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2 ABDELMOUJIB BENKIRANE AND AHMED YOUSSFI

1. I NTRODUCTION

Let Ω be a bounded open set ofRN , N ≥ 2, andM be an N-function. In this paper, we
consider a class of strongly nonlinear elliptic equations whose prototype is

(1.1)

{
A(u) + β(u)M(|∇u|) = f in D′(Ω),

u ∈ W 1
0 LM(Ω) ∩ L∞(Ω),

whereA(u) = −div
(
M

−1
(M( 1

(1+|u|)θ ))a(x, u)M
−1

M(|∇u|) ∇u
|∇u|

)
, θ is a real such that0 ≤

θ ≤ 1 andβ is a positive continuous function which does not satisfy the sign condition (i.e.
β(s)s ≥ 0). Existence of bounded solutions for problem (1.1) has been obtained in [8] when
M(t) = t2 andf ∈ Lm(Ω) with m > N

2
. We are interested in the more general problem

(1.2)

{
A(u) + B(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,

where
A(u) = −div a(x, u,∇u)

is a Leray-Lions operator defined on its domainD(A)⊂W 1
0 LM(Ω) such that

(1.3) a(x, s, ξ)·ξ ≥ M
−1

(M(h(|s|)))M(|ξ|),
andB is a first order term which does not satisfy the sign condition but having only the following
natural growth:

|B(x, s, ξ)| ≤ β(s)M(|ξ|).
In the setting of Sobolev spacesW 1,p

0 (Ω), the existence of bounded solutions for (1.1) when
β = 0 andM(t) = t2 has been proved first in [3] and [6] when

f ∈ Lm(Ω) with m >
N

2
,

then for (1.2) under the condition (1.3), whenB ≡ 0 andM(t) = tp with 1 < p < N in [2]
when

(1.4) f ∈ Lm(Ω) with m >
N

p
.

When the functionsh in (1.3) andβ are constants, the existence of bounded solutions for prob-
lems like (1.2) has been obtained in [7], whenf can be replaced byf −divg wheref ∈ Lm(Ω)
with m > sup(1, N

p
) andg ∈ (Lq(Ω))N with q = pm

p−1
.

In this framework, existence of bounded solutions for problems of the type (1.1), whenθ = 0,
has been proved in [10] withf − divg as data, whenf belongs toLm(Ω) with m > N

p
andg

belongs to(Lq(Ω))N with q > N
p−1

. In this paper, the result has been obtained whenf andg are
assumed to satisfy a smallness condition.
In the case whereh is not necessarily constant, the existence of a bounded solution of problems
like (1.2) has been proved in [20] whenf ∈ Lm(Ω) with m > max(1, N

p
).

In the present paper, our main goal is to prove the existence of bounded solutions, in a sense
that we will define later, for the problem (1.2) by extending such results obtained in [8, 20]
(and also in [2, 3, 6] whenB ≡ 0) to the setting of the Orlicz-Sobolev spaces when the datum
f satisfies a summability condition recovering (1.4) in the case of power growth. For this, we
judge important to list some difficulties that we have found in dealing with problem (1.2). First
of all, the operator considered in (1.2) does not satisfy the Leray-Lions conditions in the setting
of Orlicz spaces (see [14]), this is due to the hypothesis (1.3) and the fact that no bounds are
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EXISTENCE OFBOUNDED SOLUTIONS FOR ACLASS OFSTRONGLY NONLINEAR ELLIPTIC EQUATIONS 3

assumed on the functionh, consequently, classical methods can not be applied. To get rid of
this difficulty, we will consider approximate equations in which we introduce a truncation. The
second difficulty concerns the lower order term which does not satisfy the well known sign
condition (i.e.B(x, s, ξ)s ≥ 0), and so appears the problem of getting the a priori estimates.
To overcome this hindrance, we will use test functions of exponential type and a comparison
result.

Our paper is organized as follows. After listing some preliminaries in Section 2, we give
the precise assumptions and state the main result in Section 3. In order to getL∞-estimates
for solutions of approximate equations, we need to prove some auxiliary lemmas which will be
proved in Section 4. Finally, Section 5 is devoted to the proof of the main result.

2. PREREQUISITES

2.1 Let M : R+ → R+ be an N-function, ie. M is continuous, convex, withM(t) > 0 for
t > 0, M(t)

t
→ 0 ast → 0 andM(t)

t
→∞ ast →∞. The N-function conjugate toM is defined

asM(t) = sup{st−M(t), s ≥ 0}. We will extend these N-functions into even functions on
all R. We recall that (see [1])

(2.1) M(t) ≤ tM
−1

(M(t)) ≤ 2M(t) for all t ≥ 0

and the Young’s inequality: for alls, t ≥ 0, st ≤ M(s) + M(t) and . If for somek > 0,

(2.2) M(2t) ≤ kM(t) for all t≥ 0,

we said thatM satisfies the∆2-condition, and if (2.2) holds only fort greater than or equal to
t0 ≥ 0, then M is said to satisfy the∆2-condition near infinity.

Let P andQ be two N-functions. The notationP�Q means thatP grows essentially less
rapidly thanQ, i.e.

for all ε > 0,
P (t)

Q(εt)
→ 0 as t →∞,

that is the case if and only if
Q−1(t)

P−1(t)
→ 0 as t →∞.

2.2Let Ω be an open subset ofRN . The Orlicz classKM(Ω) ( resp. the Orlicz spaceLM(Ω)) is
defined as the set of (equivalence class of) real-valued measurable functionsu onΩ such that:∫

Ω

M(u(x))dx < ∞
(

resp.

∫
Ω

M

(
u(x)

λ

)
dx < ∞ for some λ > 0

)
.

Endowed with the norm

‖u‖M = inf

{
λ > 0 :

∫
Ω

M

(
u(x)

λ

)
dx < ∞

}
,

LM(Ω) is a Banach space andKM(Ω) is a convex subset ofLM(Ω). We define the Orlicz norm
‖u‖(M) by

‖u‖(M) = sup

∫
Ω

u(x)v(x)dx,

where the supremum is taken over allv ∈ EM(Ω) such that‖v‖M ≤ 1, for which

‖u‖M ≤ ‖u‖(M) ≤ 2‖u‖M

holds for allu ∈ LM(Ω) (see [16]). The closure inLM(Ω) of the set of bounded measurable
functions with compact support inΩ is denoted byEM(Ω).
2.3 The Orlicz-Sobolev spaceW 1LM(Ω) (resp. W 1EM(Ω)) is the space of functionsu such

AJMAA, Vol. 5, No. 1, Art. 7, pp. 1-26, 2008 AJMAA

http://ajmaa.org


4 ABDELMOUJIB BENKIRANE AND AHMED YOUSSFI

thatu and its distributional derivatives up to order1 lie in LM(Ω) (resp.EM(Ω)). It is a Banach
space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus,W 1LM(Ω) andW 1EM(Ω) can be identified with subspaces of the product of(N + 1)
copies ofLM(Ω). Denoting this product byΠLM , we will use the weak topologiesσ(ΠLM , ΠEM)
and σ(ΠLM , ΠLM). The spaceW 1

0 EM(Ω) is defined as the norm closure of the Schwartz
spaceD(Ω) in W 1EM(Ω) and the spaceW 1

0 LM(Ω) as theσ(ΠLM , ΠEM) closure ofD(Ω)
in W 1LM(Ω).

We say that a sequence{un} converges tou for the modular convergence inW 1LM(Ω) if,
for someλ > 0, ∫

Ω

M

(
Dαun −Dαu

λ

)
dx → 0 for all |α| ≤ 1;

this implies the convergence forσ(ΠLM , ΠLM).
If M satisfies the∆2-condition onR+ (near infinity only if Ω has finite measure), then the
modular convergence coincides with norm convergence. Recall that the norm‖Du‖M defined
onW 1

0 LM(Ω) is equivalent to‖u‖1,M (see [13]).
Let W−1LM(Ω) (resp. W−1EM(Ω)) denotes the space of distributions onΩ which can be

written as sums of derivatives of order≤ 1 of functions inLM(Ω) (resp.EM(Ω)). It is a Banach
space under the usual quotient norm. Recall that an open domainΩ ⊂ RN has the segment
property (see [13] p.167) if there exist a locally finite open covering{Oi} of the boundary∂Ω
of Ω and corresponding vectors{yi} such that ifx ∈ Ω∩Oi for somei, thenx+tyi ∈ Ω for 0 <
t < 1. If the openΩ has the segment property then the spaceD(Ω) is dense inW 1

0 LM(Ω) for the
topologyσ(ΠLM , ΠLM) (see [13]). Consequently, the action of a distribution inW−1LM(Ω)
on an element ofW 1

0 LM(Ω) is well defined.
For an exhaustive treatment one can see for example [1, 16].

2.4We will use the following lemma, (see[9]), which concerns operators of Nemytskii Type in
Orlicz spaces. It is slightly different from the analogous one given in [16].

Lemma 2.1. LetΩ be an open subset ofRN with finite measure. letM , P andQ be N-functions
such thatQ�P , and letf : Ω × R → R be a Carathéodory function such that, for a.e.x ∈ Ω
and for alls ∈ R,

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

wherek1, k2 are real constants andc(x) ∈ EQ(Ω). Then the Nemytskii operatorNf , de-
fined byNf (u)(x) = f(x, u(x)), is strongly continuous fromP(EM , 1

k2
) = {u ∈ LM(Ω) :

d(u, EM(Ω)) < 1
k2
} into EQ(Ω).

We recall here the Orlicz version of the Poincaré’s inequality (see lemma 5.7 in [13]).

Lemma 2.2. LetΩ be a bounded open subset ofRN . Then there exist two constantsλ1 andλ2

such that

(2.3)
∫

Ω

M(|u|)dx ≤ λ1

∫
Ω

M(λ2|∇u|)dx

for all u ∈ W 1
0 LM(Ω).

We will also use the following technical lemma which can be found in [15] or in [9].

Lemma 2.3. If {fn} ⊂ L1(Ω) with fn → f ∈ L1(Ω) a.e. inΩ, fn, f ≥ 0 a.e. inΩ and∫
Ω

fn(x)dx →
∫

Ω

f(x)dx, thenfn → f in L1(Ω).
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2.5We recall the definition of decreasing rearrangement of a measurable functionw : Ω → R.
If one denotes by|E| the Lebesgue measure of a setE, one can define the distribution function
µw(t) of w as:

µw(t) = |{x ∈ Ω : |w(x)| > t}|, t ≥ 0.

The decreasing rearrangementw∗ of w is defined as the generalized inverse function ofµw:

w∗(σ) = inf{t ≥ 0 : µw(t) ≤ σ}, σ ∈ (0, |Ω|).
For everyt ≥ 0 we have

(2.4) w∗(µw(t)) ≤ t,

with equality (see [19] p.935) whenw∗ is restricted to the range ofµw andµw is restricted to
the interval[0, ess sup |w|].

More details can be found for example in [5, 17, 18, 19].
2.6 An abstract existence result.Let (Y, Y0; Z,Z0) be a complementary system i.e.Y andZ
are real Banach spaces in duality with respect to a continuous pairing〈 , 〉 andY0 andZ0 are
closed subspaces ofY andZ respectively such that, by means of〈 , 〉, the dual ofY0 can be
identified toZ and that ofZ0 to Y. We consider a mappingT from D(T ) ⊂ Y into Z which
satisfies the following conditions, with respect to some elementsu ∈ Y0 andf ∈ Z0 :

(i)- (Finite continuity)Y0 ⊂ D(T ) andT is continuous from each finite dimensional sub-
space ofY0 into Z for σ(Z, Y0),

(ii)- (Sequential pseudo-monotonicity) For any sequenceun ∈ D(T ) such thatun ⇀ u ∈ Y
for σ(Y, Z0), Tun ⇀ χ for σ(Z, Y0) and lim sup〈Tun, un〉 ≤ 〈χ, u〉, it follows that
u ∈ D(T ), Tu = χ and〈Tun, un〉 → 〈χ, u〉.

(iii)- Tu remains bounded inZ wheneveru ∈ D(T ) remains bounded inY and〈Tu, u− u〉
remains bounded from above,

(iv)- 〈Tu− f, u− u〉 > 0 whenu ∈ D(T ) has sufficiently large norm inY.

Given a convex setK ⊂ Y and an elementf ∈ Z0, we are interested in finding a solutionu of
the variational inequality:

(P )

{
u ∈ K ∩D(T ),

〈Tu, u− v〉 ≤ 〈f, u− v〉 ∀v ∈ K.

Recall the following existence result (see [14, Proposition 1])

Proposition 2.4. Let (Y, Y0; Z,Z0) be a complementary system, withY0 andZ0 separable. Let
K ⊂ Y be a convex, sequentially closed and such thatK ∩ Y0 is σ(Y, Z) dense inK. Let
f ∈ Z0. LetT : D(T ) ⊂ Y → Z satisfy(i), (ii), (iii) and(iv) with respect to someu ∈ K ∩ Y0

and the givenf. Then, the variational inequality (P) has at least one solutionu.

Remark 2.1. 1. Notice that whenK ≡ Y , Proposition 2.4 applies to the solvability of the
equation:

(P )

{
u ∈ D(T ),

〈Tu, v〉 = 〈f, v〉 ∀v ∈ Y.

with f given inZ0.
2. It is shown in [14] that ifΩ has the segment property, then

(W 1
0 LM(Ω), W 1

0 EM(Ω), W−1LM(Ω), W−1EM(Ω))

constitutes a complementary system.
3. Recall that if a bounded subsetΩ of RN has a locally Lipschitzian boundary (that is, that
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6 ABDELMOUJIB BENKIRANE AND AHMED YOUSSFI

eachx on the boundary∂Ω of Ω should have a neighborhoodUx such that∂Ω∩Ux is the graph
of a Lipschitz continuous function) then,Ω has the segment property (see [1, p.67]).

3. ASSUMPTIONS AND MAIN RESULT

Let Ω be a bounded open subset ofRN , N ≥ 2, with locally Lipschitzian boundary andM is
an N-function twice continuously differentiable and strictly increasing, andP is an N-function
such thatP�M. Let a : Ω×R×RN→RN andB : Ω×R×RN→R be Carathéodory functions
satisfying, for a.e.x ∈ Ω, and for alls ∈ R and allξ, η ∈ RN , ξ 6= η,

(3.1) a(x, s, ξ).ξ ≥ M
−1

(M(h(|s|)))M(|ξ|)

whereh : R+→]0, +∞[ is a continuous decreasing function such that :h(0)≤1 and its primitive

H(s) =

∫ s

0

h(t)dt is unbounded,

(3.2) |a(x, s, ξ)| ≤ a0(x) + k1P
−1

M(k2|s|) + k3M
−1

M(k4|ξ|)

wherea0(x) belongs toEM(Ω) andk1, k2, k3, k4 to R∗
+,

(3.3) (a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0

and

(3.4) |B(x, s, ξ)| ≤ β(s)M(|ξ|),

whereβ : R → R+ is a continuous function such thatt → β(t)

M
−1

(M(h(|t|)))
belongs to

L1(R). So by defining

γ(s) =

∫ s

0

β(t)

M
−1

(M(h(|t|)))
dt

for all s ∈ R, the functionγ is bounded.
Finally, we assume one of the following two assumptions: Either

(3.5) f ∈ LN(Ω),

or

(3.6)


f ∈ Lm(Ω) with m = rN

r+1
for some r > 0,

and

∫ +∞

.

(
t

M(t)

)r

dt < +∞.

Let A: D(A)⊂W 1
0 LM(Ω)→W−1LM(Ω) be a mapping (non-everywhere defined) given by

A(u) = −div a(x, u,∇u).

In this paper, we are interested in proving the existence of bounded solutions to the strongly
nonlinear problem:

(3.7)

{
A(u) + B(x, u,∇u) = f in Ω,

u = 0 on ∂Ω.

For that, we will use the following concept of solutions
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Definition 3.1. Let f∈ L1(Ω), a functionu ∈ W 1
0 LM(Ω) is said to be a weak solution of

problem (3.7), if

(3.8)
∫

Ω

a(x, u,∇u)∇vdx +

∫
Ω

B(x, u,∇u)vdx =

∫
Ω

fvdx

holds for allv ∈ W 1
0 LM(Ω) ∩ L∞(Ω).

Now, we state the following theorem which contains the main result of this paper.

Theorem 3.1. Let us assume that (3.1), (3.2), (3.3), (3.4) and either (3.5) or (3.6) hold true.
Then, there exists a weak solutionu for problem (3.7) in the sense of (3.8), such thatu ∈ L∞(Ω).

Remark 3.1. Notice that whenM(t) = tp with 1 < p < N , the conditions (3.5) and (3.6) are
reduced to

f ∈ Lm(Ω) with m >
N

p
.

Hence, our result is an extension to the Orlicz setting of those in [8] and [20].

Remark 3.2. Our result is an extension to strongly nonlinear elliptic equations of that obtained
in [21] whenB ≡ 0.

4. A PRIORI ESTIMATES

For s ∈ R andk > 0 set: Tk(s) = max(−k, min(k, s)) andGk(s) = s − Tk(s) and for all
n ∈ N, we defineAn andBn as

An(u) := −div a(x, Tn(u),∇u)

and
Bn(u) := Bn(x, u,∇u) = Tn(B(x, u,∇u)).

In the sequel we denote bym∗ eitherN or m according as we assume (3.5) or (3.6), and let
{fn} ⊂ W−1EM(Ω) be a sequence of smooth functions such that

fn → f strongly in Lm∗
(Ω)

and
‖fn‖m∗ ≤ ‖f‖m∗ .

Let us show thatAn+Bn satisfies the conditions (i)-(iv) of Proposition 2.4 with respect tou = 0
andfn.
(i). An + Bn is finitely continuous by [13, lemma 4.3].
(ii). Let uj ∈ D(An + Bn) such that:

(a) uj ⇀ u ∈ W 1
0 LM(Ω) for σ(ΠLM , ΠEM),

(b) An(uj) + Bn(uj) ⇀ χ ∈ W−1LM(Ω) for σ(ΠLM , ΠEM)

and

(c) lim sup
j

〈An(uj) + Bn(uj), uj〉 ≤ 〈χ, u〉.

We shall prove that{a(·, Tn(uj),∇uj)} is bounded in(LM(Ω))N . For that, letφ ∈ (EM(Ω))N

with ‖φ‖M ≤ 1. From (3.3) we have∫
Ω

(a(x, Tn(uj),∇uj)− a(x, Tn(uj), φ)) · (∇uj − φ)dx ≥ 0.
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Which yields∫
Ω

(a(x, Tn(uj),∇uj) · φdx ≤
∫

Ω

(a(x, Tn(uj),∇uj) · ∇ujdx

−
∫

Ω

a(x, Tn(uj), φ)) · (∇uj − φ)dx.

Using Hölder’s inequality we get∣∣∣∣∫
Ω

Bn(x, uj,∇uj)ujdx

∣∣∣∣ ≤ 2n‖χΩ‖M‖uj‖M ,

whereχΩ denotes the characteristic ofΩ. Hence, by (a) and (c) we have that∫
Ω

(a(x, Tn(uj),∇uj) · ∇ujdx

is bounded from above. Letr = 1 + k1 + k3. Since{uj} is bounded inW 1
0 LM(Ω), we can find

λ > 0 such that
∫

Ω

M

(
|∇uj|

λ

)
dx ≤ 1. So, by using the Young’s inequality we obtain∣∣∣∣∫

Ω

a(x, Tn(uj), φ)) · (∇uj − φ)dx

∣∣∣∣
= 2rλ

∣∣∣∣∫
Ω

1

r
a(x, Tn(uj), φ)) · 1

2λ
(∇uj − φ)dx

∣∣∣∣
≤ 2rλ

∫
Ω

M

(
1

r
|a(x, Tn(uj), φ))|

)
dx + rλ

∫
Ω

M

(
|∇uj|

λ

)
dx + rλ

∫
Ω

M

(
|φ|
λ

)
dx.

The growth condition (3.2) and the convexity of the N-functionM allow us to have∣∣∣∣∫
Ω

a(x, Tn(uj), φ)) · (∇uj − φ)dx

∣∣∣∣
≤ 2λ

∫
Ω

M(a0(x))dx + 2k1λ|Ω|MP
−1

M(n) + 2k3λ

∫
Ω

M(k4|φ|)dx

+ rλ

∫
Ω

M

(
|∇uj|

λ

)
dx + rλ

∫
Ω

M

(
|φ|
λ

)
dx.

Which gives the desired result. Therefore, there exist a subsequence, still indexed byj, and
ln ∈ (LM(Ω))N such that

a(x, Tn(uj),∇uj) ⇀ ln in (LM(Ω))N for σ(ΠLM , ΠEM)

asj →∞. Since{Bn(x, uj,∇uj)} is uniformly bounded inLM(Ω), we get

Bn(x, uj,∇uj) ⇀ mn ∈ LM(Ω) for σ(LM , EM)

asj → ∞. Therefore, the linear formχ can be identified to−divln + mn. More precisely, the
action ofχ on an elementφ ∈ W 1

0 EM(Ω) is given by

〈χ, φ〉 =

∫
Ω

ln · ∇φdx +

∫
Ω

mnφdx.

We shall prove that∇uj → ∇u a.e. inΩ. To do this, we argue Similarly as in [14, Theorem
5.1]. LetΩr = {x ∈ Ω : |∇u(x)| ≤ r} and denote byχr the characteristic function ofΩr. Fix
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r > 0 and lets ≥ r. By (3.3) we have

0 ≤
∫

Ωr

(a(x, Tn(uj),∇uj)− a(x, Tn(uj),∇u)) · (∇uj −∇u) dx

≤
∫

Ωs

(a(x, Tn(uj),∇uj)− a(x, Tn(uj),∇uχs)) · (∇uj −∇uχs) dx

≤
∫

Ω

a(x, Tn(uj),∇uj) · ∇ujdx−
∫

Ω

a(x, Tn(uj),∇uj) · ∇uχsdx

−
∫

Ω

a(x, Tn(uj),∇uχs) · (∇un −∇uχs)dx.

By [13, Proposition 4.13] and (a) we can suppose thatuj → u strongly inEM(Ω) and a.e. in
Ω, so that we get ∫

Ω

Bn(x, uj,∇uj)ujdx →
∫

Ω

mnudx as j →∞.

Thus, from (c) we have

lim sup
j

∫
Ω

a(x, Tn(uj),∇uj) · ∇ujdx ≤ 〈χ, u〉 −
∫

Ω

mnudx =

∫
Ω

ln · ∇udx.

For the second integral of the right-hand side

lim sup
j

∫
Ω

a(x, Tn(uj),∇uj) · ∇uχsdx =

∫
Ω

ln · ∇uχsdx.

Sincea(x, Tn(uj),∇uχs) converges toa(x, Tn(u),∇uχs) in norm in(EM(Ω))N by Lemma 2.1
and∇uj ⇀ ∇u in (LM(Ω))N for σ(ΠLM , ΠEM) by (a), we obtain for the third term of the
right-hand side

lim sup
j

∫
Ω

a(x, Tn(uj),∇uχs) · (∇un −∇uχs)dx =

∫
Ω\Ωs

a(x, Tn(u),∇uχs) · ∇udx.

Thus,

0 ≤ lim sup
j

∫
Ωr

(a(x, Tn(uj),∇uj)− a(x, Tn(uj),∇u)) · (∇uj −∇u) dx

≤
∫

Ω

ln · ∇udx−
∫

Ω

ln · ∇uχsdx−
∫

Ω\Ωs

a(x, Tn(u),∇uχs) · ∇udx.

Then, lettings →∞, we get

lim sup
j

∫
Ωr

(a(x, Tn(uj),∇uj)− a(x, Tn(uj),∇u)) · (∇uj −∇u) dx = 0.

Let us defineDn
j by

Dn
j = (a(x, Tn(uj),∇uj)− a(x, Tn(uj),∇u)) · (∇uj −∇u).

Since the integrand functionDn
j is nonnegative by (3.3), we get

lim sup
j

Dn
j = 0 in L1(Ωr).

Beingr > 0 arbitrary, there exists a subsequence still indexed byj such that

Dn
j → 0 a.e. in Ω.
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asj →∞. Hence, there exists a subsetU of Ω of zero measure such that for allx ∈ Ω \ U one
hasDn

j (x) → 0. Fix n > 0 andx ∈ Ω \ U. By using (3.1) and (3.2) we arrive at

Dn
j (x) ≥ M

−1
M(h(n))M(|∇uj(x)|)− c(n, x)

(
1 + M

−1
M(k4|∇uj(x)|) + |∇uj(x)|

)
,

wherec(n, x) is a constant depending onn andx. Thus, the sequence{∇uj(x)} is bounded in
RN and for a subsequence{uj′(x)}, we have

∇uj′(x) → ξ in RN

and
(a(x, Tn(u(x)), ξ)− a(x, Tn(u(x)),∇u(x))) · (ξ −∇u(x)) = 0.

Sincea(x, s, ξ) is strictly monotone, we haveξ = ∇u(x), and then∇uj(x) → ∇u(x) for the
whole sequence. It follows that

∇uj → ∇u a.e. in Ω.

Thus, we getmn = Bn(x, u,∇u) and by [16, Theorem 14.6 ] we obtainln = a(x, Tn(u),∇u) ∈
(LM(Ω))N . Therefore, we haveu ∈ D(An + Bn) andχ = An(u) + Bn(u). From (b) and the
equality

〈An(uj), uj〉 = 〈An(uj) + Bn(uj), uj〉 −
∫

Ω

Bn(x, uj,∇uj)ujdx,

we get

lim sup
j

〈An(uj), uj〉 ≤ 〈χ, u〉 −
∫

Ω

Bn(x, u,∇u)udx

= 〈An(u), u〉.
By [14, Proposition 5] the operatorAn is in particular sequentially pseudo-monotone. There-
fore, we get

lim sup
j

〈An(uj), uj〉 = 〈An(u), u〉.

Consequently, we have

lim sup
j

〈An(uj) + Bn(uj), uj〉 = 〈χ, u〉.

(iii). Assume thatu ∈ D(An+Bn) is such thatu is bounded inW 1
0 LM(Ω) and〈An(u) + Bn(u), u〉

is bounded from above. We will prove that{a(·, Tn(u),∇u)} remains bounded in(LM(Ω))N

which implies thatAn(u) + Bn(u) remains bounded inW−1LM(Ω). Let φ ∈ (EM(Ω))N with
‖φ‖M ≤ 1. From (3.3) we have∫

Ω

(a(x, Tn(u),∇u)− a(x, Tn(u), φ)) · (∇u− φ)dx ≥ 0.

Thus, ∫
Ω

(a(x, Tn(u),∇u) · φdx ≤
∫

Ω

(a(x, Tn(u),∇u) · ∇udx

−
∫

Ω

a(x, Tn(u), φ)) · (∇u− φ)dx.

Using Hölder’s inequality we get∣∣∣∣∫
Ω

Bn(x, u,∇u)udx

∣∣∣∣ ≤ 2n‖χΩ‖M‖u‖M .

By writing∫
Ω

(a(x, Tn(u),∇u) · ∇udx = 〈An(u) + Bn(u), u〉+

∫
Ω

Bn(x, u,∇u)udx,
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we obtain that
∫

Ω

(a(x, Tn(u),∇u) · ∇udx is bounded from above. Which then implies, by

similar arguments as in (ii ), that{a(·, Tn(u),∇u)} is bounded in(LM(Ω))N .
(iv). We prove that

{u ∈ D(An + Bn)⊂W 1
0 LM(Ω) : 〈An(u) + Bn(u)− fn, u〉 ≤ 0}

is bounded inW 1
0 LM(Ω), which yields the conclusion. Ifu ∈ D(An + Bn) is such that:

〈An(u) + Bn(u)− fn, u〉 ≤ 0, then∫
Ω

a(x, Tn(u),∇u) · ∇udx +

∫
Ω

Bn(x, u,∇u)udx ≤
∫

Ω

fnudx.

Sincefn has compact support andBn is bounded, there exists a constantc(n) depending onn
such that by (3.1) one has

M
−1

(M(h(n)))

∫
Ω

M(|∇u|)dx ≤ c(n)

∫
Ω

|u|dx.

Let r > 0 be a real which will be chosen later. The Young’s inequality gives

M
−1

(M(h(n)))

∫
Ω

M(|∇u|)dx ≤ 1

λ1

M(λ1λ2rc(n))|Ω| +
1

λ1

∫
Ω

M

(
|u|
rλ2

)
dx,

whereλ1 andλ2 are the constants in inequality (2.3) of Lemma 2.2. Then, by inequality (2.3)
we get

M
−1

(M(h(n)))

∫
Ω

M(|∇u|)dx ≤ 1

λ1

M(λ1λ2rc(n))|Ω| +

∫
Ω

M

(
1

r
|∇u|

)
dx.

The choicer ≥ max

(
1,

2

M
−1

M(h(n))

)
guarantees that

∫
Ω

M(|∇u|)dx is bounded and so is

‖u‖W 1
0 LM (Ω). Hence, condition(iv) is filled.

Therefore, by applying Proposition 2.4 there exists at least one solutionun ∈ D(An + Bn) ⊂
W 1

0 LM(Ω) to the approximate equation

−div a(x, Tn(un),∇un) + Bn(x, un,∇un) = fn

in the sense that

(4.1)
∫

Ω

a(x, Tn(un),∇un) · ∇vdx +

∫
Ω

Bn(x, un,∇n)vdx =

∫
Ω

fnvdx

for all v ∈ W 1
0 LM(Ω).

Lemma 4.1. Letun be a solution of (4.1). For allt, ε in R∗
+, one has the following inequalities:

(4.2)

∫
{t<un≤t+ε}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx

≤
∫
{un>t}

f+
n eγ(u+

n )Tε(Gt(u
+
n ))dx.

(4.3)

∫
{−t−ε<un≤−t}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx

≤
∫
{un<−t}

f−n eγ(u−n )Tε(Gt(u
−
n ))dx.
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Proof. (4.2)-Observe that by [11, lemma 2] the function

eγ(Tk(u+
n ))Tε(Gt(Tk(u

+
n )))

belongs toW 1
0 LM(Ω)∩L∞(Ω) for all k > 0. Thus, testing by this function in (4.1), we obtain

(4.4)

∫
Ω

a(x, Tn(un),∇un) · ∇Tk(u
+
n )

β(Tk(u
+
n ))

M
−1

M(h(|Tk(u+
n )|))

×eγ(Tk(u+
n ))Tε(Gt(Tk(u

+
n )))dx

+

∫
{t<Tk(u+

n )≤t+ε}
a(x, Tn(un),∇un) · ∇Tk(u

+
n )eγ(Tk(u+

n ))dx

+

∫
Ω

Bn(x, un,∇un)eγ(Tk(u+
n ))Tε(Gt(Tk(u

+
n )))dx

=

∫
Ω

fne
γ(Tk(u+

n ))Tε(Gt(Tk(u
+
n )))dx.

Now, we will pass to the limit ask tends to+∞ in (4.4). Note that∫
Ω

a(x, Tn(un),∇un) · ∇Tk(u
+
n )

β(Tk(u
+
n ))

M
−1

(M(h(|Tk(u+
n )|)))

eγ(Tk(u+
n ))Tε(Gt(Tk(u

+
n )))dx

=

∫
{0≤un<k}

a(x, Tn(un),∇un) · ∇un
β(u+

n )

M
−1

(M(h(u+
n )))

eγ(u+
n )Tε(Gt(u

+
n ))dx.

By (3.1) and the positivity ofh and β, the integrand function is nonnegative, it follows by
applying the monotone convergence theorem, that∫

Ω

a(x, Tn(un),∇un) · ∇Tk(u
+
n )

β(Tk(u
+
n ))

M
−1

(M(h(|Tk(u+
n )|)))

eγ(Tk(u+
n ))Tε(Gt(Tk(u

+
n )))dx

→
∫

Ω

a(x, Tn(un),∇un) · ∇un
β(u+

n )

M
−1

(M(h(u+
n )))

eγ(u+
n )Tε(Gt(u

+
n ))dx

ask →∞. For the second integral in the left-hand side of (4.4), we write∫
{t<Tk(u+

n )≤t+ε}
a(x, Tn(un),∇un) · ∇Tk(u

+
n )eγ(Tk(u+

n ))dx

=

∫
{t<un≤t+ε}∩{0≤un<k}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx.

By similar arguments as above, we have∫
{t<Tk(u+

n )≤t+ε}
a(x, Tn(un),∇un) · ∇Tk(u

+
n )eγ(Tk(u+

n ))dx

→
∫
{t<un≤t+ε}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx

ask →∞. Since the functionsBn, fn andγ are bounded, we apply the Lebesgue’s dominated
convergence theorem for the remaining integrals in (4.4). Consequently, lettingk tend to∞ in
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(4.4) we obtain∫
Ω

a(x, Tn(un),∇un) · ∇un
β(u+

n )

M
−1

(M(h(u+
n )))

eγ(u+
n )Tε(Gt(u

+
n ))dx

+

∫
{t<un≤t+ε}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx

+

∫
Ω

Bn(x, un,∇un)eγ(u+
n )Tε(Gt(u

+
n ))dx

=

∫
Ω

fne
γ(u+

n )Tε(Gt(u
+
n ))dx.

Note thatu+
n = |un| on the set{x ∈ Ω : un(x) ≥ 0}. Thus (3.1) and (3.4) imply that∫

Ω

a(x, Tn(un),∇un) · ∇un
β(u+

n )

M
−1

(M(h(u+
n )))

eγ(u+
n )Tε(Gt(u

+
n ))dx

+

∫
Ω

Bn(x, un,∇un)eγ(u+
n )Tε(Gt(u

+
n ))dx ≥ 0,

and so ∫
{t<un≤t+ε}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx ≤
∫

Ω

fne
γ(u+

n )Tε(Gt(u
+
n ))dx.

SinceTε(Gt(u
+
n )) is different from zero only on{un > t} andfn ≤ f+

n we have∫
{t<un≤t+ε}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx ≤
∫
{un>t}

f+
n eγ(u+

n )Tε(Gt(u
+
n ))dx,

and (4.2) is proved.
(4.3)-For allk > 0, the function

−eγ(Tk(u−n ))Tε(Gt(Tk(u
−
n )))

belongs toW 1
0 LM(Ω)∩L∞(Ω), (see [11, lemma 2]), so that one can take it as test function in

(4.1) and obtain

(4.5)

−
∫

Ω

a(x, Tn(un),∇un) · ∇Tk(u
−
n )

β(Tk(u
−
n ))

M
−1

(M(h(|Tk(u−n )|)))
×eγ(Tk(u−n ))Tε(Gt(Tk(u

−
n )))dx

−
∫
{t<Tk(u−n )≤t+ε}

a(x, Tn(un),∇un) · ∇Tk(u
−
n )eγ(Tk(u−n ))dx

−
∫

Ω

Bn(x, un,∇un)eγ(Tk(u−n ))Tε(Gt(Tk(u
−
n )))dx

= −
∫

Ω

fne
γ(Tk(u−n ))Tε(Gt(Tk(u

−
n )))dx.

The first integral in the left-hand side of (4.5) is written

−
∫

Ω

a(x, Tn(un),∇un) · ∇Tk(u
−
n )

β(Tk(u
−
n ))

M
−1

(M(h(|Tk(u−n )|)))
eγ(Tk(u−n ))Tε(Gt(Tk(u

−
n )))dx

=

∫
{−k<un≤0}

a(x, Tn(un),∇un) · ∇un
β(u−n )

M
−1

(M(h(u−n )))
eγ(u−n )Tε(Gt(u

−
n ))dx.
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14 ABDELMOUJIB BENKIRANE AND AHMED YOUSSFI

Thus, applying the monotone convergence theorem we get

−
∫

Ω

a(x, Tn(un),∇un) · ∇Tk(u
−
n )

β(Tk(u
−
n ))

M
−1

(M(h(|Tk(u−n )|)))
eγ(Tk(u−n ))Tε(Gt(Tk(u

−
n )))dx

→
∫

Ω

a(x, Tn(un),∇un) · ∇un
β(u−n )

M
−1

(M(h(u−n )))
eγ(u−n )Tε(Gt(u

−
n ))dx.

ask →∞. For the second integral in the left-hand side of (4.5), we write

−
∫
{t<Tk(u−n )≤t+ε}

a(x, Tn(un),∇un) · ∇Tk(u
−
n )eγ(Tk(u−n ))dx

=

∫
{t<Tk(u−n )≤t+ε}∩{−k<un≤0}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx

=

∫
{−t−ε≤un<−t}∩{−k<un≤0}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx.

Applying again the monotone convergence theorem, we obtain

−
∫
{t<Tk(u−n )≤t+ε}

a(x, Tn(un),∇un) · ∇Tk(u
−
n )eγ(Tk(u−n ))dx

→
∫
{−t−ε≤un<−t}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx,

ask → ∞. For the remaining integrals in (4.5), Lebesgue’s dominated convergence theorem
may be applied sinceBn, fn andγ are bounded. Hence, lettingk tend to+∞ in (4.5), we get∫

Ω

a(x, Tn(un),∇un) · ∇un
β(u−n )

M
−1

(M(h(u−n )))
eγ(u−n )Tε(Gt(u

−
n ))dx

+

∫
{−t−ε≤un<−t}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx

−
∫

Ω

Bn(x, un,∇un)eγ(u−n )Tε(Gt(u
−
n ))dx

= −
∫

Ω

fne
γ(u−n )Tε(Gt(u

−
n ))dx.

Sinceu−n = |un| on the set{x ∈ Ω : un(x) ≤ 0}, by using (3.1) and (3.4) we have∫
Ω

a(x, Tn(un),∇un) · ∇un
β(u−n )

M
−1

(M(h(u−n )))
eγ(u−n )Tε(Gt(u

−
n ))dx

−
∫

Ω

Bn(x, un,∇un)eγ(u−n )Tε(Gt(u
−
n ))dx ≥ 0.

Observe that−fn ≤ f−n and{u−n > t} ∩ {un ≤ 0} = {un < −t}, and so we obtain∫
{−t−ε≤un<−t}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx ≤

∫
{un<−t}

f−n eγ(u−n )Tε(Gt(u
−
n ))dx.

Which proves (4.3).

Now, we are able to prove the following auxiliary result:

Lemma 4.2. There exists a constantc0, not depending onn, such that for almost everyt > 0

(4.6) − d

dt

∫
{|un|>t}

M
−1

(M(h(|un|)))M(|∇un|)dx ≤ c0

∫
{|un|>t}

|fn|dx.
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Proof. Since the two functionseγ(u+
n ) andeγ(u−n ) are bounded inL∞(Ω), we sum up both in-

equalities (4.2) and (4.3) obtaining a constantc0 > 0, not depending onn, such that∫
{t<|un|≤t+ε}

a(x, Tn(un),∇un) · ∇undx ≤ εc0

∫
{|un|>t}

|fn|dx,

and by (3.1) we get∫
{t<|un|≤t+ε}

M
−1

(M(h(|un|)))M(|∇un|)dx ≤ εc0

∫
{|un|>t}

|fn|dx.

Then, dividing byε and lettingε tend to0+ we obtain (4.6).

Inequality (4.6) was proved in [17] when h is a constant function andB ≡ 0. The following
comparison lemma plays a fundamental role to get uniform estimation for solutions of approx-
imate equations (4.1) inL∞(Ω), it is quite similar to that proved in [17] when h is a constant
function. The proof we give here is based on (4.6) and on techniques inspired from those in
[17].

Lemma 4.3. LetK(t) = M(t)
t

andµn(t) = |{x ∈ Ω : |un(x)| > t}|, for all t > 0. We have for
almost everyt > 0:

(4.7)

h(t) ≤

2M(1)(−µ′n(t))

M
−1

(M(1))NC
1
N
N µn(t)1− 1

N

K−1

 c0

∫
{|un|>t}

|fn|dx

M
−1

(M(1))NC
1
N
N µn(t)1− 1

N

 .

whereCN stands for the measure of the unit ball inRN andc0 is the constant which appears in
(4.6).

Proof. The hypotheses made on the N-functionM , allow to affirm that the functionC(t) =
1

K−1(t)
is decreasing and convex (see [17]). Hence, Jensen’s inequality yields

C


∫
{t<|un|≤t+k}

M
−1

(M(h(|un|)))M(|∇un|)dx∫
{t<|un|≤t+k}

M
−1

(M(h(|un|)))|∇un|dx



= C


∫
{t<|un|≤t+k}

K(|∇un|)M
−1

(M(h(|un|)))|∇un|dx∫
{t<|un|≤t+k}

M
−1

(M(h(|un|)))|∇un|dx



≤

∫
{t<|un|≤t+k}

M
−1

(M(h(|un|)))dx∫
{t<|un|≤t+k}

M
−1

(M(h(|un|)))|∇un|dx

≤ M
−1

(M(h(t)))(−µn(t + k) + µn(t))

M
−1

(M(h(t + k)))

∫
{t<|un|≤t+k}

|∇un|dx
.
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Taking into account thatM
−1

(M(h(t))) ≤ M
−1

(M(1)), using the convexity ofC and then
lettingk → 0+, we obtain for almost everyt > 0

M
−1

(M(1))

M
−1

(M(h(t)))
C

−
d

dt

∫
{|un|>t}

M
−1

(M(h(|un|)))M(|∇un|)dx

M
−1

(M(1))(− d

dt

∫
{|un|>t}

|∇un|dx)


≤ −µ′n(t)

− d

dt

∫
{|un|>t}

|∇un|dx

.

Recall the following inequality, (see [17]):

(4.8) − d

dt

∫
{|un|>t}

|∇un|dx ≥ NC
1
N
N µn(t)1− 1

N for almost every t > 0.

The monotonicity of the functionC, (4.6) and(4.8) yield

1

M
−1

(M(h(t)))

≤ −µ′n(t)

M
−1

(M(1))NC
1
N
N µn(t)1− 1

N

K−1

 c0

∫
{|un|>t}

|fn|dx

M
−1

(M(1))NC
1
N
N µn(t)1− 1

N

 .

Using (2.1) and the fact that0 < h(t) ≤ 1, we obtain (4.7).

5. PROOF OF THEOREM 3.1

Using Lemma 4.3, we prove Theorem 3.1 in six steps.
step 1:L∞-bound.

If we assume (3.5), using the Hölder’s inequality∫
{|un|>t}

|fn|dx ≤ ‖f‖Nµn(t)1− 1
N ,

(4.7) becomes

h(t) ≤ 2M(1)(−µ′n(t))

M
−1

(M(1))NC
1
N
N µn(t)1− 1

N

K−1

(
c0‖f‖N

M
−1

(M(1))NC
1
N
N

)
.

Then, integrating between0 ands, we get

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

K−1

(
c0‖f‖N

M
−1

(M(1))NC
1
N
N

)∫ s

0

−µ′n(t)

µn(t)1− 1
N

dt.

Hence, a change of variables yields

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

K−1

(
c0‖f‖N

M
−1

(M(1))NC
1
N
N

)∫ |Ω|

µn(s)

dt

t1−
1
N

.

By (2.4) we get

H(u∗n(σ)) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

K−1

(
c0‖f‖N

M
−1

(M(1))NC
1
N
N

)∫ |Ω|

σ

dt

t1−
1
N

.
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So that

H(u∗n(0)) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

K−1

(
c0‖f‖N

M
−1

(M(1))NC
1
N
N

)
N |Ω|

1
N .

Sinceu∗n(0) = ‖un‖∞, the assumption made onH (i.e lim
s→+∞

H(s) = +∞) shows that the

sequence{un} is uniformly bounded inL∞(Ω). Moreover, if we denote byH−1 the inverse
function ofH, one has:

(5.1) ‖un‖∞ ≤ H−1

(
2M(1)

M
−1

(M(1))NC
1
N
N

K−1

(
c0‖f‖N

M
−1

(M(1))NC
1
N
N

)
N |Ω|

1
N

)
.

Now, we assume that (3.6) is filled. Then, using the Hölder’s inequality∫
{|un|>t}

|fn|dx ≤ ‖f‖mµn(t)1− 1
m

in (4.7), we obtain

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

∫ s

0

−µ′n(t)

µn(t)1− 1
N

K−1

(
c0‖f‖m

M
−1

(M(1))NC
1
N
N µn(t)

1
m
− 1

N

)
dt.

A change of variables gives

H(s) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

∫ |Ω|

µn(s)

K−1

(
c0‖f‖m

M
−1

(M(1))NC
1
N
N σ

1
m
− 1

N

)
dσ

σ1− 1
N

.

As above, (2.4) gives

H(u∗n(τ)) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

∫ |Ω|

τ

K−1

(
c0‖f‖m

M
−1

(M(1))NC
1
N
N σ

1
m
− 1

N

)
dσ

σ1− 1
N

.

Then, we have

H(‖un‖∞) ≤ 2M(1)

M
−1

(M(1))NC
1
N
N

∫ |Ω|

0

K−1

(
c0‖f‖m

M
−1

(M(1))NC
1
N
N σ

1
m
− 1

N

)
dσ

σ1− 1
N

.

A change of variables gives

H(‖un‖∞) ≤ 2M(1)cr
0‖f‖r

m

(M
−1

(M(1)))r+1N rC
r+1
N

N

∫ +∞

λ

rt−r−1K−1(t)dt,

whereλ =
c0‖f‖m

M
−1

(M(1))NC
1
N
N |Ω|

1
rN

. Then, by an integration by parts we obtain that

H(‖un‖∞) ≤ 2M(1)cr
0‖f‖r

m

(M
−1

(M(1)))r+1N rC
r+1
N

N

(
K−1(λ)

λr +

∫ +∞

K−1(λ)

(
s

M(s)

)r

ds

)
.

The assumption made onH guarantees that the sequence{un} is uniformly bounded inL∞(Ω).
Indeed, denoting byH−1 the inverse function ofH, one has

(5.2)

‖un‖∞ ≤

H−1

(
2M(1)cr

0‖f‖r
m

(M
−1

(M(1)))r+1N rC
r+1
N

N

(
K−1(λ)

λr +

∫ +∞

K−1(λ)

(
s

M(s)

)r

ds

))
.
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18 ABDELMOUJIB BENKIRANE AND AHMED YOUSSFI

Consequently, in both cases the sequence{un} is uniformly bounded inL∞(Ω), so that in the
sequel, we will denote byc the constant appearing either in (5.1) or in (5.2), that is :

(5.3) ‖un‖∞ ≤ c.

Step 2: Estimation inW 1
0 LM(Ω).

In order to obtain an estimation inW 1
0 LM(Ω), we need to prove the following

Lemma 5.1.

(a)
∫
{0≤un}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx ≤
∫

Ω

f+
n eγ(u+

n )u+
n dx.

(b)
∫
{un≤0}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx ≤

∫
Ω

f−n eγ(u−n )u−n dx.

Proof. Note that by (5.3),u+
n∈W 1

0 LM(Ω)∩L∞(Ω) andeγ(u+
n )∈W 1LM(Ω)∩L∞(Ω). Hence,eγ(u+

n )u+
n

belongs toW 1
0 LM(Ω)∩L∞(Ω) and so it is an admissible test function in (4.1). Taking it so, it

yields ∫
{0≤un}

a(x, Tn(un),∇un) · ∇un
β(u+

n )

M
−1

M(h(|u+
n |))

eγ(u+
n )u+

n dx

+

∫
{0≤un}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx

+

∫
{0≤un}

Bn(x, un,∇un)eγ(u+
n )u+

n dx

=

∫
Ω

fne
γ(u+

n )u+
n dx,

and by (3.1) and (3.4), one gets∫
{0≤un}

a(x, Tn(un),∇un) · ∇un
β(u+

n )

M
−1

M(h(u+
n ))

eγ(u+
n )u+

n dx

+

∫
{0≤un}

Bn(x, un,∇un)eγ(u+
n )u+

n dx ≥ 0.

It follows that ∫
{0≤un}

a(x, Tn(un),∇un) · ∇une
γ(u+

n )dx ≤
∫

Ω

f+
n eγ(u+

n )u+
n dx,

and (a) is proved. To prove (b), we choosev = −eγ(u−n )u−n in (4.1) to obtain∫
{un≤0}

a(x, Tn(un),∇un) · ∇un
β(u−n )

M
−1

M(h(|u−n |))
eγ(u−n )u−n dx

+

∫
{un≤0}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx

−
∫
{un≤0}

Bn(x, un,∇un)eγ(u−n )u−n dx

= −
∫

Ω

fne
γ(u−n )u−n dx,
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using again (3.1) and (3.4), one has∫
{un≤0}

a(x, Tn(un),∇un) · ∇un
β(u−n )

M
−1

M(h(|u−n |))
eγ(u−n )u−n dx

−
∫
{un≤0}

Bn(x, un,∇un)eγ(u−n )u−n dx ≥ 0,

which implies that∫
{un≤0}

a(x, Tn(un),∇un) · ∇une
γ(u−n )dx ≤

∫
Ω

f−n eγ(u−n )u−n dx,

and the lemma is proved.

Now, summing up both inequalities (a) and (b) of the above lemma and taking into account
thatγ is bounded, we deduce that there exists a constantc1 not depending onn such that

(5.4)
∫

Ω

a(x, Tn(un),∇un) · ∇undx ≤ c1

∫
Ω

|fnun|dx.

By (3.1) and (5.3), we obtain

(5.5)
∫

Ω

M(|∇un|)dx ≤ cc1‖f‖m∗|Ω|1− 1
m∗

M
−1

M(h(c))
.

Hence, the sequence{un} is bounded inW 1
0 LM(Ω). Consequently, there exist a subsequence

of {un}, still denoted by{un}, and a functionu ∈ W 1
0 LM(Ω) such that

(5.6) un ⇀ u weakly in W 1
0 LM(Ω) for σ(ΠLM , ΠEM),

and

(5.7) un → u in EM(Ω) strongly and a.e. in Ω.

Step 3: Almost everywhere convergence of the gradients.
Let us begin by the following lemma which will be used in the sequel:

Lemma 5.2. The sequence{a(x, Tn(un),∇un)} is uniformly bounded in(LM(Ω))N .

Proof. We will use the dual norm of(LM(Ω))N . Let ϕ ∈ (EM(Ω))N such that‖ϕ‖M ≤ 1. By
(3.3) we have (

a(x, Tn(un),∇un)− a(x, Tn(un),
ϕ

k4

)

)
·
(
∇un −

ϕ

k4

)
≥ 0.

Then ∫
Ω

a(x, Tn(un),∇un) · ϕdx ≤ k4

∫
Ω

a(x, Tn(un),∇un) · ∇undx

−k4

∫
Ω

a(x, Tn(un),
ϕ

k4

) · ∇undx

+

∫
Ω

a(x, Tn(un),
ϕ

k4

) · ϕdx.
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Let λ = 1 + k1 + k3. Using (3.2), (5.4), (5.5) and Young’s inequality, we obtain∫
Ω

a(x, Tn(un),∇un) · ϕdx ≤ k4cc1‖f‖m∗|Ω|1−
1

m∗ + k4λ
cc1‖f‖m∗|Ω|1− 1

m∗

M
−1

M(h(c))

+(1 + k4)

∫
Ω

M(|a0(x)|)dx

+k1(1 + k4)MP
−1

M(k2c)|Ω|

+k3(1 + k4) + λ,

which gives the desired result.

From (5.3) and (5.6) one deduces thatu ∈ W 1
0 LM(Ω)∩L∞(Ω), so that by [12, Theorem 4],

there exists a sequence{vj} in D(Ω) such that

vj→u in W 1
0 LM(Ω)

asj→∞, for the modular convergence and almost everywhere inΩ. Moreover, we have

‖vj‖∞≤(N + 1)‖u‖∞.

For s > 0, we denote byχs
j the characteristic function of the set

Ωs
j = {x ∈ Ω : |∇vj(x)| ≤ s},

and byχs the characteristic function of the set

Ωs = {x ∈ Ω : |∇u(x)| ≤ s}.
Being β continuous, thanks to (5.3) the sequence{β(un)} is bounded, so that, there exists a
constantβ0 such that

(5.8) ‖β(un)‖∞ ≤ β0.

Consider the functionϕ(t) = teσt2, σ > 0, and the realσ0 =
β0

M
−1

M(h(c))
wherec is the

constant in (5.3). It is well known that ifσ > (σ0

2
)2, one has for allt ∈ R

ϕ′(t)− σ0|ϕ(t)| ≥ 1

2
.

The choice ofϕ(un − vj) as test function in (4.1), yields forn > c

(5.9)

∫
Ω

a(x, un,∇un) · ∇(un − vj)ϕ
′(un − vj)dx

+

∫
Ω

Bn(x, un,∇un)ϕ(un − vj)dx

=

∫
Ω

fnϕ(un − vj)dx.

In what follows,εi(n, j) (i = 0, 1, 2, ...) denote various sequences of real numbers which con-
verge to0 whenn andj →∞, i.e.

lim
j→∞

lim
n→∞

εi(n, j) = 0.

In view of (5.3) and (5.7), we haveϕ(un − vj) → ϕ(u − vj) weakly∗ in L∞(Ω) asn → ∞,
then asn →∞ ∫

Ω

fnϕ(un − vj)dx →
∫

Ω

fϕ(u− vj)dx,
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and sinceu− vj → 0 weakly∗ in L∞(Ω) asj →∞, we get∫
Ω

fϕ(u− vj)dx → 0 asj →∞.

So that ∫
Ω

fnϕ(un − vj)dx = ε0(n, j).

For the first term on the left-hand side of (5.9), we write∫
Ω

a(x, un,∇un) · ∇(un − vj)ϕ
′(un − vj)dx

=

∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
ϕ′(un − vj)dx

+

∫
Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)ϕ

′(un − vj)dx

−
∫

Ω\Ωs
j

a(x, un,∇un) · ∇vjϕ
′(un − vj)dx.

As a consequence of Lemma 5.2, there existsl ∈ (LM(Ω))N such that

a(x, un,∇un) ⇀ l weakly in (LM(Ω))N for σ(ΠLM , ΠEM).

Since∇vjχΩ\Ωs
j
∈ (EM(Ω))N , we have∫

Ω\Ωs
j

a(x, un,∇un) · ∇vjϕ
′(un − vj)dx →

∫
Ω\Ωs

j

l · ∇vjϕ
′(u− vj)dx

asn → ∞, and the modular convergence of{vj}, gives∫
Ω\Ωs

j

l · ∇vjϕ
′(u− vj)dx →

∫
Ω\Ωs

l · ∇udx

asj → ∞. So that∫
Ω\Ωs

j

a(x, un,∇un) · ∇vjϕ
′(un − vj)dx =

∫
Ω\Ωs

l · ∇udx + ε1(n, j).

Sincea(x, un,∇vjχ
s
j)ϕ

′(un− vj) → a(x, u,∇vjχ
s
j)ϕ

′(u− vj) strongly in(EM(Ω))N asn →
∞ by lemma 2.1 and∇un ⇀ ∇u weakly in(LM(Ω))N by (5.6), we obtain∫

Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)ϕ

′(un − vj)dx

→
∫

Ω

a(x, u,∇vjχ
s
j) · (∇u−∇vjχ

s
j)ϕ

′(u− vj)dx

asn →∞, and since∇vjχ
s
j → ∇uχs strongly in(EM(Ω))N asj →∞, we get∫

Ω

a(x, u,∇vjχ
s
j) · (∇u−∇vjχ

s
j)ϕ

′(u− vj)dx → 0

asj →∞. Thus,∫
Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)ϕ

′(un − vj)dx = ε2(n, j).
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Hence, (5.9) becomes

(5.10)

∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
ϕ′(un − vj)dx

+

∫
Ω

Bn(x, un,∇un)ϕ(un − vj)dx =

∫
Ω\Ωs

l · ∇udx + ε3(n, j).

Now, we evaluate the second term on the left-hand side of (5.10). Using (3.4) and then (3.1)
and (5.3), we obtain∣∣∣∣∫

Ω

Bn(x, un,∇un)ϕ(un − vj)dx

∣∣∣∣
≤
∫

Ω

β(un)M(|∇un|)|ϕ(un − vj)|dx

≤
∫

Ω

β(un)

M
−1

M(h(|un|))
a(x, un,∇un) · ∇un|ϕ(un − vj)|dx

≤ σ0

∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
|ϕ(un − vj)|dx

+ σ0

∫
Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)|ϕ(un − vj)|dx

+ σ0

∫
Ω

a(x, un,∇un) · ∇vjχ
s
j|ϕ(un − vj)|dx.

As above, we have

σ0

∫
Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)|ϕ(un − vj)|dx = ε4(n, j),

σ0

∫
Ω

a(x, un,∇un) · ∇vjχ
s
j|ϕ(un − vj)|dx = ε5(n, j).

Then ∣∣∣∣∫
Ω

Bn(x, un,∇un)ϕ(un − vj)dx

∣∣∣∣
≤ σ0

∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
|ϕ(un − vj)|dx

+ ε6(n, j).

This inequality and (5.10) allow to have∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
× (ϕ′(un − vj)− σ0|ϕ(un − vj)|) dx

≤
∫

Ω\Ωs

l · ∇udx + ε7(n, j).

and then

(5.11)

∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
dx

≤ 2

∫
Ω\Ωs

l · ∇udx + 2ε7(n, j).
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On the other hand∫
Ω

(a(x, un,∇un)− a(x, un,∇uχs)) · (∇un −∇uχs) dx

=

∫
Ω

(
a(x, un,∇un)− a(x, un,∇vjχ

s
j)
)
·
(
∇un −∇vjχ

s
j

)
dx

+

∫
Ω

a(x, un,∇un) · (∇vjχ
s
j −∇uχs)dx

−
∫

Ω

a(x, un,∇uχs) · (∇un −∇uχs)dx

+

∫
Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)dx.

Similar arguments as above show that∫
Ω

a(x, un,∇un) · (∇vjχ
s
j −∇uχs)dx = ε8(n, j),∫

Ω

a(x, un,∇uχs) · (∇un −∇uχs)dx = ε9(n, j),

(5.12)
∫

Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)dx = ε10(n, j).

It follows, by using (5.11), that∫
Ω

(a(x, un,∇un)− a(x, un,∇uχs)) · (∇un −∇uχs) dx

≤ 2

∫
Ω\Ωs

l · ∇udx + ε11(n, j).

Let nowr ≤ s, we write

0 ≤
∫

Ωr

(a(x, un,∇un)− a(x, un,∇u)) · (∇un −∇u) dx

≤
∫

Ωs

(a(x, un,∇un)− a(x, un,∇u)) · (∇un −∇u) dx

=

∫
Ωs

(a(x, un,∇un)− a(x, un,∇uχs)) · (∇un −∇uχs) dx

≤
∫

Ω

(a(x, un,∇un)− a(x, un,∇uχs)) · (∇un −∇uχs) dx

≤ 2

∫
Ω\Ωs

l · ∇udx + ε11(n, j).

Sincel · ∇u ∈ L1(Ω), lettings →∞, we get

(5.13)
∫

Ωr

(a(x, un,∇un)− a(x, un,∇u)) · (∇un −∇u) dx → 0

asn → ∞. Let Dn be defined by

Dn = (a(x, un,∇un)− a(x, un,∇u)) · (∇un −∇u) .

As a consequence of (5.13), one hasDn → 0 strongly inL1(Ωr), extracting a subsequence, still
denoted by{un}, we get

Dn → 0 a.e inΩr.
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Then, there exists a subsetZ of Ωr of zero measure such that:Dn(x) → 0 for all x ∈ Ωr \ Z.
Fix x ∈ Ωr \ Z, by using (3.1) and (3.2) we obtain

Dn(x) ≥ M
−1

M(h(c))M(|∇un(x)|)− c1(x)
(
1 + M

−1
M(k4|∇un(x)|) + |∇un(x)|

)
,

wherec is the constant which appears in (5.3) andc1(x) is a constant which does not depend
onn. Thus, the sequence{∇un(x)} is bounded inRN and then for a subsequence{un′(x)} we
have

∇un′(x) → ξ in RN

and
(a(x, u(x), ξ)− a(x, u(x),∇u(x))) · (ξ −∇u(x)) = 0.

Sincea(x, s, ξ) is strictly monotone, we haveξ = ∇u(x), and then∇un(x) → ∇u(x) for the
whole sequence. It follows that

∇un → ∇u a.e. in Ωr.

Consequently, asr is arbitrary, one can deduce that

(5.14) ∇un → ∇u a.e. in Ω.

Then, by Lemma 5.2 and [16, Theorem 14.6] we have

(5.15)
a(x, Tn(un),∇un) ⇀ a(x, u,∇u) weakly in (LM(Ω))N

for σ(ΠLM , ΠEM).

Step 4: Modular convergence of the gradients.
Going back to (5.11), we can write forn > c∫

Ω

a(x, un,∇un)∇undx ≤
∫

Ω

a(x, un,∇un) · ∇vjχ
s
jdx

+

∫
Ω

a(x, un,∇vjχ
s
j) · (∇un −∇vjχ

s
j)dx

+ 2

∫
Ω\Ωs

l · ∇udx + 2ε7(n, j),

and by (5.12), we get∫
Ω

a(x, un,∇un) · ∇undx ≤
∫

Ω

a(x, un,∇un) · ∇vjχ
s
jdx

+ 2

∫
Ω\Ωs

l · ∇udx + ε12(n, j).

Passing to the limit superior overn and then to the limit overj in both sides of this inequality,
we obtain

lim sup
n→∞

∫
Ω

a(x, un,∇un) · ∇undx ≤
∫

Ω

a(x, u,∇u) · ∇uχsdx +

∫
Ω\Ωs

l · ∇udx,

and by lettings →∞, one has

lim sup
n→∞

∫
Ω

a(x, un,∇un) · ∇undx ≤
∫

Ω

a(x, u,∇u) · ∇udx.

Fatou’s lemma allows us to have

lim
n→∞

∫
Ω

a(x, un,∇un) · ∇undx =

∫
Ω

a(x, u,∇u) · ∇udx.
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Hence, by Lemma 2.3, we conclude that

(5.16) a(x, un,∇un) · ∇un → a(x, u,∇u) · ∇u in L1(Ω).

Then, by (3.1), (5.3) and the convexity of the N-functionM we obtain forn > c

M

(
|∇un −∇u|

2

)
≤ 1

2M
−1

(M(h(c)))
M

−1
(M(h(|un|)))M(|∇un|)

+
1

2M
−1

(M(h(c)))
M

−1
(M(h(|u|)))M(|∇u|)

≤ 1

2M
−1

(M(h(c)))
a(x, un,∇un) · ∇un

+
1

2M
−1

(M(h(c)))
a(x, u,∇u) · ∇u.

Therefore, by (5.16) and Vitali’s theorem we conclude that

un → u in W 1
0 LM(Ω)

for the modular convergence.
Step5: Equi-integrability of the non-linearities.
We will now prove that

(5.17) Bn(x, un,∇un) → B(x, u,∇u) strongly inL1(Ω),

by using Vitali’s theorem. Thanks to (5.7) and (5.14), one has

Bn(x, un,∇un) → B(x, u,∇u) a.e inΩ.

It remains to show the uniform equi-integrability of the sequence{Bn(x, un,∇un)}. By (3.4)
and (5.8), we have

|Bn(x, un,∇un)| ≤ β0M(|∇un|).
Let E be a measurable subset ofΩ. Thanks to (3.1), (5.3) and (5.8), We have∫

E

|B(x, un,∇un)|dx ≤ β0

M
−1

M(h(c))

∫
E

a(x, un,∇un) · ∇undx.

Using (5.16) and Vitali’s theorem we obtain the equi-integrability of the sequence{Bn(x, un,∇un)}.
Which proves (5.17).
Step 6: Passage to the limit.
Let v ∈ W 1

0 LM(Ω)∩L∞(Ω), by virtue of (5.15) and (5.17) it is easy to pass to the limit in (4.1)
and obtain ∫

Ω

a(x, u,∇u) · ∇vdx +

∫
Ω

B(x, u,∇u)vdx =

∫
Ω

fvdx.

Moreover we haveu ∈ W 1
0 LM(Ω)∩L∞(Ω). Thus,u is a weak solution of (3.7).
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