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1. INTRODUCTION AND PRELIMINARIES

Let X be a real normed space ard: X — 2% denotes the normalized duality mapping

defined by:
J(@)={f e X" (x, f) = ||zl = [ f|*},2 € X,

where X* denotes the dual space &fand (-, -) denotes the generalized duality pairing.of
and X*. If X is a smooth Banach space, théims single-valued. In the sequel, we shall yse
denote the single-valued duality mapping @d") denote the set of fixed points of a mapping
T,ie ,F(T)={xe€ X : Tz =x}.

In 1996, Liu [1] introduced the notion of k-strictly asymptotically pseudocontractive and
asymptotically demicontractive mappings in Hilbert spaces as follows:

Definition 1.1. ([1]) Let C be a nonempty subset of a Hilbert spa¢eA mapping?l’ : C — C
is said to be

(i) k-strictly asymptotically pseudocontractive mapping with a sequéhge C [1,00) and
lim, . k, = 1, if there exists a constahte [0, 1) such that

(1.1) 1Tz = T"y||* < kylle — yl* + Kl (@ — T"2) — (y = T")|1%,

forall z,y € C'andn > 1.
(if) asymptotically demicontractive mapping with a sequeficg C [1, oo) andlim,, ., k,, =
1,if F(T) # 0 and there exists a constant [0, 1) such that

(1.2) 17"z — pl* < kille — plI* + Kz — T,

forallz € C,p € F(T)andn > 1.

Moreover, he proved several strong convergence theorems for approximating the fixed points
of k-strictly asymptotically pseudocontractive and asymptotically demicontractive mappings in
Hilbert spaces via the modified Mann iterative sequence introduced by Schu [2, 3].

By virtue of the normalized duality mapping, Osilike [4] first extended the concepts of k-
strictly asymptotically pseudocontractive and asymptotically demicontractive mappings from
Hilbert spaces to general Banach spaces.

Definition 1.2. ([4]) A mappingT : C' — C'is said to be

(i) k-strictly asymptotically pseudocontractive mapping with a sequéhge C [1,00) and
lim, ., k, = 1, if there exists: € [0,1) andj(z — y) € J(z — y) such that
(1.3)

(I =T")z— (I =T")y,j(r —y)) >

forall x,y € C'andn > 1.
(i) asymptotlcally demicontractive mapping with a sequefieg: C [1, co) andlim,, . k,, =
1, if F(T) # () and there exists a constant [0, 1) andj(z — p) € J(x — p) such that

(1.4) (2 =T"z,j(x —p)) =

forallz € C,p € F(T)andn > 1.

(=R =T")x (I—T”)yl|2—%(ki—l)\|x—y|l2,

l\l)lr—A

1 . 1
S =Bl = T = 5 (K2 = 1)l = o,

Furthermore,I" is said to be uniformly L-lipschitizian mapping, if there exists a constant
L > 1 such that

[Tz —T"y|| < Lflz —yl,
forall z,y € C andn > 1.
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Remark 1.1. (i) In the Hilbert spaces| (1.1) and (IL.2) are equivalenf id (1.3)[anf (1.4), respec-
tively.

(i) If T"is k-strictly asymptotically pseudocontractive mapping, thes uniformly L—Lipschitzian
mapping(cft. [6], [9]).

The following theorem is due to Osilike and Aniagbosor [5].

Theorem 1.1.([5]) Letq > 1 and X be a realg—uniformly smooth Banach space. l@the a
closed convex subset &fand7T" : C' — C' a completely continuous uniformly—lipschitizian
asymptotically demicontractive mapping with a sequelc& [1, co) satisfyingd > | (k2 —
1) < oo. Let{a,}, {b.},{c.},{a,},{b.} and {c,} be real sequences i, 1] satisfying the
conditions:
(i) an+by+cp=1=a,+b,+c;
(i) 0 <& < cy(b,) (L + Lb,)? < L[g(1 — k)(1+ L)~@2)] — ¢, forall n > 1 and for
somes > 0;
(i) 0% by < 00,307 e, <00, ¢, < o0
Let{u,} and{v,} be bounded sequencesihand let{x, } be the sequence generated from
an arbitrary x; € C by
Yn = QpTy + bnTnxn + Cpp, N > 17

(1.5) , ) )
Tpg1 = Ap Ty + bnTnyn + €, Un, N > 17

converges strongly to a fixed point’Bf

In 2002, Igbokwel[6] extended Theorém|1.1 of Osilike and Aniagbosor [5] frony reahiformly
smooth Banach spaces to arbitrary real Banach spaces. More precisely, he proved the following
main results.

Theorem 1.2. ([6]) Let X be a real Banach space and a nonempty closed convex sub-
set of X. LetT : C — C be a completely continuous uniformly L-lipschitizian asymptot-
ically demicontractive mapping with sequendg,} C [1, c0) such thatlim,_.., k, = 1 and
S (k2—1) < oc. Letthe sequenclr, } be defined by (1}5) ani, }, {b.}, {ca}, {a,,}, {b,}
and{c,} be real sequences [f, 1] satisfying
® a,+b,+c,=1 :a;l+b;l+c;z;

(i) Yoori b, =00, 302, (b,)* < oo

(i) >20° ¢, < 00,327 b, < 00, andd > ¢, < oo.
Then{z, } converges strongly to a fixed point’6f

By using new analysis technique, Cho et al. [7] established several strong convergence the-
orems for asymptotically demicontractive mapping in arbitrary real normed linear spaces and

Banach spaces which generalized Theofem 1.2 of Igbokwe [6]. They proved the following
theorems.

Theorem 1.3.([7]) Let X be areal normed linear spacé€), be a nonempty closed convex subset
of X andT : C' — C be a completely continuous and unifornilyLipschitzian asymptotically
demicontractive mapping with a sequerég } C [1,c0) such thaty_°  (k, — 1) < oo. Let
the sequencéz, } be defined by (1]5) with the restrictions

o0 oo oo o0
an = 09, Z(bn)2 < 00, ch < 00, ch < 0.
n=1 n=1 n=1 n=1

Then{z, } converges strongly to a fixed point’6f
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A mappingT : C — C with F(T) # () is said to satisfy Condition(A)[12] if there exists a
nondecreasing functiofi: [0,00) — [0, c0) with f(0) = 0, f(¢) > 0 for all ¢ > 0 such that

forall 2 € C, whered(z, F(T)) = infpepr) ||z — pl|.

Theorem 1.4.([[7]) Let X be a real Banach spacé; be a nonempty closed convex subseX of
andT : C' — C be a uniformlyL-Lipschitzian asymptotically demicontractive mapping with a
sequencgk,} C [1,00) such thaty >~ (k, — 1) < co. Let the sequencgr,} be defined by
(1.5) with the restrictions

o0 oo oo o0
Zb” = 09, Z(bn)2 < 00, ch < 00, ch < 0.
n=1 n=1 n=1 n=1

Suppose in addition that' satisfies the Condition(A), thefx,,} converges strongly to a fixed
point of T'.

In 2005, Moore and Nnol[|8] proved a necessary and sufficient condition for approximating
fixed point of asymptotically demicontractive mapping. More precisely, they got the following
results.

Theorem 1.5.([8]) Let X areal Banach space arii: X — X be a uniformlyL—Lipschitzian
asymptotically demicontractive mapping with sequeficg} C [1,00) and F(T) # . Let
{z,} be the sequence generated from an arbitrarye X by

Tpi1 = (1 —ap)x, + @, Tz, n>1.
Let{z,}.>1 C [0,1] be a real sequence suchtha}> a2 < coandd 7| a, (k2 — 1) < cc.
Then{z,} converges strongly to a fixed pointBfif and only iflim inf,, ., d(z,, F(T)) = 0.

In 2008, Hu[9] proved several strong convergence theorems for asymptotically demicontrac-
tive mapping via the Noor [10] iterative sequences with errors, which improved the results of
Igbokwe [6], Moore and Nnoli [8] and Cho et al.| [7].

Theorem 1.6. ([9]) Let X be a real normed linear space and a nonempty closed convex
subset ofX. LetT : C' — C be a demicompact and uniformly—Lipschitzian asymptoti-
cally demicontractive mapping with a sequerdég} C [1, c0) such thatlim,, ., k, = 1. Let

{a,}, {bn}, {cn}, {a,}, {b.}, {c,}, {a,}, {b } and{c,} be real sequences if, 1] satisfying
() an +by+chn=a,+b, +c,=a, +b +c, =1;
(i) D200, 02 < 00,32 e <00, 300 buby, < 00,357 | b, = 00;
(i) D02y (b,)? < 00,302 bye, < 00,30 byb, < 00,307 ¢, < 00
(V) 3202 bk — 1) < 00, 3202 by (ki — 1) < o0,
Let{u,}, {v,} and{w,} be bounded sequences@hand let{x,} be the sequence generated
from an arbitraryx,; € C by
2 = a;;a;n + b:LT”mn + c;;wn, n>1,
(1.6) Yn = a;xn + b;T”zn + c;vn, n>1,
Tpi1 = @pXp + b, Ty, + cpuy,n > 1,
converges strongly to a fixed pointBf
Theorem 1.7.([9]) Let X be a real Banach space arid a nonempty closed convex subset of

X. LetT : C' — C be a demicompact and uniformly—Lipschitzian asymptotically demicon-
tractive mapping with a sequengé,,} C [1, c0) such thatlim,_.., k, = 1. Let the sequence
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{z,} be as in Theorern 1.6. Then,,} converges strongly to a fixed point Bfif and only if
liminf, .. d(x,, F(T)) = 0.

The multistep iterative sequence with errors which studied by Huang [11] is defined as fol-
lows : Let{T;},_, be a finite family of asymptotically mappings éh For anyz; € C, {z,}
is defined by

%160,

(17) Tp+1 = A1pTn + blnTlnyln + CinU1in,

Yin = a(+1)nTn + 0G40 TG40 YG+1)n + CG+1nUG+1n, 1 2 1,
where{a;, }, {b:, } and{c;, } are real sequencesiin 1] satisfyinga;, +b;,+ci, = 1, foranyi =
1,2,---,randn > 1. {u;,},i = 1,2,--- | r are bounded sequencesin; = 1,2,--- ,r — 1,
Yrn = Tn-

Remark 1.2. (i) If r =2, Ty =T, = T, then [1.7) reduces tp (1.5).
(i) If r=3,T1 =T, =T5 =T, then [1.¥) reduces to the Noor iterative sequences studied
by Hu [9].

Motivated and inspired by theses results, the purpose of this paper is to establish several
strong convergence theorems for the multistep iterative sequence with errors for a finite fam-
ily of asymptotically demicontractive mappings in arbitrary normed linear spaces and Banach
spaces. Our results improve and generalize the corresponding results of Osilike [4], Osilike and
Aniagbosorl[5], Igbokwe [6], Cho et al.|[7], Moore and Nnali [8], Hu [9] and others.

In the sequel, we shall need the following definitions and results.

A mappingT : C — (' is said to be demicompact if for any bounded sequengg in
C such that||z,, — Tz,|| — 0 asn — oo, there exists a subsequenge, } of {z,} such
that {x,, } converges strongly ta* ¢ C. T is said to be completely continuous if for every
bounded sequencgr,} , there exists a subsequenge,, } of {z,} such that the sequence
{T'z,,} converges to some element of the rangé'of

Remark 1.3. The following results are due to [12]. A mappifigis completely continuous,
then it must be demicompact, andlifis continuous and demicompact, then it must satisfy the
Condition(A).

Lemma 1.8. ([13]) Let{a,}, {b.}, {\.} be sequences of nonnegative real numbers satisfying
the inequality
Ap41 S (1 + )\n)an =+ bna n 2 1.

If > A < +00,> 07 b, < 400, then (i) lim,_. a,, exists. (i) Ifliminf, . a, = 0, we
havelim,, ., a, = 0.

2. MAIN RESULTS

In this section, we shall use the following notations: £&t}!_, be a finite family of asymp-
totically demicontractive self mappings 6hwith sequencesék;,,} C [1, c0) andlim,, ., ki, =
1, foralli = 1,2,--- ,r, if F(T;) # 0 and there exist constants € [0,1) andj(z — p) €
J(xz — p) such that

. . 1
(v =Tz, j(x —p)) 2 5(L=ki)llz = T"|* = (k5 = Dll= — I,

N | —

forallx € C,pe F(T;)andi = 1,2,--- | r.
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Letk = maxlsigr{ki}, kn = maxlsig{km}, then
| 1 o
(@~ TP, —p) 2 21— K)o — Tl — 202 = Dlla = oI,

First, we prove the following lemma.

Lemma 2.1.Let X be areal normed space arila nonempty convex subsetof LetT; : C' —
C,i=1,2,--- rbeafinite family of uniformly.;-Lipschitzian asymptotically demicontractive
mappings with a sequenéé;,, } C [1,00) andd "> | (k7,—1) < co. LetF :=(_, F(T;) # 0.
Suppose the sequenge, } is defined by (1]7) and satisfying the following conditions:

(1) Doy bin = 00,37, b, < 00

(i) D207 bop <00, 07 Cip < 00,0 =1,2,--- 7.

Then
(i) lim,, . ||z, — pl| exists for allp € F;
(i) liminf, . ||z, — Thz,| = 0.

Proof. Letp € F andL = max;<;<, L;. Since{u;,,i = 1,2,--- ,r} are bounded sequences in
C, so there exists a constait > 0 such that

M = max {sup || win —pH} :
n>1

1<i<r

By (1.7), we have

[Ye—1yn—pll = llarn(zn — p) + b (T30 — p) + con(urm — D
S aronn _p” + anL”In _pH + CT”M
< (1= bl = pll + brn Ll — pll + con M
< Lljzn = pll + ¢ M,

and
|yr—2m — Pll < ag—vyllTn — 2l + 01y LllYe—1)n — Pl + cr—1ynM
< ag—1ynl|Tn = Pl + bg—vyuL? 20 — pll + crn LM + cr_1jn M
< Ll —pl + Y el CTVM.
1=r—1
Furthermore,

||y(7“73)n - p” S a(r72)n|lxn - p” + b(r72)nL||y(r72)n - p” + C(er)nM
< a(r—2)nHwn - pH + b(r—2)nL3H$n - pH + cr‘anM + C(r—l)nLM + C(r—2)nM

S Lan —pll+ D cnlUIM.

i=r—2

By induction, we obtain

(2.1) lyin = pll < L7 Hlww = pll + > cin L' > M.
1=2
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On the other hand, we get from (IL.7) that

[Zns1 = pI* = [|ain@n + b1 TTY1n + Crntin — ||

= ||lzn — 4 b1n(T7y1n — Tn) + C1n(U1n — @) |1?
= (Tp — p+ b1n(T7Y1n — xn) + C1n(Urn — Tn), J (X1 — D))
< lzn = pll - [[2ns1 = pll = b1azn — T7Y1ns j(Tnt1 — p))

+ Cln<u1n - xnvj(xn+1 - p)>
1 1 " )
< len =pl” + Slenin =PI = binlenin = Tl'wnga, j(20s1 = )

+ bln <xn+1 - $n7j($n+1 - p)> + bln <T1ny1n - T{an+17j(xn+1 - p)>

+ Cln<u1n - xnaj(xn—‘rl - p)>a

which implies that

[@n41 —pl* < [l —pH2 = 201, (Tns1 — TV Tpt1, § (Tp1 — p))

+ 2010 (@01 — Ty J(T1 — D)) + 2012 (TT Y10 — 17 Tnt1, j(Tnt1 — p))
+ 2¢1,(Ury, — Tpy J(Tp1 — D))

<l = plI* = b1a(1 = B)| 201 — T @nia|* + bin(kyy = Dl zns1 — pl1?
+ 2010 (@01 — Ty J(T1 — D)) + 2015 (TT Y10 — 17 Tnt1, j(Tnt1 — p))
+ 2¢1, (U1, — Tp, J(Tp1 — D))

= [lzn = plI* = 01n(1 = B)|2ps1 — T @nia [|* + bin (k7 — D|zns1 — p]?
+ 208 (T Y10 — @, § (@1 = D)) + 2010 (TT Y10 — T Tpp1, § (201 — )
+ 31 U1y — Tp, J(Tnr1 — D))

<l = pl* = b1n(1 = B)|2ps1 — T @nia|* + bin(kyy — D241 — p]1?
+ 208, [Ty 1n — @l - 1Tns1 = Pl + 2601 1T Y10 — T @i || - [[2040 — D]
+ 3crnllurn — @all - [[201 — p|

<l = pl* = b1a(1 = B)|2ps1 = T @nia |* + bin(ky = D[ 2ns1 — pl?
+ 208, [ 17y 1n — @l - 1201 = DIl + 2610 Ll Y10 — || - l2ns1 — pl|

2.2) + 361 (M + [ — pll) - |01 — 1]

Next, we have the following estimations.

1910 = Znll = 1020 (15" — 20) + con(uzn — )|
< b2n||T2ny2n - an + C2n||u2n - an
< bon([[T5'Y2n — Pl + [lzn = pll) + con(luzn — pll + [Ip — 2nll)
< bapL||lyan — pll + banllzn — pll + c2n M + c2n |z — pl|

r
(23) S b2nLril”xn - p” + b2n Z CinLZ;QM + b2n||xn - pH + C2nM + CZonn - p“7
=3
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||xn+1 - ylnH - ||a1n(~rn - yln) + bln(Tlnyln - yln) + Cln(uln - yln)”
S alonn - ylnH + blnHTlnyln - ylnH + ClnHuln - ylnH
< wn = yinll + b1n(L + 1) ||y1n — pll + c1nM + cin||yin — ||

< wn — yinl| + b (L + DLz — pl| + Z Cin(L 4+ 1)L"2M + ¢, L™ |2, — p)|

=2
(2.4)
-+ Cin Z CmLi_2M + ClnM,
=2
|77 Y10 — 2ol < | T7Y1n — Pl + |20 — D]
< Ly — pll + llzn — pll
(2.5) <@+ LN —pll+ Y el ™M,
=2
[Zn11 — Pl = lla1n(¥n — ) + b1a(TTY1n — P) + c1n(uin — )|
S alonn - pH + blnHTlnyln - pH + ClnM
< (1 = bun)l|7n = pll + b1 Llly1n — pll + c1nM
< (1= bu)llwn = pll + bin L |z — pll + > cin L M + 1, M
=2
(2.6) <Ll —pll + D el ™' M.

i=1

Substituting[(24)F(2]6) intd (2.2) and noticing the inequallity, — p|| < 1 + ||z, — p||>. Then

we get
@7 flwar = pI* < L+ ra)llzn = plP + s0 = bia(l = K)llwnrs — T,

where{r,} and{s,} are sequences such tha}”  r, < co,> s, < oo. It follows from
Lemma[ 1.8(i) thatim,, ., ||z, — p|| exists. Therefore{x,} is bounded. This completes the
proof of part(i).

Now, we prove the claim (ii). It follows fronj (2] 7) that

2.8)  bia(l = E)llznss — Tz |* < (L +r0) 20 = plI* = 20 — plI* + sn,

Thend > b1, (1—k)||2n1 — T 2n41]|* < oo. Notice the conditiory > | by,, = oo, therefore,
liminf, .o ||€ns1 — T @ni1|| = 0.
Observe thaltim,, .. || Zn+1 — y1n|| = 0 @andlim, .. ||y1n — || = 0, we have
|20 = TTzn |l < |20 — o || + 201 — TV Tl + 117 @01 — T2
< (A4 D)z — ol + (201 — T T |
(2.9) < A+ L)([[zns1 — yinll + lyin — 2all) + 201 — TV @01 [l
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|20 — Than|| < |2 — TV Tn || + | TV 201 — Thzp |l + [Tz — Thz,|
(2.10) < — Tyall + Ll — a4+ LITE 20y — 2|

Thereforeliminf,, ., ||z, — Thz,|| = 0.
|

Theorem 2.2. Let X be a real Banach space ard a nonempty closed convex subsetXof
LetT; : C — C,i = 1,2,---,r be a finite family uniformly_;-lipschitzian asymptotically
demicontractive mappings with a sequerég,} C [1,00) and > 7 (kZ, — 1) < oo. If

F = N_, F(T;) # 0. Suppose the sequen{e,} is defined by7) and satisfying the
conditions in Lemmpa 2.1. Them:,} converges strongly to a common fixed poin{&f};_, if
and only iflim inf,, ., d(z,, F') = 0.

Proof. The necessity is obvious. We just need to prove the sufficiency. It follows (2.7)
that

d<xn+lap)2 S (1 + Tn)d($n7p)2 + Sn, vp € F

By Lemma[ 1.8, we know thdim,, .., d(z,, F') exists. With the help of inequality + = <
e”,x > 0. For any integermn > 1, we have

Hxn+m - pH2 < (1 + 7an+mfl)Hxn+mfl - pH2 + Sntm—1
S ern-Hn_l ”anrmfl - pH2 + Sn+m—1

T 1,7 _2 2 T _1
S e mtmoleintm Hxn—l—m—Q - p” + et Sn+m—2 + Sn+m—1

n+m—1
n+m—1

< Xy, — p? 4 ZE N
k=n

n+m—1
< Xz, — pfP+ X S
k=n
n+m—1
(2.11) = M|z, —pl + M Y s,
k=n

whereM' = eXn=1"n,

Sinceliminf,, . d(z,, F') = 0, without loss of generality, we may assume that a subse-
quence{x,, } of {z,} and a sequencl,, } C F such thal|z,, — p,, || — 0 ask — oco. Then
for anye > 0, there existg. > 0 such that

IS
ne — Pn < —, and < —,

k=np,

forall & > k..
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For anym > 1 and for alln > n;_, by (2.11), we have

[Znm = Zall* < (120sm = Pop | + 1120 = P, )?

< 2(|#nsm = P 1+ 20 = P, |7)

< 2M/Hxnk5 = Pny, H2 + 2M’ Z Sk T 2M’Hxnk5 ~ Pru, H2

k:nks
—|—2Ml Z Sk
k:nks
’ 52 / €2
<AM —— +4M 2
=er T s T F

Hence,{z,} is a Cauchy sequence. Sin€eis a nonempty closed convex subset of Banach
spaceX, so there exists a € C such thatr,, — ¢ asn — oo. Finally, we prove thay € F'.
In fact, notice thati(q, F') = 0. Therefore, for any; > 0, there exists a, € F' such that
lp2 — p|| < &1. Then, we have
1Tiq — qll < ||Tiq — pall + llp2 — 4|l
< (L+Dlp2 —qll < (L +1)er
By the arbitrary of:;, we know thatl;q = ¢, forall: =1,2,--- ,r,l.e.,q € F.
|

Remark 2.1. If T} = T, = --- = T, andT; satisfies the Condition(A), thefw,} con-
verges strongly to a fixed point @f. In fact, with the help of Lemmp 2.1(ii), we know that
liminf, e f(d(z,, F)) = 0. Henceliminf, . d(z,, F) = 0. Thus, Theorerh 1]4 of Cho et
al. [7] becomes a corollary of Theorém[2.2.

Theorem 2.3.Let X be a real normed space arid be a nonempty closed convex subseX of
LetT; : C — C,i =1,2,--- ,r be afinite family of asymptotically demicontractive mappings
with a sequencék;,} C [1,00) and) ">  (k2, — 1) < oo, andF :=,_, F'(T;) # 0. Suppose
the sequencéz,, } is defined by (1]7) and satisfying the conditions in Lefnmla 2.1. Let the family
of {T;}!_, satisfy

[T = T7yll < Lz — yll,
forall z,y € C,n > 1 and all pairs(i, j), L > 0. Suppose in addition th&f, is demicompact,
then{x,} converges strongly to a fixed pointDf

Proof. It follows from Lemmg 2.[L(ii) that
liminf ||z, — Tyz,|| = 0.
So there exists a subsequeres, } of {z, } such thalim;_. [|z,, — T12,,| = 0.

SinceT; is demicompact andlz,,; } is bounded, there exists a subsequepcg } of {z,, }
such thatcnjk — g € C'ask — oo. Therefore,

lg = Tagll < llg = n;, | + ll2n,, = Than,, [| + [Thzn,, —Thd]
< (L+Dllg—xn | + [0, —Tizn, || — 0ask — oo.
Henceg € F(T3). Now, we provey is a common fixed point of7;}7_,,
1T5a = all < 1759 — Tyn, [l + [ Tjzn;, — Trdl
< Llzy,;, —qll + Ll|zn,, — 4|
<2L||zy;, —qll — 0ask — oo.

AJMAA Vol. 7, No. 2, Art. 10, pp. 1-11, 2011 AJMAA


http://ajmaa.org

APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY DEMICONTRACTIVE MAPPINGS 11

Hence,|T;q —¢|| = 0, foralli = 2,3,--- ,r. Thereforeg is a common fixed point of7;}/_,,
i.e.,q € F. By Lemmd 1.B(ii) and(2]7), we know thhtn,, ., ||z, — ¢|| = 0.
|

Remark 2.2. Theoren{ 22 and Theorgm 2.3 not only extend the corresponding results of Ig-
bokwe [6], Cho et al.[]7], Moore and Nnoli[[8] and Hu [9] from one mapping to a finite family
of mappings, but also to a more general iteration methods.
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