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2 ABDELMOUJIB BENKIRANE AND AHMED Y OUSSFI

1. INTRODUCTION

Let Q2 be a bounded open set BfY, N > 2, and M be an N-function. In this paper, we
consider a class of strongly nonlinear elliptic equations whose prototype is

(1.1) A(u) + B(w)M(|Vul) = f in D'(Q),
| w € WiLar(Q) N L=(Q),

whereA(u) = —div (W_l(M(m))a(ﬂc,u)m_lM(|Vu|)%>, 0 is a real such that <
6 < 1 andg is a positive continuous function which does not satisfy the sign condition (i.e.
B(s)s > 0). Existence of bounded solutions for problgm[1.1) has been obtained in [8] when
M(t) = t* and f € L™(Q) with m > £. We are interested in the more general problem
A(u) + B(x,u,Vu) = f in €,

w2 () + Bz, u, Vu) = f

u=20 on 0f),
where

A(u) = —=diva(z,u, Vu)

is a Leray-Lions operator defined on its domaltA) CWy Ly, (€2) such that

(1.3) a(x,s,€)-¢ > M (M(h(|s])))M([¢]),

andB is afirst order term which does not satisfy the sign condition but having only the following
natural growth:

|B(z, s,€)| < B(s)M(|]).
In the setting of Sobolev spacég ”(0), the existence of bounded solutions 1.1) when
B = 0andM(t) = t* has been proved first inl[3] and [6] when

N
ferm(Q) withm> =,

then for [1.2) under the conditioh (1.3), whéh= 0 and M (¢) = t? with 1 < p < N in [2]
when

(1.4) feL™) withm > %

When the functions in (1.3) ands are constants, the existence of bounded solutions for prob-
lems like [1.2) has been obtained|in [7], whepan be replaced by — divg wheref € L™(Q)

with m > sup(1, &) andg € (L())" with ¢ = 275,

In this framework, existence of bounded solutions for problems of the fype (1.1), vhen,

has been proved in [10] witli — divg as data, wherf belongs toL™(2) with m > % andg
belongs to L4(02))" with ¢ > Z% In this paper, the result has been obtained whandg are
assumed to satisfy a smallness condition.

In the case wherk is not necessarily constant, the existence of a bounded solution of problems
like ) has been proved in[20] whgne L™ () with m > max(1, 7).

In the present paper, our main goal is to prove the existence of bounded solutions, in a sense
that we will define later, for the problem (1.2) by extending such results obtainéd [in/[8, 20]
(and also in[[2], 3,16] whe = 0) to the setting of the Orlicz-Sobolev spaces when the datum
f satisfies a summability condition recoverifg {1.4) in the case of power growth. For this, we
judge important to list some difficulties that we have found in dealing with prollern (1.2). First
of all, the operator considered jn (JL.2) does not satisfy the Leray-Lions conditions in the setting
of Orlicz spaces (seé [14]), this is due to the hypothésig (1.3) and the fact that no bounds are
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assumed on the functialy, consequently, classical methods can not be applied. To get rid of
this difficulty, we will consider approximate equations in which we introduce a truncation. The
second difficulty concerns the lower order term which does not satisfy the well known sign
condition (i.e. B(z, s,&)s > 0), and so appears the problem of getting the a priori estimates.
To overcome this hindrance, we will use test functions of exponential type and a comparison
result.

Our paper is organized as follows. After listing some preliminaries in Segjion 2, we give
the precise assumptions and state the main result in Ségtion 3. In order i¢° gesttimates
for solutions of approximate equations, we need to prove some auxiliary lemmas which will be
proved in Sectiofi|4. Finally, Sectidh 5 is devoted to the proof of the main result.

2. PREREQUISITES

2.1Let M : RT — R* be an N-function, ie. M is continuous, convex, with(¢) > 0 for
t>0,M4 _ past — 0andX® — oo ast — oc. The N-function conjugate t/ is defined

asM(t) = sup{st — M(t),s > 0}. We will extend these N-functions into even functions on
all R. We recall that (see [1])

(2.1) M(t) <M (M(t)) < 2M(t) forallt >0
and the Young’s inequality: for all, t > 0, st < M (s) + M (t) and . If for somek > 0,
(2.2) M(2t) < kM(t) forall t> 0,

we said that)/ satisfies the\,-condition, and if[(2.R) holds only fargreater than or equal to
to > 0, then M is said to satisfy th&,-condition near infinity.
Let P and@ be two N-functions. The notatioR< () means tha” grows essentially less

rapidly than@), i.e.
P(t)
Q(et)

for all € > 0, — 0 as t — oo,

that is the case if and only if
Q7' (1)
P1(t)
2.2Let () be an open subset &". The Orlicz class<,, () ( resp. the Orlicz spack,,(2)) is
defined as the set of (equivalence class of) real-valued measurable functinfissuch that:

/Q M(u(z))dz < o (resp. /Q M (@) dz < o0 for some A > 0) |

Endowed with the norm

HuHM:inf{bo:/QM(@) da:<oo},

Ly (§2) is a Banach space arid,/(€2) is a convex subset df,,(2). We define the Orlicz norm
lull(ar) BY

— 0 as t— oo.

leallory = sup / u(w)o(a)de,
where the supremum is taken overalt F;(€2) such that|v||g7 < 1, for which
[ullar < Hlullany < 2l
holds for allu € L;,(€2) (see[[16]). The closure ih,,(2) of the set of bounded measurable

functions with compact support i is denoted by, (12).
2.3 The Orlicz-Sobolev spacd’'L,,(Q) (resp. W E,,(Q)) is the space of functions such
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thatu and its distributional derivatives up to ordelie in L, () (resp.Ey;(Q2)). Itis a Banach
space under the norm
lulliae =D 1Dl

o<1
Thus, WLy (Q2) andW?'Ey () can be identified with subspaces of the product®f+ 1)
copies ofL,,(£2). Denoting this product bi{ L ,;, we will use the weak topologiegI1L,,, [1E5;)
and o(I1Ly, 11L57). The spaceV, Ey(Q) is defined as the norm closure of the Schwartz
spaceD(Q) in W'E,, () and the spacéV) L, (2) as thes(IIL,,, [1E5;) closure of D(£2)
in WlLM(Q)
We say that a sequende,,} converges ta: for the modular convergence ' L,,(92) if,

for some\ > 0,
D — Do
/M(—ET—ﬁymHommMM§h
Q

this implies the convergence fofI1L,, [1Ly;).

If M satisfies theA,-condition onR™ (near infinity only if  has finite measure), then the
modular convergence coincides with norm convergence. Recall that the|doaih,, defined
on Wy Ly () is equivalent td|ul|, »s (see[13]).

Let WL, (Q) (resp. W—1E)(Q)) denotes the space of distributions @rwhich can be
written as sums of derivatives of orderl of functions inL,,(£2) (resp. £y, (€2)). Itis a Banach
space under the usual quotient norm. Recall that an open ddmainR" has the segment
property (seel[13] p.167) if there exist a locally finite open covefig} of the boundary?
of 2 and corresponding vectofs;} such that ifr € QN O; for somei, thenz +ty; € Qfor0 <
t < 1. If the open) has the segment property then the spa¢@) is dense iV L () for the
topologyo (1L, I1L57) (see[13]). Consequently, the action of a distributioin! L57(Q)
on an element oft/; L () is well defined.

For an exhaustive treatment one can see for example|[1, 16].
2.4\We will use the following lemma, (see[9]), which concerns operators of Nemytskii Type in
Orlicz spaces. It is slightly different from the analogous one given in [16].

Lemma 2.1. LetQ) be an open subset B with finite measure. let/, P and(@ be N-functions
such that)< P, and letf : 2 x R — R be a Carathéodory function such that, for a.e ()
and for all s € R,
(@, 8)] < c(x) + ki P~ M (ksls]),

where ky, k, are real constants and(z) € E(€2). Then the Nemytskii operata¥;, de-
fined byN;(u)(xz) = f(z,u(x)), is strongly continuous frorﬂP(EM,k—i) = {u € Ly(Q) :
d(u, Er(92)) < é} into Eg(2).

We recall here the Orlicz version of the Poincaré’s inequality (see lemma 5.7/in [13]).

Lemma 2.2. Let Q2 be a bounded open subsetRY. Then there exist two constantsand \,
such that

(2.3) / M(Ju|)dx < A\ / M (X2|Vu|)dz
Q Q
forallu € W)Ly (Q).
We will also use the following technical lemma which can be found.in [15] drlin [9].

Lemma 2.3.If {f,} C L*(Q) with f,, — f € L'(Q) a.e. inQ, f,, f > 0 a.e. inQ and
/fn(x)dx — /f(x)dx,thenfn — fin LY(Q).
Q Q
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2.5We recall the definition of decreasing rearrangement of a measurable function— R.
If one denotes byFE| the Lebesgue measure of a ggtone can define the distribution function
iy, (t) Oof w as:
po(t) = {z € Q: Jw(x)| > t}], 20
The decreasing rearrangemaeritof w is defined as the generalized inverse functiop pf
w*(o) =inf{t >0:pu,(t) <o}, oc€(0,]Q).
For everyt > 0 we have

(2.4) w* (1, () <,

with equality (seel[19] p.935) when* is restricted to the range @f, and,, is restricted to
the intervall0, ess sup |w|].

More details can be found for example inl[5) 17,18, 19].
2.6 An abstract existence resultLet (Y, Yy; Z, Z,) be a complementary system i¥.and Z
are real Banach spaces in duality with respect to a continuous pairjnandY, and 7, are
closed subspaces &f and Z respectively such that, by means(af), the dual ofY; can be
identified toZ and that ofZ, to Y. We consider a mapping from D(T") C Y into Z which
satisfies the following conditions, with respect to some elemer/ts, andf € 7 :

()- (Finite continuity)Y, C D(T) andT is continuous from each finite dimensional sub-
space ofYj into Z for o(Z, YY),
(i))- (Sequential pseudo-monotonicity) For any sequence D(T') such thati, — u € Y
for o(Y, Zy), Tu, — x for o(Z,Ys) andlimsup(Tu,, u,) < (x,u), it follows that
u € D(T), Tu = x and(Tu,, u,) — (x, u).
(iii)- Tw remains bounded i wheneven, € D(T') remains bounded itv and(7T'u, v — )
remains bounded from above,
(iv)- (Tu— f,u—1u) > 0whenu € D(T) has sufficiently large norm ifr.
Given a convex sek’ C Y and an element € Z,, we are interested in finding a solutiarof
the variational inequality:
P) ue KND(T),
(Tu,u —v) < (f,u—wv) Yve K.
Recall the following existence result (s€el[14, Proposition 1])

Proposition 2.4. Let (Y, Yy; Z, Z,) be a complementary system, withand 7, separable. Let
K C Y be a convex, sequentially closed and such that Y, is o(Y, Z) dense inK. Let
feZyLetT: D(T) CY — Z satisfy(i), (ii), (iii) and(iv) with respect to some € K NYj,
and the givery. Then, the variational inequality (P) has at least one solution

Remark 2.1. 1. Notice that whenk = Y, Propositior] 24 applies to the solvability of the
equation:

(P)

{ u € D(T),
(Tu,vy = (f,v) Yv €Y.

with f given in Zj.
2. Itis shown in [14] that if? has the segment property, then

(Wo Lar(€2), Wy Ear (), W Lyp(Q), W Eg(Q))

constitutes a complementary system.
3. Recall that if a bounded subs@tof R" has a locally Lipschitzian boundary (that is, that
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eachz on the boundaryf) of 2 should have a neighborhoéd such that$2 N4, is the graph
of a Lipschitz continuous function) thef,has the segment property (see [1, p.67]).

3. ASSUMPTIONS AND MAIN RESULT

Let Q) be a bounded open subseffof, N > 2. with locally Lipschitzian boundary antl/ is
an N-function twice continuously differentiable and strictly increasing, Anslan N-function
suchthatP< M. Leta : O x Rx RY —=RN andB : Q2 x R x R —R be Carathéodory functions
satisfying, for a.ex € Q, and for alls € R and all¢, n € RY, € £ 1,

—1
(3.1) a(x,s,§).6 = M ~(M(h(]s])))M(|¢])
whereh : RT—]0, +oo] is a continuous decreasing function such thigi) <1 and its primitive
H(s) = / h(t)dt is unbounded,
0

(3.2) la(z,5,€)| < ao(z) + kP M(kals|) + ks M M(kyl€])
wherea(z) belongs tol;(Q2) andky, ks, ks, ks tO R,
(33) (CL(;E,S,f) _a(‘r7877]>>'(£_n) >0
and
(3.4) |B(z,s,8)| < B(s)M(|¢]),
B(t)

where3 : R — RT is a continuous function such that—

— belongs to

N M (M(R(]E])))
L'(R). So by defining
S 6 t
v(s) = / p— &)
o M~ (M(h(|t])))
for all s € R, the functiony is bounded.
Finally, we assume one of the following two assumptions: Either

dt

(3.5) fe L)
or

m : _ rN
fe L™ ) with m= =5 for some r >0,

(3.0) and /+Oo (ML@QTdt < +00.

Let A: D(A)CW, Ly (Q)—W ! L37(Q2) be a mapping (non-everywhere defined) given by
A(u) = —=diva(z,u, Vu).

In this paper, we are interested in proving the existence of bounded solutions to the strongly
nonlinear problem:

(3.7) {A(“)+B(fr,u7vu)=f in Q,

u=0 on Jf.

For that, we will use the following concept of solutions
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Definition 3.1. Let fe L'(Q), a functionu € Wy L() is said to be a weak solution of

problem [3.7), if
3.8 ,u, Vu)Vod
(3.8) /Qa(a: u, Vu)Vodz +/

B(a:,u,Vu)vd:E:/fvdas
Q Q

holds for allv € W Ly (Q) N L>(Q).

Now, we state the following theorem which contains the main result of this paper.

Theorem 3.1. Let us assume thdt (3.1), (8.2), (3.3), (3.4) and either (3.5) of (3.6) hold true.
Then, there exists a weak solutiefor problem (3.7) in the sense 6f (B.8), such that L>(2).

Remark 3.1. Notice that whenV/(t) = ¢* with 1 < p < N, the conditions[(3]5) andl (3.6) are
reduced to N

feL™Q) withm > o
Hence, our result is an extension to the Orlicz setting of those in [8] and [20].

Remark 3.2. Our result is an extension to strongly nonlinear elliptic equations of that obtained
in [21] whenB = 0.

4. A PRIORI ESTIMATES

Fors € Randk > 0 set: Ti(s) = max(—k, min(k, s)) andGx(s) = s — Ti(s) and for all
n € N, we defined,, andB,, as
Ap(u) == —diva(z, T, (u), Vu)
and
B, (u) := B, (z,u,Vu) = T,(B(z,u, Vu)).
In the sequel we denote by* either N or m according as we assunje (3.5) jor {3.6), and let
{f.} € WLE#(Q) be a sequence of smooth functions such that
fn — f strongly in L™ (Q)

and

[ fallme <[]
Let us show thatl,, + B,, satisfies the conditions (i)-(iv) of Propositiopn 2.4 with respect te 0
andf,.

(). A, + B, is finitely continuous byi[13, lemma 4.3].
(ii). Letu; € D(A, + B,) such that:

m* -

(a) uj — u € Wy Ly (Q) for oLy, TTEg;),

(b) An(uj) + Bn(u]) — X € WﬁlLﬁ(Q) for O'(HLW, HEM)
and

() limsup (A, (u;) + Bn(ug), uj) < (x, ).

J

We shall prove thafa(-, T,,(u;), Vu;)} is bounded i L37(Q))". For that, letp € (Ex(Q2))Y
with [|¢[[»s < 1. From 3.3) we have

/Q(a(l”Tn(Uj)a Vu;) = a(z, Th(v;), ¢)) - (Vu; — ¢)dz > 0.
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Which yields
/(a(x,Tn(uj),Vuj) cpdr < /(a(m,Tn(uj),Vuj) - Vu,dx
Q Q
- [ a(e. (), 0)) - (V05 — d)d

Using Holder’s inequality we get

< 2n|[xellarllu;lar,

/ B, (z,u;, Vu;j)u;dz
Q
wherey, denotes the characteristic @f Hence, by ¢) and ¢) we have that
/(a(az, To(uj), Vu,) - Vujdz

Q

is bounded from above. Let= 1 + k; + k3. Since{u;} is bounded iV L,,($2), we can find

A > 0 such that/ M (’V_}?\Lﬂ) dx < 1. So, by using the Young'’s inequality we obtain
Q

/Q a(z, To(u;),6)) - (Vu; — §)de

=202 [ ala T, 0) - 55T - o)

< 2m/QM (%|a(x,Tn(uj),¢))]) da —l—r)\/QM (’V—;‘ﬂ'> da +M/QM (Lﬁ') da.

The growth conditioZ) and the convexity of the N-functinallow us to have

/Qa(x,Tn(uj), ®)) - (Vu; — ¢)dz

< 2)\/H(ao(x))der2k1>\|Q\W_1M(n)+2k3>\/M(k4|¢\)d:c
Q

Q
+7’)\/M(|v—;j|) dx—l—r)\/M(%) dx.
Q Q

Which gives the desired result. Therefore, there exist a subsequence, still indexedriay
I, € (L37(Q))" such that

a(z, T, (u;), Vug) — 1, in (Ly(Q))Y for o(T1 Ly, ITEy,)

asj — oo. Since{ B,,(x, u;, Vu;)} is uniformly bounded in’5;(12), we get
Bn(ﬂf, Uj, VU]) —m, € LM(Q) for O'(LM, EM)

asj — oo. Therefore, the linear formy can be identified te-divi,, + m,,. More precisely, the
action ofx on an elemenp € W E,,(Q) is given by

(x,¢9) = /Q L, - Vodr + /Q Mndda.

We shall prove thaVu; — Vu a.e. inQ2. To do this, we argue Similarly as in [14, Theorem
5.1]. LetQ" = {z € Q : [Vu(z)| < r} and denote by" the characteristic function ¢t". Fix
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r > 0 and lets > r. By (3.3) we have

0 < /T(a(x,Tn(uj),Vuj)—a(x,Tn(uj),Vu))-(Vuj—Vu)daz
< [ (@l Tl V) = ola,Tofws), Vux')) - (Vus - Vuy') do

< / a(z,T,(u;), Vu;) - Vudr — / a(z, T, (u;), Vu;) - Vux’de
0 Q

- / a(x, T, (u;), Vux®) - (Vu, — Vux®)dz.
Q

By [13, Proposition 4.13] and:f we can suppose that, — u strongly in E,,(£2) and a.e. in
(2, so that we get

/Bn(x,uj,Vuj)ujdazH/mnudx asj — 00.
Q Q

Thus, from ¢) we have

hmsup/ a(z, T,(u;), Vu;) - Vujdr < (x,u) — / mpudr = / Iy - Vudz.
j Q Q Q
For the second integral of the right-hand side
lim sup/ a(z, T, (u;), Vu;) - Vux’de = / Ly, - Vux’de.
J Q Q

Sincea(z, T, (u;), Vux®) converges ta(z, T, (u), Vux?®) in normin(E5(2))~ by Lemmd 2.1
andVu; — Vuin (Ly ()" for o(I1Lyz, ILEy) by (a), we obtain for the third term of the
right-hand side

lim sup/ a(z, T, (uj), Vux?®) - (Vu, — Vux®)dx = / a(z, T, (u), Vux?®) - Vudz.
j Q o\Q

Thus,

0 < lim 'sup/r (a(x, T, (u;), Vu,) — a(z, T, (uj), Vu)) - (Vu; — Vu) dz

J

< / Iy - Vudr — / Ly, - Vux’dr — / a(x, T, (u), Vux?®) - Vudz.
0 Q 0\00
Then, lettings — oo, we get

lim 'sup/r (a(x, T, (u;), Vu,) — a(z, T, (uj), Vu)) - (Vu; — Vu)de = 0.

J

Let us defineD} by
D} = (a(z, Tu(u;), Vu;) — alz, To(uy), Vu)) - (Vu; — Vu).
Since the integrand functiaB? is nonnegative by (3}3), we get

limsup D} =0 in LY(On).
J

Beingr > 0 arbitrary, there exists a subsequence still indexeg siych that
D;»1 — 0 a.e.in ().

AJMAA Vol. 5, No. 1, Art. 7, pp. 1-26, 2008 AIJMAA


http://ajmaa.org

10 ABDELMOUJIB BENKIRANE AND AHMED Y OUSSFI

asj — oo. Hence, there exists a subgéof (2 of zero measure such that for alke Q2 \ U one
hasD} (z) — 0. Fixn > 0 andz € Q \ U. By using [3.1) and (3]2) we arrive at

Dj(2) = M M () M(IVuy(@)]) = eln,2) (143 Mk Vs (@)]) + [V (@)])

wherec(n, x) is a constant depending enandz. Thus, the sequendévVu;(x)} is bounded in
RY and for a subsequende; (x)}, we have

Vuj(r) — & in RY
and
(a(z, T (u(2)), &) — alz, To(u(x)), Vu(x))) - (€ = Vu(z)) = 0.
Sincea(z, s, £) is strictly monotone, we hawe = Vu(z), and thenVu;(z) — Vu(z) for the
whole sequence. It follows that

Vu; — Vu a.e. in Q.
Thus, we getn,, = B, (z, u, Vu) and by [16, Theorem 14.6 ] we obtdin= a(z, T,,(u), Vu) €
(L37(Q))™. Therefore, we have € D(A, + B,) andy = A, (u) + B,(u). From ¢) and the
equality
(Anly) 1) = (Anl) + Bl ) = [ Blaug, Vughusds,
we get
lim sup(A, (u;), uj) < /Bn z,u, Vu)udx
Q

j
= < ( ).
By [14, Proposition 5] the operatot,, is in partlcular sequentially pseudo-monotone. There-
fore, we get
lim sup(A,(u;), u;) = (A, (u), u).
J
Consequently, we have

lim sup{An (u;) + Bn(u;), uj) = (X, u).
J
(iii). Assumethat € D(A,+B,) is such that: is bounded iV L,/ () and(A,,(u) + B, (u), u)
is bounded from above. We will prove thgt(-, T;,(u), Vu)} remains bounded i(L7(€2))Y
which implies thatA,,(u) + B, (u) remains bounded itV ~' Li7(2). Let ¢ € (E(Q))" with
|¢[lar < 1. From {3.3) we have
/(a(x,Tn(u),Vu) —a(z, Ty(u), @) - (Vu— ¢)dx > 0.
Q
Thus,

/Q (a(z, Th(u), Vu) - ¢dz < /Q (a(z, T, (u), Vu) - Vudz
- [ ate w00 (Vu - ).

Using Holder’s inequality we get

/ B, (z,u, Va)udz| < 2nxelllulla-
Q

By writing

/(a(x, To(u), Vu) - Vudr = (A, (u) + By (u),u) + / By (z,u, Vu)udz,
Q Q
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we obtain that/ (a(z,Ty(u), Vu) - Vudz is bounded from above. Which then implies, by

Q
similar arguments as ini}, that{a(-, T;,(u), Vu)} is bounded in( L77(£2))".
(iv). We prove that

{u € D(A, + B,) CWyLy(Q) 0 (An(u) + Bu(u) — fo,u) <0}
is bounded inW; Ly (2), which yields the conclusion. . € D(A, + B,) is such that:
(An(u) + Bp(u) — fu,u) <0, then

/Q a(z, T (), Vi) - Vudz + /

Q

Sincef,, has compact support arig, is bounded, there exists a constafit) depending om
such that by[(3]1) one has

M_I(M(h(n)))/QMﬂVuDdx < c(n)/ﬂ]u\dm

Letr > 0 be a real which will be chosen later. The Young'’s inequality gives

Bn(x,u,Vu)udﬁg/fnudx.
Q

3 u ) [ 21(Vubas < IOyl + 1 [ 3 (B e

where)\; and )\, are the constants in inequalify (2.3) of Lemmd 2.2. Then, by inequglity (2.3)
we get

MI(M(h(n)))/QMﬂVuDdx < )\%M(x\l/\grc(n)ﬂm + /QM (%|VU|) dx.

. 2 . .
The choicer > max | 1, ———— | guarantees thaj A (|Vu|)dx is bounded and so is
M M(h(n)) Q

lullwaz,, - Hence, conditiorfiv) is filled.
Therefore, by applying Proposition 2.4 there exists at least one solutienD(A,, + B,,) C
WLy (2) to the approximate equation

—diva(z, T, (u,), Vu,) + Bp(z,un, Vu,) = f
in the sense that

(4.1) /Q a(z, To(uy), Vi) - Vodz + /

Bp(x, uy, Vy)vde = /fnvdx
Q Q

forallv € WyLy(Q).
Lemma 4.1. Letu, be a solution of[ (4]1). For all, ¢ in R*,, one has the following inequalities:
/ a(z, T, (uy), Vuy,) - Ve dy

{t<un<t+e}

(4.2)
<[ RELGw))s
{un>t}

/ a(z, T (un), V) - Vupe? ) da

(43) {—t—e<un,<—t}

<[ ReUILG )i
{un<—t}
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Proof. (4.2)-Observe that by [11, lemma 2] the function
eV(Tk(“’f))Te(Gt(Tk(ui)))
belongs tdV L (2)NL>(R) for all k£ > 0. Thus, testing by this function if (4.1), we obtain

B(Ti(u;)))
M M(h(|T(u))))

/ a(z, Ty (1), V) - VT4(u?)
Q
Xe'Y(Tk(ut))Te(Gt<Tk(u:)))dx
{t<T(un ) <t+e}
" / Bn(xa Unp, vun)eﬂ/(Tk(uz))TE(Gt (Tk(ujr,_)))dx
Q
- / Ju€? DT G(Ti(w))da
Q
Now, we will pass to the limit as tends to+oo in (4.4). Note that

B(Ti(u))
a(@, To(un), Vi) - V(U — .
/Q S (M ()

Bluy)
= a(z, Ty, (un), Vuy) - Vi, —
/{ogun<k} ( () ) M (M (h(uw})))

ey(Tk(uI))’I;(Gt(Tk(Uﬁ)))d‘r

DTGy (u)))da.

n

By (3.1) and the positivity of. and 3, the integrand function is nonnegative, it follows by
applying the monotone convergence theorem, that

o BT)
e Tt P VT DT M)

— | a(x U Uy) - VU Blux) /() u))dx
| ale (). V) - Vi — ST (G

n

ew(Tk(ui))Te(Gt(Tk(U:)))dm

ask — oo. For the second integral in the left-hand side{of|(4.4), we write
/ (I(ZL‘, Tn(“qz), vun) . VTk(u:)ew(Tk(uz))dl’
{t<T,(us}) <t+e}
- a(z, T, (uy), Vuy,) - Vunewumdx.

{t<un<t+e}N{0<un <k}
By similar arguments as above, we have
/ a(z, Tr(uy), V) - VTk(u;{)eW(T’“(“’t))d:c
{t<Tk(ui)§t+e}

— a(x, T (uy), Vuy,) - Ve dy
{t<un<t+e}

ask — oo. Since the function®,,, f,, and~ are bounded, we apply the Lebesgue’s dominated
convergence theorem for the remaining integral$ in (4.4). Consequently, letimgl toco in
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(4-4) we obtain

B(u,y) +
a(x, Ty (un), Vuy,) - Vu,— e (un
/Q M (M (h(u)))

+ / a(x, T, (uy), Vuy,) - Ve dy
{t<un<t+e}

)Te(Gt(u+))dx

n

/B (2, tn, Vit ) DT (G (u ) )
= [ DTG
Note thatu,” = |u,| on the se{z € Q : u,(z) > 0}. Thus [3.1) and (3]4) imply that
qu
/ a(x, To(tn), V) - Vi, — Bluz)
Q M (M(h(u;})))
+ /B (2, 1, V)T (Gy(u ) dz > 0,
Q

TGy (ul))da

n

and so

/ CL(I’ Tn(un)a vun) ’ vunev(U$)dl‘ < / fne’Y(ui)TE(Gt(u:))dx
{t<un <t+e} Q

SinceT,(G(u;))) is different from zero only oqu,, > t} andf, < f,© we have

/ a(x, Tn(un)v Vun) : Vuney(ui)dw < / f;e’Y(WJ{)T‘E<Gt(u:))d$’
{t<un<t+e}

{un>t}

and [4.2) is proved.
(43)-For all k > 0, the function

— DT (Gy(T(w,)))

belongs toV) L (Q)NL>(9), (seel[1l, lemma 2]), so that one can take it as test function in
(4.7) and obtain

—/a(m,Tn(un),Vun) VT (u,, ) ==
Q M
x YT DT (Gy(Ty(uy,)))da

(4.5) —/ a(z, T (tn), V) - VT () )" Ten) dy
{t<Th(ur ) <t+¢}
- / B (2, tn, V)" TGy (Ti(uy, ) )d
Q

—/fneW(T’“(“;))Te(Gt(Tk(u;)))dz.
Q

The first integral in the left-hand side ¢f (#.5) is written

_ B(T(u,,)) (Ti(uir)) -
— | a(z, T, (un), V) - VIi(u, ) == e T(G(Tk(u,,)))dx
J T MOTG))) ’“
= a(x, Ty (un), V) - Vi, — Un TG, u, ))dx
/{ k<un<0} ( (1) ) M (M(h(uy;))) (Glwa))
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Thus, applying the monotone convergence theorem we get

_ B(Tk(u,,)) - _
[ e, T un), Vun) - V() — n T DT, (Gy(Ty (u)))de
L T M (T () '

ﬁ(u;> Y(uy ) —
— a(x, T (un), V) - Vi, — e T(Gi(u,, ))dx.

n

ask — oo. For the second integral in the left-hand sideof|(4.5), we write

N / CL(;U, Tn(un), Vun) . VTk<u;)e“/(Tk(Ufz))dl,
{t<T (u, ) <t+e}

a(z, Ty (), Vi) - Ve’ da

/{t<Tk (un ) <t+e}N{—k<u, <0}
a(z, Ty (un), Vi) - Vupe? " da.

/{—t—sgun<—t}ﬁ{—k<un§0}
Applying again the monotone convergence theorem, we obtain

- / a(z, To(up), V) - VT (u; et Ten)) dy
{t<Ti(un )<t+e}

— a(x, T(up), Vi) - Ve’ dz,
{—t—e<up<—t}
ask — oo. For the remaining integrals if (4.5), Lebesgue’s dominated convergence theorem
may be applied sinc8,,, f,, andy are bounded. Hence, lettirigtend to+occ in (4.5), we get

Bluy)
a(x, T, (uyp), Vi) - Vi, —
/ﬂ i) ) M (M (h(uy)))

n

' UIT(Gy(u))da
+ / a(z, Ty (), Vi) - Ve dz
{—t—e<un<—t}
B /Bn(x,un,Vun)@(“”)Te(Gt(un))dfC
)
=[£G )
Q

Sinceu,, = |u,,| on the sefz € Q : u,(x) < 0}, by using[(3.I) and (3]4) we have

B(uy) . -
a(x, Tn(up), V) - Vi ——" T (Gy(uy, ) da
/9 M (M (h(u;)))

n

- /Bn(x,un,Vun)eV(““)TE(Gt(un))dx > 0.
Q
Observe that-f,, < f. and{u, >t} N{u, < 0} = {u, < —t}, and so we obtain
/ a(z, Tp(up), Vi) - Ve " de < / fr e IT(Gy(uy))da.
{—t—e<up<—t}

{un<—t}
Which proves[(4.3)n
Now, we are able to prove the following auxiliary result:

Lemma 4.2. There exists a constang, not depending on, such that for almost every> 0

! 3 Q10 DMV ual)ds <o [ fylds

(4.6) _¢
dt J{jun|>t} {Jun|>t}
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Proof. Since the two functions™+) and¢») are bounded ir.>(£2), we sum up both in-
equalities[(4.R) and (4.3) obtaining a constant- 0, not depending on, such that

/ a(x, T, (uy), Vuy,) - Vudr < eco/ | fuldz,
{t<|un|<t+e}

{lun|>t}
and by [3.1) we get
[ MM )M (Ve < o [ e
{t<|un|<t+e} {lun|>t}

Then, dividing bye and lettinge tend to0™ we obtain [(4.5)x

Inequality [4.6) was proved in [17] when h is a constant function &re 0. The following
comparison lemma plays a fundamental role to get uniform estimation for solutions of approx-
imate equationg (4.1) in>(Q), it is quite similar to that proved in [17] when h is a constant
function. The proof we give here is based pn(4.6) and on techniques inspired from those in
[27].

Lemma 4.3. Let K (1) = X and i, (t) = [{z € Q : |un(2)| > t}
almost every > 0:

, for all t > 0. We have for

h(t) <
4.7) 2M(1)(—M%(t)) = Co /{lun|>t} |fn|daj
M MO)NCR ()% | M MA)YNCE ()

whereC)y stands for the measure of the unit balld” andc, is the constant which appears in

@.8).
Proof. The hypotheses made on the N-functibh allow to affirm that the functior(¢) =
is decreasing and convex (seel[17]). Hence, Jensen’s inequality yields

K1)
/ N (M () M (| Vit )z
C {t<|un|<t+k}
/ M (M (hJun))| Vit |d
{t<|un|<t+k}
/ K (VYT (M ([t]))) Vit
_ o | Leclulstr
M (M (h(|ug]))) V| do
{t<|un|<t+k}
/ M (M (h(Jun)))de
< {t<|un|<t+k}

- M (M(B(Jun)))) | Vg | de

{t<|un|<t+k}

o M M)yt R) 4 (0)
M (M(h(t +K))) IV, |d
{t<|un|<t+k}
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Taking into account thal? ' (M(h(t))) < M ' (M(1)), using the convexity of” and then
letting k — 0™, we obtain for almost every> 0

d —1
orwy (i T GGl F)
d

(M (h(t))) M M) (5 /{ L Iveas)
O '
|Vu,|dx

-1

M
—
M

IN

d

At {Jun|>t)
Recall the following inequality, (see [17]):

d

At S {jun >}
The monotonicity of the function, and ([4.§) yield

1
M (M (1))

CO/ |fn|dm
— 1, (1) P {Jun|>t}

- =1 1

M (MO)NCE p(8) % M (MQ)NCY (1)

(4.8) |Vu,|de > NC]&,un(t)l_% for almost every ¢ > 0.

Using (2.1) and the fact that< h(t) < 1, we obtain[(4.]7)a

5. PROOF OF THEOREM [3.1

Using Lemm& 43, we prove Theorém]3.1 in six steps.
step 1: L>°-bound.
If we assume| (3]5), using the Holder’s inequality

[ Ufldn <m0,
{lun|>t}
(4.7) becomes

) < —2OCO) e (_1 coll £l ) |
M (MQ)NCY p, (1) M (MQ1)NCY
Then, integrating betwedhands, we get
< — M0 g <__1 coll /Il ) [ “i(0)
M (M(1)NCY M (MQ)NCY ) Jo pn(t)™
Hence, a change of variables yields

2M (1)

H(s) < — 1K1< _alfl )/'ﬂ “
M (M())NCY M (MQ))NCY ) St 17F
By (2.4) we get
Co N 1€2]
Hao) <« — 20 g (__1 11 ) / L
M (M(1))NCY M (MQ)NCY ) Jo TN
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So that
H(U;(O)) S — 2M(1) LKil (__1 COHfHN 1) N|Q|%
M (M(1)NCY M (M(1)NCY
Sinceu’(0) = ||unll, the assumption made o (i.e lim H(s) = +oo) shows that the

S——+400
sequencgu, } is uniformly bounded in.>*(Q2). Moreover, if we denote by ! the inverse
function of 4, one has:

(51) HunHoo < Hfl (_ 1 2M(1) . Kfl <_ 1COHfHN . ) N|Q|1{’> .
M (M(1))NCY M (M(1)NCY

Now, we assume thdt (3.6) is filled. Then, using the Holder’s inequality

1

/ Falde < || Fllmiin(8)
{|un|>t}
in (4.7), we obtain

e < M) / () ( ollfllm ) i
= e 0 T N e

A change of variables gives

12|
e < — [ e (_1 ol ) i
M A(M))NCE S M (M())NComw~) 0 N

As above,[(2.4) gives

1]
H(UZ(T>> S — 1/ K~ 1( cO”fH’mL 1 1) ilio-i
M NCY M(l))NC](,VJH*W g N
Then, we have
2]
Hllnl) < — [ ( ol ) 7
M NC](,V 0 (MO)NCYgww ) 0N
A change of variables glves
r r +o0
H(Hun”oo) S _712M(1)CO||f||m r+1/ Tt_r_lK_l(t)dt,
(M (M(L)))+INTCYT
where\ = — ol fllm T . Then, by an integration by parts we obtain that

M (M))NCF [

2M(L)cgl flln. K=Y\ oo s\
(M (M(1)) LN O K1) \M(s)
The assumption made dih guarantees that the sequefeg} is uniformly bounded in.>°(Q2).
Indeed, denoting by/ —* the inverse function off, one has

[tn[o0 <
o (e (S50 [ (i) #))
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Consequently, in both cases the sequeingg is uniformly bounded in.>°(£2), so that in the
sequel, we will denote bythe constant appearing eitherin (5.1) of{in{5.2), that is :

(5.3) |t < c.

Step 2: Estimation inW; Ly (2).
In order to obtain an estimation iy L,(2), we need to prove the following

Lemma 5.1.
(a) a(z, T, (uy), Vu,) - Ve dy < /f;“e““mu:dx.
Q

{0<un}

(b) a(z, Tp(tn), V) - Vupe? " de < /fn_e”(“;)u;dx.
Q

{un<0}

Proof. Note that by.)u*eW0 Ly (Q)NL2(Q) ande? @) e WL Ly, (Q)NL>¥(Q). Hence g )y
belongs toW} L,/ (£2)NL>(£2) and so it is an admissible test function [in (4.1). Taking it so, it
yields

+
/ a(z, Tn(un), V) - Vi, — Blun) eﬂumu:{dx
{0<un} M M (h(|ui]))

+ / a(x, Ty (uy), Vuy,) - Ve dy
{0<uy}

and by [3.1) anq_(_§}4), one gets

a(z, T (uy), Vuy,) - Vi, —
/{O<un} M
+ / By (x, uy, Vuy, )67(“") tdx >
{0<un}
It follows that

/ a(z, T, (uyn), V) - YV, dr < /f;“e“*(“mu:[dx,
{0<un} Q

and (a) is proved. To prove (b), we choase: —e?(“)y~ in ( .) 1o obtain
Blun) e (un)
-1
MM (h(Ju, )
T / a(z, Tn(un), Vi) - Vu, e dy
{un <0}

u, dx

/ a(z, T, (uy), Vuy,) - Vu,
{un <0}

- / By (2, Vg ) e " dx
{un<0}

Q
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using again[(3]1) andl (3.4), one has

/ a(z, T, (uy), Vuy,) - Vun ey da
{un<0}
— / B, (z, un,Vun)GV(“")u dx > 0,
{un<0}
which implies that

/ a(z, T (un), Vi) - Vupe? " de < /fne”*(“”)undx,
{un<0} o)

and the lemma is proveq.

Now, summing up both inequalities (a) and (b) of the above lemma and taking into account
that~ is bounded, we deduce that there exists a constamit depending on such that

(5.0 [ ot T, V) Vi < e [ | fuali
Q Q
By (3.1) and|[(5.B), we obtain

R 1 P
(5.5) | 9w < 2L ST

Hence, the sequende:,,} is bounded inV L,,(£2). Consequently, there exist a subsequence
of {u,}, still denoted by{u, }, and a function: € W L,(2) such that

(5.6) u, —u weakly in WyLy(Q) for o(IILy, E7),
and
(5.7) U, — u in FEp(Q) strongly and a.e. in €.

Step 3: Almost everywhere convergence of the gradients.
Let us begin by the following lemma which will be used in the sequel:

Lemma 5.2. The sequencga(z, T),(u,,), Vu,)} is uniformly bounded itiZ7(2))".

Proof. We will use the dual norm ofL;7(2))V. Let o € (Ex(Q))Y such that|o|,, < 1. By
(3.3) we have

4

<a(ac, To(un), Vuy,) — a(z, Ty (uy), k:ﬁ)) . (Vun — kﬁ) > 0.
4
Then
/ a(x, T, (u,), Vuy,) - pdr < k4/ a(x, T, (uy), Vuy,) - Vu,dx
Q

Q

—k:4/a(x,Tn(u ) —) Vu,dx
0 ks

¥
—i—/ﬂa(a:,Tn(u ), k_) odx.
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Let A =1+ k; + k3. Using [3.2),[(5.4),[(5]5) and Young’s inequality, we obtain

ccr || fllme |07
M M(h(e))

/ (I(ZL‘,Tn(un), vun) : del’ < k?4CCl||f||m*|Q|1_# + kg
Q

H1+ k) [ W)
Q
ey (1+ k) MP M (k) |9
+hs(1 4+ ky) + A,
which gives the desired resuk.

From (5.3) and[(5]6) one deduces that W L/ (Q2)NL>(Q2), so that by[[12, Theorem 4],
there exists a sequenée; } in D(Q2) such that

vi—u in WyLy(Q)
asj—oo, for the modular convergence and almost everywhefe iMoreover, we have
[0jlloe < (N + 1) ||
Fors > 0, we denote by; the characteristic function of the set
QF ={r € Q: |Vu;(x)| < s},
and byy? the characteristic function of the set
O ={z € Q:|Vu(x)| < s}.

Being 3 continuous, thanks t¢ (§.3) the sequercku,,)} is bounded, so that, there exists a
constantj, such that

(5.8) 18(tn)lloe < Bo-

Consider the functiorp(t) = te’”, ¢ > 0, and the reab, =

Bo
—

| | o M M(h(e)
constant |n). Itis well known that it > (%2)°, one has for alt € R

wherec is the

, 1
P(t) = aolelt) 2 5.

The choice ofp(u,, — v;) as test function ir{ (4]1), yields for > ¢
/ a(z, un, V) - V(uy, — )¢ (u, — vj)dx
Q

(5.9) / (T, U, Vg, )p(u, — vj)de

/fnso n = 0;)d

In what follows,¢;(n, 7) (i = 0,1,2,...) denote various sequences of real numbers which con-
verge to0 whenn andj — oo, i.e.

lim lim €(n,j) = 0.

j—00 n—o00

In view of (5.3) and[(5]7), we have(u, — v;) — ¢(u — v;) weakly in L=(Q) asn — oo,

then asm — oo
/ fao i — )z — / folu—v;)d
Q Q
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and since: — v; — 0 weakly" in L>(Q2) asj — oo, we get

/ fo(u—v;)de — 0 asj — oc.
Q
So that
/fnnp(un —v;)dr = €y(n,j).
Q
For the first term on the left-hand side pf (5.9), we write

S~

a T, U, V) - V(uy — vi)¢ (un, — vj)de

a(x, uy, Vuy,) — a(z, up, VUJX])) . (Vun — ijxj) ¢ (up, — v;)dx

a(x, Up, Vuy) - V' (u, —v;)da.
o\

/ a(w, up, Vuix;j) - (Vu, — ijxj)gp'(un —vj)dx
As a consequence of Lemina5.2, there existy L77(12))" such that
a(z, Uy, Vu,) — 1 weakly in (Ly(Q)Y for o(I Ly, TIEy,).

SinceVujxaa: € (Ea(2))Y, we have

/ a(x, up, Vuy) - Vo' (u, —v;)de — - Vo' (u—vj)de
Q\Q2 0\
asn — oo, and the modular convergence{of; }, gives
/ [V (u—vj)de — [ - Vudzx
Q\Q3 Q\Qs

asj — oco. So that
/ a(x, up, Vuy) - Vo' (u, —v;)de = / [-Vudr + €(n,j).
Q\Qs O\Qs

Sincea(x, un, Vo;x5)¢' (un —v;) — alz, u, Vu;x5)¢'(u—v;) strongly in(Eq(Q))Y asn —
oo by lemmd 2.l an@w,, — Vuweakly in(L(2))" by (5.6), we obtain

[, Vo) (Vi = Topg)e (= 0o
Q
— / a(z,u, Vu;x;) - (Vu — Vu;x;)e' (u — v;)de
Q
asn — oo, and sinc&Vv;x; — Vuyx® strongly in(E),(Q))" asj — oo, we get

/ a(z, u, Vujx5) - (Vu — Vuxi)¢' (u —vj)de — 0
Q

asj — oo. Thus,

/ a(, un, V;X5) - (Vg — Vuix5)e' (up —vj)de = ex(n, j).
Q
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Hence,[(5.P) becomes
/ (a(@, un, Vup) — a(@, un, Vox3)) - (Vun — Vuix3) ¢ (un — v;)da
Q

+ /Bn(x,un,Vun)go(un —v;)dr = / [-Vudx + e3(n,j).
Q Q\0

(5.10)

Now, we evaluate the second term on the left-hand sidg of](5.10). Usirjg (3.4) and then (3.1)
and [5.8), we obtain

/ By (x, un, Vuy,)p(u, — v;)dx
Q

< / Blun) M(IVun ) ot — v;)|d
<
- /QM‘lM<h<|un|>>

< 00/ (a(av,un, Vu,) — a(z, u,, ijxj)) . (Vun - ijxj) lo(un, — vj)|dx
Q

a<x>un> Vun) : vun‘@(un - Uj)|d3?

+ Uo/ a(r, un, VUix3) - (Vun — Vuix;)|e(u, — v;)|dx
Q
+ Uo/ a(x, u,, Vuy,) - ijxﬂgp(un — v;)|dz.
Q
As above, we have

Uo/ﬂa(:v,umwjxj) - (Vun = Vuxg)o(un — v)lde = es(n, j),

00/ a(r, up, V) - Voixile(u, —v;)|de = es(n, j).
Q

Then

/ By (z, un, Vug,)p(u, —v;)dx

Q

< 00/ (a(x,un, Vu,) — a(z, u,, ijxj)) . (Vun - Vv]-xj) lo(u, — v;)|de
Q

+ €6 (n> ]) :
This inequality and (5.10) allow to have

/Q (a(a:,un, Vu,) — a(z, u,, VUjX?)) : (Vun - VUjX;)
X (@' (un — v5) — oolp(u, —v;)|) dv
Q\Qs
and then

/ (a(, un, V) — (@, wn, Voix3)) - (Vun — Voyx;) de

(5.11) “

< 2/ - Vudr + 2e;(n,j).
Q\Qs
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On the other hand
(a(z, up, Vu,) — a(z, u,, Vux?®)) - (Vu, — Vux?®) dx

S~

_I_
S——5—

(a(@, un, Vun) — a(z, un, Vo;x3)) - (Vun — Vox3) do
a(, Un, V) - (Vojx; — Vux®)de

a(x, Uy, Vux®) - (Vu, — Vux®)dz

+ / a(T, tn, VUix;) - (Vu, — Vu;xj)de.
Q
Similar arguments as above show that

[l V) - (T = Ve = es(n. ),

Q

/ a(x, up, Vux?®) - (Vu, — Vux®)dx = €(n,j),
Q

(5.12) /Qa(x,uvajxj) (Vu, — Vuxj)de = eo(n, 7).
It follows, by using [(5.1]1), that
/Q (a(x, up, Vu,) — a(z, u,, Vux?®)) - (Vu, — Vux?®) dx
<2 - Vudzr + e1(n, ).
\Qs

Let nowr < s, we write

0 < / (a(z, up, Vu,) — a(z, u,, Vu)) - (Vu, — Vu) dz

IN

/ (a(x, up, Vuy,) — a(x, u,, Vu)) - (Vu, — Vu) dx
= / (a(x, up, Vuy,) — a(x, u,, Vux?®)) - (Vu, — Vux?®) dx
< / (a(x,un, Vuy,) — a(x, u,, Vux?®)) - (Vu, — Vux?®) dx
Q
S 2/ l-Vudz + 611(n,j>.
o\Qs
Sincel - Vu € LY(Q), lettings — oo, we get
(5.13) / (a(x, un, Vu,) — a(z, u,, Vu)) - (Vu, — Vu)dr — 0

asn — oo. Let D, be defined by
D,, = (a(z,up, Vu,) — a(x, u,, Vu)) - (Vu, — Vu) .

As a consequence of (5]13), one ligs— 0 strongly inL'(Q2"), extracting a subsequence, still
denoted by{u,, }, we get
D, — 0 a.einQ)".
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Then, there exists a subsgtof ()" of zero measure such thal,,(x) — O0forallz € Q" \ Z.

Fix z € Q" \ Z, by using [(3.11) and (3]2) we obtain
D) = M M(R() M(|Vun(@)]) = ex(w) (14 T M (s Vun()]) + [V (2)])

wherec is the constant which appears [n (5.3) ank) is a constant which does not depend
onn. Thus, the sequend&/u,,(x)} is bounded iR™ and then for a subsequenge,, (z)} we
have

Vi (z) — & in RY
and
(a(z, u(x),§) — alz, u(x), Vu(z))) - (€ — Vu(z)) = 0.
Sincea(z, s, £) is strictly monotone, we have = Vu(zx), and thenVu,,(z) — Vu(z) for the
whole sequence. It follows that

Vu, — Vu a.e. in Q.
Consequently, asis arbitrary, one can deduce that
(5.14) Vu, — Vu a.e.in Q.
Then, by Lemm@a 5|2 and [16, Theorem 14.6] we have

a(z, Tp(uy), Vu,) — a(z,u, Vu) weakly in (Lg7(2))V
(5.15)
for o (Il L3z, I1E ).

Step 4: Modular convergence of the gradients.
Going back to[(5.1]1), we can write far> ¢
/ a(x, Uy, Vu,)Vu,de < / a(x, u,, Vuy,) - Vu;xidx
Q Q

+ / a(x, un, V;x;) - (Vun, — Vu;x5)de
0

+2/ [-Vudx + 2e7(n,j),
0\Qs
and by [(5.1R), we get
/ a(x, up, Vuy,) - Vu,dr < / a(x, un, V) - Vojxide
Q Q

+2/ l-Vudr + €2(n, 7).
0\00

Passing to the limit superior overand then to the limit ovef in both sides of this inequality,
we obtain

limsup/ a(x, uy, Vu,) - Vuydr < /
Q

n—oo (9]

a(x,u, Vu) - Vux’de + / - Vudzr,
o\

and by lettings — oo, one has

limsup/ a(x, uy, Vu,) - Vuy,dr < /a(m,u, Vu) - Vudz.
) Q

Fatou’s lemma allows us to have
lim [ a(z,un, Vu,) - Vu,de = / a(z,u, Vu) - Vudz.
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Hence, by Lemmpa 2|3, we conclude that
(5.16) a(r, up, V) - Vu, — a(z,u, Vu)-Vu in L'(Q).
Then, by [(3.11),[(5]3) and the convexity of the N-functibhwe obtain forn > ¢

M(w) < T (M) M V)

;1 W (M (h(Jul)) M (| Vul)

+ — a(x,u, Vu) - Vu.
2M (M (h(c)))

Therefore, by[(5.16) and Vitali’'s theorem we conclude that
U, — u in WyLy(Q)

for the modular convergence.
Step5: Equi-integrability of the non-linearities.
We will now prove that

(5.17) B, (2, u,, Vu,) — B(x,u,Vu) strongly inL'(),
by using Vitali's theorem. Thanks tp (5.7) and (5.14), one has
B, (z,up, Vu,) — B(z,u,Vu) a.einf.

It remains to show the uniform equi-integrability of the sequefBg(z, u,, Vu,)}. By (3.4)
and [5.8), we have

| B (2, tn, V)| < BeM(|Vuy,l).
Let F be a measurable subset(@f Thanks to[(3.]1)](5]3) and (5.8), We have

/ | B(z, Uup, Vuy,)|dr < __IL / a(z, up, Vu,) - Vuydz.
E M "M(h(c)) JE
Using 5.16) and Vitali's theorem we obtain the equi-integrability of the sequgBger, u,,, Vu,,)}.
Which proves|[(5.77).

Step 6: Passage to the limit.

Letv € WLy (Q)NL>(Q), by virtue of [5.15) and (5.17) itis easy to pass to the limif in|(4.1)
and obtain

/a(x,u, Vu) - Vudr + /B(:p,u,Vu)vdx = /fvdm.
Q Q Q
Moreover we have: € Wy Ly (2)NL>(Q). Thus,u is a weak solution of (3]7).
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