € R and

™ -8
L ig|—a—1
Jag = Jap(r) = /7r ‘1 —re | log T de.
Thenforall 0 <r <1
_ e \ 7’
2.1) Jos~ (1—r) (IOgl—r) ., a>0, [ eR,
1, a <0, [ eR,
( e 1-8
log , 6<1,
1—r
(2.2) Jog =~ < 1, 6>1,

log(elog ¢ >, 6=1,
L 1—17r

where the involved constants= C'(«, 5) > 0 depend only o, (3.

Proof. It suffices to prove all the estimates only foraltlose enough td, and moreover for all
z € Dlying in a small neighborhood df For the expressiofi —re™| = \/(1 — )2+ 4rsin® &,
we have the simple estimate

1 |9|) 0 0
— (1l —r+2yr— | <|[1—re?| <1—7r+10], z=re"” €D,

in particular,

2.3) La—rr ) <|1—re?| <1—r+ 0],

— <r<l.
T

N | —

, , , 1
Define the ring sectoE := {z =re? e D: & <r <1, |§] <3}, sothat]l — z| < 3 (2 €
E), and the following inequalities are valid:

1 1
log < log +E§510g—, ze k),
1—2z 11—z 2 11— 2|
(2.4)
1 L > 1 L > 1 >1 5>1 ek
0 0 0 0g— > — z :
I e T T R

Assuming thatg < r < 1 everywhere below and > 0, we begin with the proof of the first
estimate in[(21).
By the estimateg (2.3) and (2.4), we obtain

de
o= ([t ) ;
0>1/2  J)o1<1/2 ‘1

0 a+1 e
—ret } log —7

do

(1 —r+ 9)a+1 (log 1_i+9)6

1/2
~ Cla, ) + Cla, B) /0

1
1—r

log ﬁ log
e

(2.5) — C(a, B) + Cla, B) / t%dm / et%dt.
1

1
log 575
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Here we have used the inequalities

0<log§<log3/21_r<log2, %<7’<1.
Since by I'Héspital rule,
/xe—mdtwi as x— +oo (a>0)
. 1P axb ’
we conclude that e
Jop~ et %1 _ 1

’ (log %_r)ﬂ (1 —7) (log ﬁ)ﬂ
for all r sufficiently close tal. It proves the first inequality irj (2.1). The second inequality in
(2.7) whena < 0 follows from (2.5).
We now turn to the proof of (2}2) when = 0.

Casef < 1. Making use of the estimates (2.3) and [2.4), we deduce that

1/2 4o
JOﬂZ/ +/ %CQ—FC/
o>1/2 Joj<1/2 ’ o (1 —7r+6) (log ﬁ)ﬂ

(bg 1 i r)lﬁ N (log 3 21— r) -
/

1-8
(2.6) ~ (log ! ) )

1—7r

:Cg+05

where we have used the inequalities

5 1-8 1 1-83 - 1 1 1-p8
log — 1 log2) ~ =1
0<(og3) <(og3/2_r) < (log 2) <(2 Ogl—r)

forall & <r < 1.
Casefs = 1. In view of (2.3) and[(2.4), we obtain for atlclose enough tad

Ji Cc+C v ao
e [T

1 1
=C+C {log (logl_r> — log <log3/2_r)}

1

(2.7) ~ log (log ) ,

1—r
where - 0

loglog§<1oglog3/2_r<loglog2<07 E<T<1.

Casefs > 1. Similarly to (2.5), we have

log 1ir 10g1—ir

1 1
1

1
log 575—

Combining [2.6)-4(2]8), we obtaip (2.2). This completes the prpof.
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3. AN APPLICATION IN MIXED NORM SPACES

Define the following test function

Fye(z) = (1 - z)fb (log ‘ ) : z €D,

1—=z2

whereb, c € R. The functiongt, . are very useful as typical functions in many function spaces,
see, for example, [2]-[7]. The next lemma gives exact informatiofQrto be inH (p, ¢, «) or
Hy(p, o0, ).

Lemma 2. Suppose thath, ce R, 0 < p < 00,0 < ¢ < 00, > 0. Then

(@) FyeisinH(p,q,a)ifandonlyifb <a+ 1 ceRorb=a+1.c> 1.

(b) Fyisin H(p,00,a)ifand onlyifb <a+ 1 ceRorb=a+1 ¢>0.

(€) Fycisin Ho(p,00,a)ifandonly ifb < a+ 1 ceRorb=a+1¢>0.

Proof. The results follow from corresponding estimates of Lemina 1,

Mp(Fbvc;r) ~ (1-— r)‘bH/p (log ) , 0<r<l,

1—7r
ifl/p<b<a+1/p. 1

Lemmd 2 enables us to prove the sharpness and strictness of the inclusions (i)-(vii) in Theo-
rem[].

Theorem 2. Suppose thal < p, ¢, pg, g0 < 00, «, 3 > 0 are arbitrary. Then:

(1) H(p,q,c) C H(p,q,03), B> «, is strict
(1) H(p,q,a) C H(po,q,a), po < p, is strict
(i49) H(p,q,a) C H(p,qo,), q < qo, IS strict, and the inclusion
H(p7 q, Oé) - HO(pa oo, Oé)
is sharp in the sense thaton the right cannot be decreased
() H(p,q,a) C H(po,q, ), p < po, holds if and only if5 > o + % -1,

Ppo
(U) H(p,q,a) - H(Ooaqmﬁ)v ﬁ > o+ 1/pa qo < g,
is strict and sharp in the sense thatannot be decreased

(vi) H(p,q,a) C H(p,q0,8), B>, ¢ <gq,
is strict and sharp in the sense thaicannot be decreased

(vii) HP C H(po,q:1/p—1/po), p < po,p < ¢,
is sharp in the sense that it fails fgs > ¢.
Proof. (i) The inclusion (i) is strict because of the functiép,, ,, for ¢ < oo, and the function
Fﬁ+1/p70 for q = Q.
(i) The strictness of the inclusion (ii) is proved by the examplgs, ,, for 0 < ¢ < oo, and
FaJrl/po,O for q = 0.

(iii) The strictness of the inclusion (iii) is proved by the examples /o for ¢y = oo, and
Fot1/p1/4 fOr go < co. The sharpness of the second inclusion in (iii) means that the inclusion
H(p,q,a) C Hy(p, 00,0 — ¢) is false for any0 < p < 00,0 < ¢ < 00,0 < ¢ < a. The
function F, 11/, /2,0(2) gives a corresponding example.

(iv) The statement (iv) is proved inl[1, p.733].

(v)-(vi) The inclusions (v) and (vi) are strict because of the exanfple; ,,,. On the other
hand, the inclusions (v) and (vi) are sharp fgr< ¢ in the sense that cannot be decreased.
The functionF,1,,,1/4,(2) gives a suitable example for both inclusions.
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(vii) The inclusion (vii) is sharp in the sense that the condifion ¢ is essential, that is fgr > ¢
the inclusion (vii) fails. A corresponding example can be provided by the funétigmn (2),
wherel/p < XA < 1/q. Indeed,Fy/,,(2) € H?, butF, (2) is notin H(py,q,1/p —1/po), by
Lemmd2.x
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