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ABSTRACT. Forx ∈ (0, 1), we have

x

[Γ(x + 1)]1/x
<

(
1 +

1
x

)x

<
x + 1

[Γ(x + 1)]1/x
.

Forx ≥ 1, (
1 +

1
x

)x

≥ x + 1
[Γ(x + 1)]1/x

,

and equality occurs forx = 1.
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1. I NTRODUCTION

It is well known that the classical gamma functionΓ(z) is defined forRe z > 0 as

(1.1) Γ(z) =

∫ ∞

0

tz−1e−t dt.

The logarithmic derivative of the gamma functionΓ(x) for x > 0 can be expressed [15, p. 16]
as

(1.2) ψ(x) =
Γ′(x)

Γ(x)
= −γ +

∫ ∞

0

e−t − e−xt

1− e−t
dt,

whereγ = 0.57721566 · · · denotes the Euler-Mascheroni constant, which is known in literature
as psi function or digamma function. They are two of the most important functions in analysis
and its applications. The history and the development of this function are described in detail in
[8].

In 1995, “G. D. Anderson et al [5] proved that the functionf(x) = x(lnx− ψ(x)) is strictly
decreasing and strictly convex on(0,∞)" [4]. Moreover, they showed that

(1.3) lim
x→0

f(x) = 1 and lim
x→∞

f(x) = 1/2.

>From (1.3) and the monotonicity off Alzer concludes

(1.4)
1

2x
< lnx− ψ(x) <

1

x
, x > 0,

which extends a result of H. Minc and L. Sathre [16], who established (1.4) forx > 1 and
used it to prove several discrete inequalities involving the geometric mean of the firstn positive
integers. Refinements of (1.4) were given by L. Gordon [10]. H. Alzer provided in [4] an
extension of the result given by Anderson et al, and proved thatf is not only strictly decreasing
and strictly convex, but even strictly completely monotonic on(0,∞). In [20], the authors
proved that the function1

x
ln Γ(x + 1) − lnx + 1 is strictly completely monotonic on(0,∞).

A similar result was established in [29]: The function1 + 1
x

ln Γ(x + 1)− ln(x + 1) is strictly
completely monotone on(−1,∞) and tends to1 asx→ −1 and to0 asx→∞.

In 1985, D. Kershaw and A. Laforgia [13] showed that the functionx[Γ(1 + 1
x
)]x is strictly

increasing on(0,∞), which is equivalent to the function[Γ(x+1)]1/x

x
being strictly decreasing on

(0,∞). In addition, it was proved that the functionx1−γ[Γ(1 + 1
x
)x] decreases for0 < x < 1,

which is equivalent to[Γ(1+x)]
1
x

x1−γ being increasing on(1,∞).

In [7, 21], it is proved that the functionf(x) = [Γ(x+1)]1/x

x+1
is strictly decreasing and strictly

logarithmically convex in(0,∞) and the functiong(x) = [Γ(x+1)]1/x
√

x+1
is strictly increasing and

strictly logarithmically concave in(0,∞).
In [24, 25], among other things, some strictly completely monotonic properties of the func-

tions [Γ(x+1)]1/x

x
and [Γ(x+1)]1/x

x+1
are obtained.

It is well-known that the sequence
{(

1 + 1
n

)n}
n∈N is increasing. Furthermore, the authors in

[22] obtained some general results: The function
(
1+ 1

x

)x+α
increases withx > 0 if and only if

α ≤ 0 and decreases inx > 0 if and only if α ≥ 1
2
; The necessary and sufficient conditions of

the sequencean =
(
1+ 1

n

)n+α
being decreasing or being increasing areα ≥ 1

2
orα ≤ 2 ln 3−3 ln 2

2 ln 2−ln 3
,

respectively. Letbn =
(
1 + α

n

)n+β
for α > −1 andα 6= 0 andF (x) =

(
1 + α

x

)x+β
for

x > max{0,−α} andα 6= 0, then the functionF (x) increases if and only ifα > 0 andβ ≤ 0,
or α < 0 andα ≤ 2β; the functionF (x) decreases if and only if2β ≥ α > 0 or β ≤ α < 0;
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INEQUALITIES RELATING TO THE GAMMA FUNCTION 3

the sequencebn increases if and only ifα > 0 andβ ≤ ln(1+α)−2 ln(1+α/2)
ln(1+α/2)−ln(1+α)

, or−1 < α < 0 and

α ≤ 2β; the sequencebn decreases if and only if−1 < α < β ≤ ln(1+α)−2 ln(1+α/2)
ln(1+α/2)−ln(1+α)

andα < 0,
or 0 < α ≤ 2β.

In 1997, H. Alzer [4] proved that ifk ≥ 1 andn ≥ 0 are two integers, then we have for all
realx > 0

(1.5) Sk(2n, x) < (−1)k+1ψ(k)(x) < Sk(2n+ 1, x),

where

Sk(p, x) =
(k − 1)!

xk
+

k!

2xk+1
+

p∑
i=1

[
B2i

k−1∏
j=1

(2i+ j)

]
1

x2i+k
,

Bi for i = 0, 1, 2, . . . are Bernoulli’s numbers. In particular, taking in (1.5)k = 1 andn = 0
we get

(1.6)
1

x
+

1

2x2
< ψ′(x) <

1

x
+

1

2x2
+

1

6x3
, x > 0.

It is worth noting that inequality (1.6) is first obtained by Gordon [10]. Please also refer to [4,
p. 384].

From

(n+ 1)n

n!
=

(
1 +

1

1

) (
1 +

1

2

)2

· · ·
(

1 +
1

n

)n

≤
(

1 +
1

n

)n2

, n ≥ 1,

we obtain that

(1.7)
n+ 1

n
√
n!

≤
(

1 +
1

n

)n

< e, n ≥ 1.

By using (1.7), G. H. Hardy [12] presented a proof of Carleman’s inequality

(1.8)
∞∑

n=1

(a1a2 · · · an)1/n < e
∞∑

n=1

an,

wherean ≥ 0 for n = 1, 2, . . . and0 <
∑∞

n=1 an <∞.
SinceΓ(n + 1) = n!, limn→∞

(
1 + 1

n

)n
= e andlimn→∞

n
n√

n!
= limn→∞

n+1
n√

n!
= e, hence it

is natural to ask whether
(
1 + 1

n

)n
and n

n√
n!

or n+1
n√

n!
can be compared. This is indeed possible!

The following results give affirmative answers.

Theorem 1. Letx > 0, then we have

(1.9)

(
1 +

1

x

)x

>
x

[Γ(x+ 1)]1/x

and

(1.10) lim
x→∞

x

[Γ(x+ 1)]1/x
= e.

Theorem 2. Letx > 1, then we have

(1.11)

(
1 +

1

x

)x

>
x+ 1

[Γ(x+ 1)]1/x
.

The inequality(1.11)is reversed for0 < x < 1.

Remark1. Inequality (1.11) forx > 1 is already proved in [2, Theorem 3] with the same proof
as in [2, p. 7].
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Remark2. Recently, the second author and B.-N. Guo further obtain the following and more
general results: The function[Γ(x+1)]1/x

x

(
1+ 1

x

)x
is strictly logarithmically completely monotonic

in (0,∞).

Remark3. There exist a lot of literature investigating the behaviour of similar functions involv-
ing the gamma and incomplete functions, for example, [2, 3, 4, 6, 11, 17, 18, 19, 23, 26, 27, 28]
and references therein.

2. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1.Taking logarithm and rearranging shows that inequality (1.9) is equivalent
to

f(x) , x2 ln(x+ 1)− (x2 + x) ln x+ ln Γ(x+ 1) > 0, x > 0.

Differentiatingf(x) and applying the right hand side inequality of (1.4) yields

f ′(x) = 2x ln

(
1 +

1

x

)
+ ψ(x+ 1)− lnx+

1

x+ 1
− 2

> 2x ln

(
1 +

1

x

)
+ ln(x+ 1)− lnx− 2

= (2x+ 1) ln

(
1 +

1

x

)
− 2.

Using the following inequality in [14, p. 367]:

(2.1) ln

(
1 +

1

x

)
>

2

2x+ 1
, x > 0,

we obtain thatf ′(x) > 0, and thenf(x) > limx→0 f(x) = 0 for x > 0.
Using the asymptotic expansion [9]

(2.2) ln Γ(x) =

(
x− 1

2

)
lnx− x+ ln

√
2π +

1

12x
+O

(
1

x3

)
asx→∞

and from

ln
x

[Γ(x+ 1)]1/x
=
x+ 1

x
− ln

(
1 +

1

x

)
− ln(x+ 1)

2x

− ln
√

2π

x
− 1

12x(x+ 1)
+

1

x
O

(
1

x3

)
→ 1 asx→∞,

we conclude that formula (1.10) holds. The proof of is complete. �

Remark4. Notice that, in Theorem 1, the proof oflimx→∞
x

x
√

Γ(x+1)
= e follows immediately

from the asymptotic formula 6.1.39 in [1, p. 257].

Proof of Theorem 2.Define forx > 0

f(x) = x2 ln

(
1 +

1

x

)
− x ln(x+ 1) + ln Γ(x+ 1).

Sincef(0) = f(1) = 0, in order to prove our theorem it is sufficient to show thatf ′(x) > 0 for
x ≥ 1 andf ′′(x) > 0 for 0 < x ≤ 1. In other words, the functionf is strictly increasing on
[1,∞) and strictly convex on(0, 1]. Differentiation yields

f ′(x) = 2x ln

(
1 +

1

x

)
− 2x

x+ 1
+ ψ(x+ 1)− ln(x+ 1),
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f ′′(x) = 2 ln

(
1 +

1

x

)
− 3

x+ 1
− 2

(x+ 1)2
+ ψ′(x+ 1).

Using the inequalities in [10]

(2.3) ψ(x) > lnx− 1

2x
− 1

12x2
, x > 0

and (2.1), we have

f ′(x) >
4x

2x+ 1
− 2x

x+ 1
− 1

2(x+ 1)
− 1

12(x+ 1)2

=
12x2 + 4x− 7

12(x+ 1)2(2x+ 1)
> 0, x ≥ 1.

Using the left-hand inequality of (1.6) we have

f ′′(x) > 2 ln

(
1 +

1

x

)
− 3

x+ 1
− 2

(x+ 1)2
+

1

x+ 1
+

1

2(x+ 1)2

= 2 ln

(
1 +

1

x

)
− 2

x+ 1
− 3

2(x+ 1)2
, φ(x).

A simple computation yields

φ′(x) =
x− 2

x(x+ 1)3
< 0, 0 < x ≤ 1.

Hence, we haveφ(x) > φ(1) = 0.01129436 . . . for 0 < x ≤ 1, and thenf ′′(x) > 0 for
0 < x ≤ 1. The proof is complete. �
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