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1. I NTRODUCTION

Let D be the unit disc in the complex plane andT its boundary. Iff(z) = f(reiθ) is a
measurable function inD, then we write as usual

Mp(f ; r) =
∥∥f(r·)

∥∥
Lp(T;dm)

, 0 ≤ r < 1, 0 < p ≤ ∞,

wheredm is the Lebesgue measure onT. The collection of analytic functionsf(z), for which
‖f‖Hp = sup

0≤r<1
Mp(f ; r) < +∞, is the usual Hardy spaceHp. The quasi-normed space

H(p, q, α)
(
0 < p, q ≤ ∞, α > 0

)
is the set of those functionsf(z) analytic in the unit discD,

for which the quasi-norm

‖f‖p,q,α =


(∫ 1

0

(1− r)αq−1M q
p (f ; r)dr

)1/q

, 0 < q < ∞,

sup
0≤r<1

(1− r)αMp(f ; r), q = ∞,

is finite. If (1−r)αMp(f ; r) = o(1) asr → 1−, then we writef ∈ H0(p,∞, α). Forp = q < ∞
the spacesH(p, q, α) coincide with the well-known weighted Bergman spaces, whileq = ∞
they are known as growth spaces, andH0(p,∞, α) corresponding "little" space.

The mixed norm spaces consisting of harmonic functions will be denoted byh(p, q, α). In
[1] among others, some continuous inclusions of Hardy–Littlewood–Flett type inh(p, q, α) are
proved in the context of functionsn-harmonic in the unit polydisc ofCn.

Theorem 1. The following inclusions are continuous for anyα, β ∈ R, 0 < p, q ≤ ∞:

(i) h(p, q, α) ⊂ h(p, q, β), β > α,
(ii) h(p, q, α) ⊂ h(p0, q, α), 0 < p0 < p ≤ ∞,

(iii) h(p, q, α) ⊂ h(p, q0, α), 0 < q < q0 ≤ ∞,
(iv) h(p, q, α) ⊂ h(p0, q, β), β ≥ α + 1/p− 1/p0, 0 < p ≤ p0 ≤ ∞,
(v) h(p, q, α) ⊂ h(p0, q0, β), β > α + 1/p, 0 < p0, q0 ≤ ∞,

(vi) h(p, q, α) ⊂ h(p, q0, β), β > α, 0 < q0 ≤ ∞,

(vii) Hp ⊂ H
(
p0, q,

1
p
− 1

p0

)
, 0 < p < p0 ≤ ∞, 0 < p ≤ q ≤ ∞.

Of course, the inclusions (i), (ii) are obvious, while some others are much deeper, for instance,
(iii), (iv) and (vii) which were originally proved by Hardy and Littlewood [8, Th.31] and Flett
[5, pp.755-756] for functions analytic in the unit disc, see also [4, Th.5.11], [6, Th.3.1], [9].

The purpose of this note is to prove that the inclusions (i)-(vii) for analytic functions are strict
and best possible in a certain sense. See Theorem 2 below for the precise formulation.

2. ESTIMATES

Throughout the paper, the capital lettersC(α, β, . . . ), Cα stand for different positive con-
stants depending only on the parameters indicated. ForA, B > 0 the notationA ≈ B denotes
the two-sided estimateC1A ≤ B ≤ C2A with some inessential positive constantsC1 andC2

independent of the variable involved.
The estimates appearing in the next lemma were essentially proved by Littlewood in [10,

pp.93-96], see also in [2], [3, p.14]. Such type inequalities are usually proved by means of
growth estimates for Taylor coefficients, which were due to Faber and Littlewood [10, pp.93–
96], [11, Ch.5,Th.2.31]. Below we give a direct and elementary proof of the estimates avoiding
growth estimates for Taylor coefficients.
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Lemma 1. Suppose thatα, β ∈ R and

Jα,β = Jα,β(r) :=

∫ π

−π

∣∣1− reiθ
∣∣−α−1

∣∣∣∣log
e

1− reiθ

∣∣∣∣−β

dθ.

Then for all 0 ≤ r < 1

(2.1) Jα,β ≈

 (1− r)−α

(
log

e

1− r

)−β

, α > 0, β ∈ R,

1, α < 0, β ∈ R,

(2.2) J0,β ≈



(
log

e

1− r

)1−β

, β < 1,

1, β > 1,

log

(
e log

e

1− r

)
, β = 1,

where the involved constantsC = C(α, β) > 0 depend only onα, β.

Proof. It suffices to prove all the estimates only for allr close enough to1, and moreover for all

z ∈ D lying in a small neighborhood of1. For the expression
∣∣1−reiθ

∣∣ =
√

(1− r)2 + 4r sin2 θ
2
,

we have the simple estimate

1√
2

(
1− r + 2

√
r
|θ|
π

)
≤

∣∣1− reiθ
∣∣ ≤ 1− r + |θ|, z = reiθ ∈ D,

in particular,

(2.3)
1

π
(1− r + |θ|) ≤

∣∣1− reiθ
∣∣ ≤ 1− r + |θ|, 1

2
≤ r < 1.

Define the ring sectorE :=
{
z = reiθ ∈ D : 9

10
< r < 1, |θ| < 1

2

}
, so that|1 − z| <

1

2
(z ∈

E), and the following inequalities are valid:∣∣∣∣log
1

1− z

∣∣∣∣ ≤ log
1

|1− z|
+

π

2
≤ 5 log

1

|1− z|
, z ∈ E,∣∣∣∣log

1

1− z

∣∣∣∣ ≥ log
1

|1− z|
≥ log

1

1− r + |θ|
≥ log

5

3
>

1

2
, z ∈ E.

(2.4)

Assuming that
9

10
< r < 1 everywhere below andα > 0, we begin with the proof of the first

estimate in (2.1).
By the estimates (2.3) and (2.4), we obtain

Jα,β =

(∫
|θ|>1/2

+

∫
|θ|<1/2

)
dθ∣∣1− reiθ

∣∣α+1
∣∣∣log e

1−reiθ

∣∣∣β
≈ C(α, β) + C(α, β)

∫ 1/2

0

dθ(
1− r + θ

)α+1 (
log 1

1−r+θ

)β

= C(α, β) + C(α, β)

log 1
1−r∫

log 1
3/2−r

eαt

tβ
dt ≈

log 1
1−r∫

1

eαt

tβ
dt.(2.5)
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Here we have used the inequalities

0 < log
5

3
< log

1

3/2− r
< log 2,

9

10
< r < 1.

Since by l’Hôspital rule,∫ x

1

eαt

tβ
dt ∼ ex

α xβ
as x → +∞ (α > 0),

we conclude that

Jα,β ≈
eα log 1

1−r(
log 1

1−r

)β
=

1

(1− r)α
(
log 1

1−r

)β

for all r sufficiently close to1. It proves the first inequality in (2.1). The second inequality in
(2.1) whenα < 0 follows from (2.5).

We now turn to the proof of (2.2) whenα = 0.

Caseβ < 1. Making use of the estimates (2.3) and (2.4), we deduce that

J0,β =

∫
|θ|>1/2

+

∫
|θ|<1/2

≈ Cβ + Cβ

∫ 1/2

0

dθ

(1− r + θ)
(
log 1

1−r+θ

)β

= Cβ + Cβ

[(
log

1

1− r

)1−β

−
(

log
1

3/2− r

)1−β
]

≈
(

log
1

1− r

)1−β

,(2.6)

where we have used the inequalities

0 <

(
log

5

3

)1−β

<

(
log

1

3/2− r

)1−β

< (log 2)1−β <

(
1

2
log

1

1− r

)1−β

for all 9
10

< r < 1.

Caseβ = 1. In view of (2.3) and (2.4), we obtain for allr close enough to1

J0,1 ≈ C + C

∫ 1/2

0

dθ(
1− r + θ

) (
log 1

1−r+θ

)
= C + C

[
log

(
log

1

1− r

)
− log

(
log

1

3/2− r

)]
≈ log

(
log

1

1− r

)
,(2.7)

where

log log
5

3
< log log

1

3/2− r
< log log 2 < 0,

9

10
< r < 1.

Caseβ > 1. Similarly to (2.5), we have

(2.8) J0,β ≈ Cβ + C

log 1
1−r∫

log 1
3/2−r

1

tβ
dt ≈ Cβ + C

log 1
1−r∫

1

1

tβ
dt ≈ 1.

Combining (2.6)–(2.8), we obtain (2.2). This completes the proof.
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3. AN APPLICATION IN MIXED NORM SPACES

Define the following test function

Fb,c(z) :=
(
1− z

)−b
(

log
e

1− z

)−c

, z ∈ D,

whereb, c ∈ R. The functionsFb,c are very useful as typical functions in many function spaces,
see, for example, [2]-[7]. The next lemma gives exact information onFb,c to be inH(p, q, α) or
H0(p,∞, α).

Lemma 2. Suppose thatb, c ∈ R, 0 < p ≤ ∞, 0 < q < ∞, α > 0. Then
(a) Fb,c is in H(p, q, α) if and only ifb < α + 1

p
, c ∈ R or b = α + 1

p
, c > 1

q
.

(b) Fb,c is in H(p,∞, α) if and only ifb < α + 1
p
, c ∈ R or b = α + 1

p
, c ≥ 0.

(c) Fb,c is in H0(p,∞, α) if and only ifb < α + 1
p
, c ∈ R or b = α + 1

p
, c > 0.

Proof. The results follow from corresponding estimates of Lemma 1,

Mp(Fb,c; r) ≈ (1− r)−b+1/p

(
log

e

1− r

)−c

, 0 ≤ r < 1,

if 1/p < b ≤ α + 1/p.

Lemma 2 enables us to prove the sharpness and strictness of the inclusions (i)-(vii) in Theo-
rem 1.

Theorem 2. Suppose that0 < p, q, p0, q0 ≤ ∞, α, β > 0 are arbitrary. Then:

(i) H(p, q, α) ⊂ H(p, q, β), β > α, is strict.
(ii) H(p, q, α) ⊂ H(p0, q, α), p0 < p, is strict.

(iii) H(p, q, α) ⊂ H(p, q0, α), q < q0, is strict, and the inclusion
H(p, q, α) ⊂ H0(p,∞, α)
is sharp in the sense thatα on the right cannot be decreased.

(iv) H(p, q, α) ⊂ H(p0, q, β), p ≤ p0, holds if and only ifβ ≥ α + 1
p
− 1

p0
.

(v) H(p, q, α) ⊂ H(∞, q0, β), β > α + 1/p, q0 < q,
is strict and sharp in the sense thatβ cannot be decreased.

(vi) H(p, q, α) ⊂ H(p, q0, β), β > α, q0 < q,
is strict and sharp in the sense thatβ cannot be decreased.

(vii) Hp ⊂ H(p0, q, 1/p− 1/p0), p < p0, p ≤ q,
is sharp in the sense that it fails forp > q.

Proof. (i) The inclusion (i) is strict because of the functionFα+1/p,0 for q < ∞, and the function
Fβ+1/p,0 for q = ∞.

(ii) The strictness of the inclusion (ii) is proved by the examplesFα+1/p,0 for 0 < q < ∞, and
Fα+1/p0,0 for q = ∞.

(iii) The strictness of the inclusion (iii) is proved by the examplesFα+1/p,0 for q0 = ∞, and
Fα+1/p,1/q for q0 < ∞. The sharpness of the second inclusion in (iii) means that the inclusion
H(p, q, α) ⊂ H0(p,∞, α − ε) is false for any0 < p ≤ ∞, 0 < q < ∞, 0 < ε < α. The
functionFα+1/p−ε/2,0(z) gives a corresponding example.

(iv) The statement (iv) is proved in [1, p.733].

(v)-(vi) The inclusions (v) and (vi) are strict because of the exampleFα+1/p,0. On the other
hand, the inclusions (v) and (vi) are sharp forq0 < q in the sense thatβ cannot be decreased.
The functionFα+1/p,1/q0(z) gives a suitable example for both inclusions.
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(vii) The inclusion (vii) is sharp in the sense that the conditionp ≤ q is essential, that is forp > q
the inclusion (vii) fails. A corresponding example can be provided by the functionF1/p,λ(z),
where1/p < λ < 1/q. Indeed,F1/p,λ(z) ∈ Hp, butF1/p,λ(z) is not inH(p0, q, 1/p− 1/p0), by
Lemma 2.
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