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2 YUCHAO TANG1,2 AND YONG CAI1 AND L IQUN HU1 AND L IWEI L IU1

1. I NTRODUCTION AND PRELIMINARIES

Let X be a real normed space andJ : X → 2X∗
denotes the normalized duality mapping

defined by:
J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, x ∈ X,

whereX∗ denotes the dual space ofX and〈·, ·〉 denotes the generalized duality pairing ofX
andX∗. If X is a smooth Banach space, thenJ is single-valued. In the sequel, we shall usej
denote the single-valued duality mapping andF (T ) denote the set of fixed points of a mapping
T , i.e.,F (T ) = {x ∈ X : Tx = x}.

In 1996, Liu [1] introduced the notion of k-strictly asymptotically pseudocontractive and
asymptotically demicontractive mappings in Hilbert spaces as follows:

Definition 1.1. ([1]) Let C be a nonempty subset of a Hilbert spaceH. A mappingT : C → C
is said to be

(i) k-strictly asymptotically pseudocontractive mapping with a sequence{kn} ⊆ [1,∞) and
limn→∞ kn = 1, if there exists a constantk ∈ [0, 1) such that

(1.1) ‖T nx− T ny‖2 ≤ k2
n‖x− y‖2 + k‖(x− T nx)− (y − T ny)‖2,

for all x, y ∈ C andn ≥ 1.
(ii) asymptotically demicontractive mapping with a sequence{kn} ⊆ [1,∞) andlimn→∞ kn =

1, if F (T ) 6= ∅ and there exists a constantk ∈ [0, 1) such that

(1.2) ‖T nx− p‖2 ≤ k2
n‖x− p‖2 + k‖x− T nx‖2,

for all x ∈ C, p ∈ F (T ) andn ≥ 1.
Moreover, he proved several strong convergence theorems for approximating the fixed points

of k-strictly asymptotically pseudocontractive and asymptotically demicontractive mappings in
Hilbert spaces via the modified Mann iterative sequence introduced by Schu [2, 3].

By virtue of the normalized duality mapping, Osilike [4] first extended the concepts of k-
strictly asymptotically pseudocontractive and asymptotically demicontractive mappings from
Hilbert spaces to general Banach spaces.

Definition 1.2. ([4]) A mappingT : C → C is said to be
(i) k-strictly asymptotically pseudocontractive mapping with a sequence{kn} ⊆ [1,∞) and

limn→∞ kn = 1, if there existsk ∈ [0, 1) andj(x− y) ∈ J(x− y) such that
(1.3)

〈(I − T n)x− (I − T n)y, j(x− y)〉 ≥ 1

2
(1−k)‖(I−T n)x−(I−T n)y‖2− 1

2
(k2

n−1)‖x−y‖2,

for all x, y ∈ C andn ≥ 1.
(ii) asymptotically demicontractive mapping with a sequence{kn} ⊆ [1,∞) andlimn→∞ kn =

1, if F (T ) 6= ∅ and there exists a constantk ∈ [0, 1) andj(x− p) ∈ J(x− p) such that

(1.4) 〈x− T nx, j(x− p)〉 ≥ 1

2
(1− k)‖x− T nx‖2 − 1

2
(k2

n − 1)‖x− p‖2,

for all x ∈ C, p ∈ F (T ) andn ≥ 1.

Furthermore,T is said to be uniformly L-lipschitizian mapping, if there exists a constant
L ≥ 1 such that

‖T nx− T ny‖ ≤ L‖x− y‖,
for all x, y ∈ C andn ≥ 1.
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Remark 1.1. (i) In the Hilbert spaces, (1.1) and (1.2) are equivalent to (1.3) and (1.4), respec-
tively.

(ii) If T is k-strictly asymptotically pseudocontractive mapping, thenT is uniformlyL−Lipschitzian
mapping(cf. [6], [9]).

The following theorem is due to Osilike and Aniagbosor [5].

Theorem 1.1. ([5]) Let q > 1 andX be a realq−uniformly smooth Banach space. LetC be a
closed convex subset ofX andT : C → C a completely continuous uniformlyL−lipschitizian
asymptotically demicontractive mapping with a sequencekn ⊆ [1,∞) satisfying

∑∞
n=1(k

2
n −

1) < ∞. Let {an}, {bn}, {cn}, {a
′
n}, {b

′
n} and {c′n} be real sequences in[0, 1] satisfying the

conditions:

(i) an + bn + cn = 1 = a
′
n + b

′
n + c

′
n;

(ii) 0 < ε ≤ cq(b
′
n)q−1(1 + Lbn)q ≤ 1

2
[q(1 − k)(1 + L)−(q−2)] − ε, for all n ≥ 1 and for

someε > 0;
(iii)

∑∞
n=1 bn < ∞,

∑∞
n=1 cn < ∞,

∑∞
n=1 c

′
n < ∞.

Let{un} and{vn} be bounded sequences inC and let{xn} be the sequence generated from
an arbitraryx1 ∈ C by

(1.5)
yn = anxn + bnT

nxn + cnun, n ≥ 1,

xn+1 = a
′

nxn + b
′

nT
nyn + c

′

nvn, n ≥ 1,

converges strongly to a fixed point ofT .

In 2002, Igbokwe [6] extended Theorem 1.1 of Osilike and Aniagbosor [5] from realq−uniformly
smooth Banach spaces to arbitrary real Banach spaces. More precisely, he proved the following
main results.

Theorem 1.2. ([6]) Let X be a real Banach space andC a nonempty closed convex sub-
set ofX. Let T : C → C be a completely continuous uniformly L-lipschitizian asymptot-
ically demicontractive mapping with sequence{kn} ⊆ [1,∞) such thatlimn→∞ kn = 1 and∑∞

n=1(k
2
n−1) < ∞. Let the sequence{xn} be defined by (1.5) and{an}, {bn}, {cn}, {a

′
n}, {b

′
n}

and{c′n} be real sequences in[0, 1] satisfying

(i) an + bn + cn = 1 = a
′
n + b

′
n + c

′
n;

(ii)
∑∞

n=1 b
′
n = ∞,

∑∞
n=1(b

′
n)2 < ∞;

(iii)
∑∞

n=1 c
′
n < ∞,

∑∞
n=1 bn < ∞, and

∑∞
n=1 cn < ∞.

Then{xn} converges strongly to a fixed point ofT .

By using new analysis technique, Cho et al. [7] established several strong convergence the-
orems for asymptotically demicontractive mapping in arbitrary real normed linear spaces and
Banach spaces which generalized Theorem 1.2 of Igbokwe [6]. They proved the following
theorems.

Theorem 1.3.([7]) LetX be a real normed linear space,C be a nonempty closed convex subset
of X andT : C → C be a completely continuous and uniformlyL-Lipschitzian asymptotically
demicontractive mapping with a sequence{kn} ⊆ [1,∞) such that

∑∞
n=1(kn − 1) < ∞. Let

the sequence{xn} be defined by (1.5) with the restrictions
∞∑

n=1

b
′

n = ∞,
∞∑

n=1

(b
′

n)2 < ∞,
∞∑

n=1

c
′

n < ∞,
∞∑

n=1

cn < ∞.

Then{xn} converges strongly to a fixed point ofT .
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A mappingT : C → C with F (T ) 6= ∅ is said to satisfy Condition(A)[12] if there exists a
nondecreasing functionf : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for all t > 0 such that

‖x− Tx‖ ≥ f(d(x, F (T ))),

for all x ∈ C, whered(x, F (T )) = infp∈F (T ) ‖x− p‖.

Theorem 1.4. ([7]) LetX be a real Banach space,C be a nonempty closed convex subset ofX
andT : C → C be a uniformlyL-Lipschitzian asymptotically demicontractive mapping with a
sequence{kn} ⊆ [1,∞) such that

∑∞
n=1(kn − 1) < ∞. Let the sequence{xn} be defined by

(1.5) with the restrictions
∞∑

n=1

b
′

n = ∞,

∞∑
n=1

(b
′

n)2 < ∞,
∞∑

n=1

c
′

n < ∞,
∞∑

n=1

cn < ∞.

Suppose in addition thatT satisfies the Condition(A), then{xn} converges strongly to a fixed
point ofT .

In 2005, Moore and Nnoli [8] proved a necessary and sufficient condition for approximating
fixed point of asymptotically demicontractive mapping. More precisely, they got the following
results.

Theorem 1.5.([8]) LetX a real Banach space andT : X → X be a uniformlyL−Lipschitzian
asymptotically demicontractive mapping with sequence{kn} ⊆ [1,∞) and F (T ) 6= ∅. Let
{xn} be the sequence generated from an arbitraryx1 ∈ X by

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1.

Let{xn}n≥1 ⊂ [0, 1] be a real sequence such that
∑∞

n=1 α2
n < ∞ and

∑∞
n=1 αn(k2

n − 1) < ∞.
Then{xn} converges strongly to a fixed point ofT if and only iflim infn→∞ d(xn, F (T )) = 0.

In 2008, Hu [9] proved several strong convergence theorems for asymptotically demicontrac-
tive mapping via the Noor [10] iterative sequences with errors, which improved the results of
Igbokwe [6], Moore and Nnoli [8] and Cho et al. [7].

Theorem 1.6. ([9]) Let X be a real normed linear space andC a nonempty closed convex
subset ofX. Let T : C → C be a demicompact and uniformlyL−Lipschitzian asymptoti-
cally demicontractive mapping with a sequence{kn} ⊆ [1,∞) such thatlimn→∞ kn = 1. Let
{an}, {bn}, {cn}, {a

′
n}, {b

′
n}, {c

′
n}, {a

′′
n}, {b

′′
n} and{c′′n} be real sequences in[0, 1] satisfying

(i) an + bn + cn = a
′
n + b

′
n + c

′
n = a

′′
n + b

′′
n + c

′′
n = 1;

(ii)
∑∞

n=1 b2
n < ∞,

∑∞
n=1 cn < ∞,

∑∞
n=1 bnb

′
n < ∞,

∑∞
n=1 bn = ∞;

(iii)
∑∞

n=1(b
′
n)2 < ∞,

∑∞
n=1 b

′
nc

′′
n < ∞,

∑∞
n=1 b

′
nb

′′
n < ∞,

∑∞
n=1 c

′
n < ∞;

(iv)
∑∞

n=1 bn(k2
n − 1) < ∞,

∑∞
n=1 b

′
n(k2

n − 1) < ∞.

Let {un}, {vn} and{wn} be bounded sequences inC and let{xn} be the sequence generated
from an arbitraryx1 ∈ C by

(1.6)

zn = a
′′

nxn + b
′′

nT
nxn + c

′′

nwn, n ≥ 1,

yn = a
′

nxn + b
′

nT
nzn + c

′

nvn, n ≥ 1,

xn+1 = anxn + bnT
nyn + cnun, n ≥ 1,

converges strongly to a fixed point ofT .

Theorem 1.7. ([9]) Let X be a real Banach space andC a nonempty closed convex subset of
X. LetT : C → C be a demicompact and uniformlyL−Lipschitzian asymptotically demicon-
tractive mapping with a sequence{kn} ⊆ [1,∞) such thatlimn→∞ kn = 1. Let the sequence
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{xn} be as in Theorem 1.6. Then{xn} converges strongly to a fixed point ofT if and only if
lim infn→∞ d(xn, F (T )) = 0.

The multistep iterative sequence with errors which studied by Huang [11] is defined as fol-
lows : Let{Ti}r

i=1 be a finite family of asymptotically mappings onC. For anyx1 ∈ C, {xn}
is defined by

(1.7)


x1 ∈ C,

xn+1 = a1nxn + b1nT
n
1 y1n + c1nu1n,

yjn = a(j+1)nxn + b(j+1)nT
n
(j+1)y(j+1)n + c(j+1)nu(j+1)n, n ≥ 1,

where{ain}, {bin} and{cin} are real sequences in[0, 1] satisfyingain+bin+cin = 1, for anyi =
1, 2, · · · , r andn ≥ 1. {uin}, i = 1, 2, · · · , r are bounded sequences inC, j = 1, 2, · · · , r − 1,
yrn = xn.

Remark 1.2. (i) If r = 2, T1 = T2 = T , then (1.7) reduces to (1.5).
(ii) If r = 3, T1 = T2 = T3 = T , then (1.7) reduces to the Noor iterative sequences studied

by Hu [9].

Motivated and inspired by theses results, the purpose of this paper is to establish several
strong convergence theorems for the multistep iterative sequence with errors for a finite fam-
ily of asymptotically demicontractive mappings in arbitrary normed linear spaces and Banach
spaces. Our results improve and generalize the corresponding results of Osilike [4], Osilike and
Aniagbosor [5], Igbokwe [6], Cho et al. [7], Moore and Nnoli [8], Hu [9] and others.

In the sequel, we shall need the following definitions and results.
A mappingT : C → C is said to be demicompact if for any bounded sequence{xn} in

C such that‖xn − Txn‖ → 0 asn → ∞, there exists a subsequence{xnj
} of {xn} such

that {xnj
} converges strongly tox∗ ∈ C. T is said to be completely continuous if for every

bounded sequence{xn} , there exists a subsequence{xnj
} of {xn} such that the sequence

{Txnj
} converges to some element of the range ofT .

Remark 1.3. The following results are due to [12]. A mappingT is completely continuous,
then it must be demicompact, and ifT is continuous and demicompact, then it must satisfy the
Condition(A).

Lemma 1.8. ([13]) Let {an}, {bn}, {λn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ (1 + λn)an + bn, n ≥ 1.

If
∑∞

n=1 λn < +∞,
∑∞

n=1 bn < +∞, then (i) limn→∞ an exists. (ii) If lim infn→∞ an = 0, we
havelimn→∞ an = 0.

2. M AIN RESULTS

In this section, we shall use the following notations: Let{Ti}r
i=1 be a finite family of asymp-

totically demicontractive self mappings onC with sequences{kin} ⊆ [1,∞) andlimn→∞ kin =
1, for all i = 1, 2, · · · , r, if F (Ti) 6= ∅ and there exist constantski ∈ [0, 1) andj(x − p) ∈
J(x− p) such that

〈x− T n
i x, j(x− p)〉 ≥ 1

2
(1− ki)‖x− T nx‖2 − 1

2
(k2

in − 1)‖x− p‖2,

for all x ∈ C, p ∈ F (Ti) andi = 1, 2, · · · , r.
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Let k = max1≤i≤r{ki}, kn = max1≤i≤r{kin}, then

〈x− T n
i x, j(x− p)〉 ≥ 1

2
(1− k)‖x− T nx‖2 − 1

2
(k2

n − 1)‖x− p‖2,

First, we prove the following lemma.

Lemma 2.1.LetX be a real normed space andC a nonempty convex subset ofX. LetTi : C →
C, i = 1, 2, · · · , r be a finite family of uniformlyLi-Lipschitzian asymptotically demicontractive
mappings with a sequence{kin} ⊆ [1,∞) and

∑∞
n=1(k

2
in−1) < ∞. LetF :=

⋂r
i=1 F (Ti) 6= ∅.

Suppose the sequence{xn} is defined by (1.7) and satisfying the following conditions:

(i)
∑∞

n=1 b1n = ∞,
∑∞

n=1 b2
1n < ∞;

(ii)
∑∞

n=1 b2n < ∞,
∑∞

n=1 cin < ∞, i = 1, 2, · · · , r.

Then
(i) limn→∞ ‖xn − p‖ exists for allp ∈ F ;
(ii) lim infn→∞ ‖xn − T1xn‖ = 0.

Proof. Let p ∈ F andL = max1≤i≤r Li. Since{uin, i = 1, 2, · · · , r} are bounded sequences in
C, so there exists a constantM > 0 such that

M = max
1≤i≤r

{
sup
n≥1

‖uin − p‖
}

.

By (1.7), we have

‖y(r−1)n−p‖ = ‖arn(xn − p) + brn(T n
r xn − p) + crn(urn − p)‖

≤ arn‖xn − p‖+ brnL‖xn − p‖+ crnM

≤ (1− brn)‖xn − p‖+ brnL‖xn − p‖+ crnM

≤ L‖xn − p‖+ crnM,

and

‖y(r−2)n − p‖ ≤ a(r−1)n‖xn − p‖+ b(r−1)nL‖y(r−1)n − p‖+ c(r−1)nM

≤ a(r−1)n‖xn − p‖+ b(r−1)nL
2‖xn − p‖+ crnLM + c(r−1)nM

≤ L2‖xn − p‖+
r∑

i=r−1

cinL
i−(r−1)M.

Furthermore,

‖y(r−3)n − p‖ ≤ a(r−2)n‖xn − p‖+ b(r−2)nL‖y(r−2)n − p‖+ c(r−2)nM

≤ a(r−2)n‖xn − p‖+ b(r−2)nL
3‖xn − p‖+ crnL

2M + c(r−1)nLM + c(r−2)nM

≤ L3‖xn − p‖+
r∑

i=r−2

cinL
i−(r−2)M.

By induction, we obtain

(2.1) ‖y1n − p‖ ≤ Lr−1‖xn − p‖+
r∑

i=2

cinL
i−2M.
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On the other hand, we get from (1.7) that

‖xn+1 − p‖2 = ‖a1nxn + b1nT
n
1 y1n + c1nu1n − p‖2

= ‖xn − p + b1n(T n
1 y1n − xn) + c1n(u1n − xn)‖2

= 〈xn − p + b1n(T n
1 y1n − xn) + c1n(u1n − xn), j(xn+1 − p)〉

≤ ‖xn − p‖ · ‖xn+1 − p‖ − b1n〈xn − T n
1 y1n, j(xn+1 − p)〉

+ c1n〈u1n − xn, j(xn+1 − p)〉

≤ 1

2
‖xn − p‖2 +

1

2
‖xn+1 − p‖2 − b1n〈xn+1 − T n

1 xn+1, j(xn+1 − p)〉

+ b1n〈xn+1 − xn, j(xn+1 − p)〉+ b1n〈T n
1 y1n − T n

1 xn+1, j(xn+1 − p)〉
+ c1n〈u1n − xn, j(xn+1 − p)〉,

which implies that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 2b1n〈xn+1 − T n
1 xn+1, j(xn+1 − p)〉

+ 2b1n〈xn+1 − xn, j(xn+1 − p)〉+ 2b1n〈T n
1 y1n − T n

1 xn+1, j(xn+1 − p)〉
+ 2c1n〈u1n − xn, j(xn+1 − p)〉

≤ ‖xn − p‖2 − b1n(1− k)‖xn+1 − T n
1 xn+1‖2 + b1n(k2

n − 1)‖xn+1 − p‖2

+ 2b1n〈xn+1 − xn, j(xn+1 − p)〉+ 2b1n〈T n
1 y1n − T n

1 xn+1, j(xn+1 − p)〉
+ 2c1n〈u1n − xn, j(xn+1 − p)〉

= ‖xn − p‖2 − b1n(1− k)‖xn+1 − T n
1 xn+1‖2 + b1n(k2

n − 1)‖xn+1 − p‖2

+ 2b2
1n〈T n

1 y1n − xn, j(xn+1 − p)〉+ 2b1n〈T n
1 y1n − T n

1 xn+1, j(xn+1 − p)〉
+ 3c1n〈u1n − xn, j(xn+1 − p)〉

≤ ‖xn − p‖2 − b1n(1− k)‖xn+1 − T n
1 xn+1‖2 + b1n(k2

n − 1)‖xn+1 − p‖2

+ 2b2
1n‖T n

1 y1n − xn‖ · ‖xn+1 − p‖+ 2b1n‖T n
1 y1n − T n

1 xn+1‖ · ‖xn+1 − p‖
+ 3c1n‖u1n − xn‖ · ‖xn+1 − p‖

≤ ‖xn − p‖2 − b1n(1− k)‖xn+1 − T n
1 xn+1‖2 + b1n(k2

n − 1)‖xn+1 − p‖2

+ 2b2
1n‖T n

1 y1n − xn‖ · ‖xn+1 − p‖+ 2b1nL‖y1n − xn+1‖ · ‖xn+1 − p‖
+ 3c1n(M + ‖xn − p‖) · ‖xn+1 − p‖.(2.2)

Next, we have the following estimations.

‖y1n − xn‖ = ‖b2n(T n
2 − xn) + c2n(u2n − xn)‖

≤ b2n‖T n
2 y2n − xn‖+ c2n‖u2n − xn‖

≤ b2n(‖T n
2 y2n − p‖+ ‖xn − p‖) + c2n(‖u2n − p‖+ ‖p− xn‖)

≤ b2nL‖y2n − p‖+ b2n‖xn − p‖+ c2nM + c2n‖xn − p‖

≤ b2nL
r−1‖xn − p‖+ b2n

r∑
i=3

cinL
i−2M + b2n‖xn − p‖+ c2nM + c2n‖xn − p‖,(2.3)
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‖xn+1 − y1n‖ = ‖a1n(xn − y1n) + b1n(T n
1 y1n − y1n) + c1n(u1n − y1n)‖

≤ a1n‖xn − y1n‖+ b1n‖T n
1 y1n − y1n‖+ c1n‖u1n − y1n‖

≤ ‖xn − y1n‖+ b1n(L + 1)‖y1n − p‖+ c1nM + c1n‖y1n − p‖

≤ ‖xn − y1n‖+ b1n(L + 1)Lr−1‖xn − p‖+
r∑

i=2

cin(L + 1)Li−2M + c1nL
r−1‖xn − p‖

+ c1n

r∑
i=2

cinL
i−2M + c1nM,

(2.4)

‖T n
1 y1n − xn‖ ≤ ‖T n

1 y1n − p‖+ ‖xn − p‖
≤ L‖y1n − p‖+ ‖xn − p‖

≤ (1 + Lr)‖xn − p‖+
r∑

i=2

cinL
i−1M,(2.5)

‖xn+1 − p‖ = ‖a1n(xn − p) + b1n(T n
1 y1n − p) + c1n(u1n − p)‖

≤ a1n‖xn − p‖+ b1n‖T n
1 y1n − p‖+ c1nM

≤ (1− b1n)‖xn − p‖+ b1nL‖y1n − p‖+ c1nM

≤ (1− b1n)‖xn − p‖+ b1nL
r‖xn − p‖+

r∑
i=2

cinL
i−1M + c1nM

≤ Lr‖xn − p‖+
r∑

i=1

cinL
i−1M.(2.6)

Substituting (2.4)-(2.6) into (2.2) and noticing the inequality‖xn − p‖ ≤ 1 + ‖xn − p‖2. Then
we get

(2.7) ‖xn+1 − p‖2 ≤ (1 + rn)‖xn − p‖2 + sn − b1n(1− k)‖xn+1 − T n
1 xn+1‖2,

where{rn} and{sn} are sequences such that
∑∞

n=1 rn < ∞,
∑∞

n=1 sn < ∞. It follows from
Lemma 1.8(i) thatlimn→∞ ‖xn − p‖ exists. Therefore,{xn} is bounded. This completes the
proof of part(i).

Now, we prove the claim (ii). It follows from (2.7) that

(2.8) b1n(1− k)‖xn+1 − T n
1 xn+1‖2 ≤ (1 + rn)‖xn − p‖2 − ‖xn+1 − p‖2 + sn,

Then
∑∞

n=1 b1n(1−k)‖xn+1−T n
1 xn+1‖2 < ∞. Notice the condition

∑∞
n=1 b1n = ∞, therefore,

lim infn→∞ ‖xn+1 − T n
1 xn+1‖ = 0.

Observe thatlimn→∞ ‖xn+1 − y1n‖ = 0 andlimn→∞ ‖y1n − xn‖ = 0, we have

‖xn − T n
1 xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n

1 xn+1‖+ ‖T n
1 xn+1 − T n

1 xn‖
≤ (1 + L)‖xn+1 − xn‖+ ‖xn+1 − T n

1 xn+1‖
≤ (1 + L)(‖xn+1 − y1n‖+ ‖y1n − xn‖) + ‖xn+1 − T n

1 xn+1‖,(2.9)
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‖xn − T1xn‖ ≤ ‖xn − T n
1 xn−1‖+ ‖T n

1 xn−1 − T1xn−1‖+ ‖T1xn−1 − T1xn‖
≤ ‖xn − T n

1 xn‖+ L‖xn − xn−1‖+ L‖T n−1
1 xn−1 − xn−1‖,(2.10)

Therefore,lim infn→∞ ‖xn − T1xn‖ = 0.

Theorem 2.2. Let X be a real Banach space andC a nonempty closed convex subset ofX.
Let Ti : C → C, i = 1, 2, · · · , r be a finite family uniformlyLi-lipschitzian asymptotically
demicontractive mappings with a sequence{kin} ⊆ [1,∞) and

∑∞
n=1(k

2
in − 1) < ∞. If

F :=
⋂r

i=1 F (Ti) 6= ∅. Suppose the sequence{xn} is defined by (1.7) and satisfying the
conditions in Lemma 2.1. Then{xn} converges strongly to a common fixed point of{Ti}r

i=1 if
and only iflim infn→∞ d(xn, F ) = 0.

Proof. The necessity is obvious. We just need to prove the sufficiency. It follows from (2.7)
that

d(xn+1, p)2 ≤ (1 + rn)d(xn, p)2 + sn, ∀p ∈ F.

By Lemma 1.8, we know thatlimn→∞ d(xn, F ) exists. With the help of inequality1 + x ≤
ex, x ≥ 0. For any integerm ≥ 1, we have

‖xn+m − p‖2 ≤ (1 + rn+m−1)‖xn+m−1 − p‖2 + sn+m−1

≤ ern+m−1‖xn+m−1 − p‖2 + sn+m−1

≤ ern+m−1ern+m−2‖xn+m−2 − p‖2 + ern+m−1sn+m−2 + sn+m−1

· · ·

≤ e
Pn+m−1

k=n rk‖xn − p‖2 + e
Pn+m−1

k=n rk

n+m−1∑
k=n

sk

≤ e
P∞

n=1 rn‖xn − p‖2 + e
P∞

n=1 rn

n+m−1∑
k=n

sk

= M
′‖xn − p‖2 + M

′
n+m−1∑

k=n

sk,(2.11)

whereM
′
= e
P∞

n=1 rn.
Sincelim infn→∞ d(xn, F ) = 0, without loss of generality, we may assume that a subse-

quence{xnk
} of {xn} and a sequence{pnk

} ⊂ F such that‖xnk
− pnk

‖ → 0 ask →∞. Then
for anyε > 0, there existskε > 0 such that

‖xnk
− pnk

‖ <
ε

2
√

2M ′
, and

∞∑
k=nkε

sk <
ε2

8M ′ ,

for all k ≥ kε.
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For anym ≥ 1 and for alln > nkε, by (2.11), we have

‖xn+m − xn‖2 ≤ (‖xn+m − pnkε
‖+ ‖xn − pnkε

‖)2

≤ 2(‖xn+m − pnkε
‖2 + ‖xn − pnkε

‖2)

≤ 2M
′‖xnkε

− pnkε
‖2 + 2M

′
∞∑

k=nkε

sk + 2M
′‖xnkε

− pnkε
‖2

+ 2M
′
∞∑

k=nkε

sk

≤ 4M
′ ε2

8M ′ + 4M
′ ε2

8M ′ = ε2.

Hence,{xn} is a Cauchy sequence. SinceC is a nonempty closed convex subset of Banach
spaceX, so there exists aq ∈ C such thatxn → q asn → ∞. Finally, we prove thatq ∈ F .
In fact, notice thatd(q, F ) = 0. Therefore, for anyε1 > 0, there exists ap2 ∈ F such that
‖p2 − p‖ < ε1. Then, we have

‖Tiq − q‖ ≤ ‖Tiq − p2‖+ ‖p2 − q‖
≤ (L + 1)‖p2 − q‖ < (L + 1)ε1.

By the arbitrary ofε1, we know thatTiq = q, for all i = 1, 2, · · · , r, i.e.,q ∈ F .

Remark 2.1. If T1 = T2 = · · · = Tr and T1 satisfies the Condition(A), then{xn} con-
verges strongly to a fixed point ofT1. In fact, with the help of Lemma 2.1(ii), we know that
lim infn→∞ f(d(xn, F )) = 0. Hence,lim infn→∞ d(xn, F ) = 0. Thus, Theorem 1.4 of Cho et
al. [7] becomes a corollary of Theorem 2.2.

Theorem 2.3.LetX be a real normed space andC be a nonempty closed convex subset ofX.
Let Ti : C → C, i = 1, 2, · · · , r be a finite family of asymptotically demicontractive mappings
with a sequence{kin} ⊆ [1,∞) and

∑∞
n=1(k

2
in − 1) < ∞, andF :=

⋂r
i=1 F (Ti) 6= ∅. Suppose

the sequence{xn} is defined by (1.7) and satisfying the conditions in Lemma 2.1. Let the family
of {Ti}r

i=1 satisfy
‖T n

i x− T n
j y‖ ≤ L‖x− y‖,

for all x, y ∈ C, n ≥ 1 and all pairs(i, j), L > 0. Suppose in addition thatT1 is demicompact,
then{xn} converges strongly to a fixed point ofT .

Proof. It follows from Lemma 2.1(ii) that

lim inf
n→∞

‖xn − T1xn‖ = 0.

So there exists a subsequence{xnj
} of {xn} such thatlimj→∞ ‖xnj

− T1xnj
‖ = 0.

SinceT1 is demicompact and{xnj
} is bounded, there exists a subsequence{xnjk

} of {xnj
}

such thatxnjk
→ q ∈ C ask →∞. Therefore,

‖q − T1q‖ ≤ ‖q − xnjk
‖+ ‖xnjk

− T1xnjk
‖+ ‖T1xnjk

− T1q‖
≤ (L + 1)‖q − xnjk

‖+ ‖xnjk
− T1xnjk

‖ → 0 ask →∞.

Hence,q ∈ F (T1). Now, we proveq is a common fixed point of{Ti}r
i=2,

‖Tjq − q‖ ≤ ‖Tjq − Tjxnjk
‖+ ‖Tjxnjk

− T1q‖
≤ L‖xnjk

− q‖+ L‖xnjk
− q‖

≤ 2L‖xnjk
− q‖ → 0 ask →∞.
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Hence,‖Tjq − q‖ = 0, for all i = 2, 3, · · · , r. Therefore,q is a common fixed point of{Ti}r
i=1,

i.e.,q ∈ F . By Lemma 1.8(ii) and (2.7), we know thatlimn→∞ ‖xn − q‖ = 0.

Remark 2.2. Theorem 2.2 and Theorem 2.3 not only extend the corresponding results of Ig-
bokwe [6], Cho et al. [7], Moore and Nnoli [8] and Hu [9] from one mapping to a finite family
of mappings, but also to a more general iteration methods.
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