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1. I NTRODUCTION

The term ‘hypergeometric series’ was first used by John Wallis (1655) in his book ‘Arith-
metica Infinitorum’. Hypergeometric series were studied by the mathematician Euler but a
systematic treatment was given by the famous mathematician Gauss [4] in 1812. He defined his
series as follows:

1 +
ab

c

z

1!
+

a(a + 1) b(b + 1)

c(c + 1)

z2

2!
+ · · ·

Here the parametersa, b andc may be real or complex numbers with an exception thatc should
not be zero or a negative integer. Also,z is called the variable of the series.

The above series is called Gauss series or simply the ordinary hypergeometric series and is

usually represented by the symbol2F1

[
a, b

c
; z

]
and is known as the hypergeometric function.

Thus we have

(1.1) 2F1

[
a, b

c
; z

]
=

∞∑
n=0

(a)n(b)n

(c)n

z

n!
,

where(a)n denotes the well-known Pochhammer symbol (or the raised factorial or the shifted
factorial, since(1)n = n!) defined for any complex numbera(6= 0) by

(a)n =

{
a(a + 1) . . . (a + n− 1), n ∈ N
1, n = 0.

From the definition, it is clear that:

(i) 2F1

[
a, b

c
; z

]
is symmetric in the numerator parametersa andb.

(ii) If one or both of the numerator parameters equal to zero, then the value of2F1 is one.
(iii) For a = 1 andb = c or for b = 1 anda = c, the series reduces to the well-known

Geometric series and thus from this fact this series is called ‘Hypergeomtric series’.
(iv) For the numerator parametersa or b or both is a negative integer, then the series becomes

a polynomial (i.e. containing a finite number of terms) and question of convergence does
not arise.

Here, we verify that the series (1.1)
(i) is convergent for all value ofz provided|z| < 1 and divergent provided|z| > 1.

(ii) is convergent forz = 1 provided Re(c− a− b) > 0 and divergent provided Re(c− a−
b) ≤ 0.

(iii) is absolutely convergent forz = −1 provided Re(c− a− b) > 0 and convergent but not
absolutely provided−1 < Re(c−a−b) ≤ 0 and divergent provided Re(c−a−b) < −1.

It is interesting to mention that limiting case of (1.1) is worth of mentioning here. For this,
if we replacez by z

b
in (1.1) and take the limit asb → ∞, then since(b)n

bn zn → zn, we arrive
at the following series which is in the literature known as the Kummer’s series or the confluent
hypergeometric series [9] viz.

(1.2) 1F1

[
a
c
; z

]
=

∞∑
n=0

(a)n

(c)n

zn

n!
.
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Moreover, it is evident that almost all elementary fuctions available in mathematics or math-
ematical physics are special cases or limiting cases of the hypergeometric function2F1 or the
confluent hypergeometric function1F1. For detail see [16].

Next, we consider the definition of the generalized hypergeometric function [1, 17] withp
numerator andq denumerator parameters by the following expression:

(1.3) pFq

[
a1, · · · , ap

b1, · · · , bq
; z

]
=

∞∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
,

For more details about its convergence conditions (including absolutely convergence) and its
various properties, we refer the standard texts [17].

It is well known that whenever a hypergeometric function or a generalized hypergeometric
function reduces to the gamma function, the results are very important from the application
point of view. Thus the classical summation theorems such as those of Gauss, Gauss’s second,
Kummer and Bailey for the series2F1; Watson, Dixon, Whipple and Saalschuitz for the series
3F2 and generalizations obtained earlier br Rakha and Rathie [18], Lavoie, et al. [10, 11, 12]
and Kim, et al. [7] play an important role. In this regard, we refer an interesting paper by
Bailey [2]. On the other hand, transformation formulas (including quadratic and cubic) play an
important role in the theory of hypergeometric and generlized hypergeometric function.

In our present investigation, we are interested in the following transformation formula which
is in the literature known as the Kummer’s second theorem [3] viz.

(1.4) e−
x
2 1F1

[
α
2α

; x

]
= 0F1

[
−

α + 1
2

;
x2

16

]
.

Kummer [9] has obtained the result (1.4) from the theory of differential equations. Bailey [2]
established the results (1.4) with the help of the following Gauss’s second summation theorem
[3] viz.

(1.5) 2F1

[
a , b

1
2
(a + b + 1)

;
1

2

]
=

Γ
(

1
2

)
Γ

(
1
2
a + 1

2
b + 1

2

)
Γ

(
1
2
a + 1

2

)
Γ

(
1
2
b + 1

2

) .

MacRobert [13] established Kummer’s second theorem (1.4) with the help of the following
integral formula viz.

(1.6)
∫ 1

−1

ezx(1− x2)α−1 dx =
Γ(1

2
)Γ(α)

Γ(α + 1
2
)

0F1

[
−

α + 1
2

;
z2

4

]
.

In 1998, Rathie and Choi [19] derived the Kummer’s second theorem (1.4) with the help of
the following Gauss’s summation theorems [3, 4] viz.

(1.7) 2F1

[
a, b

c
; 1

]
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

provided Re(c− a− b) > 0 .
In 2001, Malani and Choi [14] deduced the Kummer’s second theorem (1.4) with the help

of the following Preece’s identity involving product of generalized hypergeometric function [2]
viz.

AJMAA, Vol. 20 (2023), No. 2, Art. 9, 12 pp. AJMAA

https://ajmaa.org


4 I. K IM AND J. KIM

(1.8)

{
1F1

[
α
2α

; x

]}2

= ex
1F2

[
α

α + 1
2
, 2α

;
x2

4

]
.

In 1995, Rathie and Nagar [21] established the following two results contigous to that of
Kummer’s second theorem (1.4) as follows:

(1.9) e−
x
2 1F1

[
α

2α + 1
; x

]
= 0F1

[
−

α + 1
2

;
x2

16

]
− x

2(2α + 1)
0F1

[
−

α + 3
2

;
x2

16

]
and

(1.10) e−
x
2 1F1

[
α

2α− 1
; x

]
= 0F1

[
−

α− 1
2

;
x2

16

]
+

x

2(2α− 1)
0F1

[
−

α + 1
2

;
x2

16

]
.

They have obtained the results (1.9) and (1.10) with the help of following two results con-
tigous to Gauss’s second summation theorem obtained earier by Lavoie, Grondin and Rathie
[12] viz.

2F1

[
a, b

1
2
(a + b + 2)

;
1

2

]
(1.11)

=
2Γ(1

2
)Γ(1

2
a + 1

2
b + 1)

(a− b)

{
1

Γ(1
2
a)Γ(1

2
b + 1

2
)
− 1

Γ(1
2
a + 1

2
)Γ(1

2
b)

}
and

2F1

[
a, b

1
2
(a + b)

;
1

2

]
(1.12)

= Γ(
1

2
)Γ(

1

2
a +

1

2
b)

{
1

Γ(1
2
a + 1

2
)Γ(1

2
b)

+
1

Γ(1
2
a)Γ(1

2
b + 1

2
)

}
.

In 1998, Kim, et al.[6] established the results (1.9) and (1.10) by following three different
methods. In the first method, they have used Gauss’s summation theorem (1.7). In the second
method they have used the following contiguous function relations viz.

(1.13) 1F1

[
α

2α + 1
; x

]
= 1F1

[
α
2α

; x

]
− x

2(2α + 1)
1F1

[
α + 1
2α + 2

; x

]
and

(1.14) 1F1

[
α

2α− 1
; x

]
= 1F1

[
α− 1
2α− 2

; x

]
+

x

2(2α− 1)
1F1

[
α
2α

; x

]
.

In the third method, they have used the following two results closely related to the Preece’s
identity (1.8) obtained earlier by Rathie and Choi [20] viz.

{
1F1

[
α

2α + 1
; x

]}2

= ex
{

1F2

[
α

α + 1
2
, 2α

;
x2

4

]
(1.15)

− x

(2α + 1)
1F2

[
α + 1

α + 3
2
, 2α + 1

;
x2

4

]
+

x2

4(2α + 1)2 1F2

[
α + 1

α + 3
2
, 2α + 2

;
x2

4

]}
and
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{
1F1

[
α

2α− 1
; x

]}2

= ex
{

1F2

[
α− 1

α− 1
2
, 2α− 2

;
x2

4

]
(1.16)

+
x

(2α− 1)
1F2

[
α

α + 1
2
, 2α− 1

;
x2

4

]
+

x2

4(2α− 1)2 1F2

[
α

α + 1
2
, 2α

;
x2

4

]}
.

In 2002, Malani, et al. [15] established the results (1.9) and (1.10) with the help of the result
(1.6) and its following contiguous result viz.

(1.17)
∫ 1

−1

xezx(1− x2)α−1 dx = z
Γ(α)Γ(3

2
)

Γ(α + 3
2
)

0F1

[
−

α + 3
2

;
z2

4

]
.

In 2015, Kodavanji, et al. [8] estabilshed the results (1.9) and (1.10) from the theory of
differential equations.

In 2010, Kim, et al. [5] generalized the well-known and useful Kummer’s second theorem
(1.4) and obtained explicit expressions of

e−
x
2 1F1

[
α

2α + i
; x

]
for i = 0,±1,±2, · · · ,±5.
As special cases, they have obtained ten results closely related to Kummer’s second theorem

(1.4).
In this paper, we aim at presenting four results (fori = ±2 and±3) by following two different

methods. The same will be discussed in the subsequent sections.

2. DERIVATIONS OF FOUR RESULTS USING CONTIGUOUS FUNCTIONS RELATIONS

In this section, we shall establish the following four results closely related to Kummer’s
second theorem (1.4) by employing contiguous functions relations. These are asserted in the
following theorems.

Theorem 2.1.For 2α + 2 neither zero nor a negative integer, the following results holds true.

e−
1
2
x

1F1

[
α

2α + 2
; x

]
(2.1)

= 0F1

[
−

α + 1
2

;
x2

16

]
− x

2(α + 1)
0F1

[
−

α + 3
2

;
x2

16

]
+

αx2

4(α + 1)(2α + 1)(2α + 3)
0F1

[
−

α + 5
2

;
x2

16

]
.

Theorem 2.2.For 2α− 2 neither zero nor a negative integer, the following results holds true.

e−
1
2
x

1F1

[
α

2α− 2
; x

]
(2.2)

= 0F1

[
−

α− 3
2

;
x2

16

]
+

x

2(α− 1)
0F1

[
−

α− 1
2

;
x2

16

]
+

(α− 2)x2

4(α− 1)(2α− 1)(2α− 3)
0F1

[
−

α + 1
2

;
x2

16

]
.
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Theorem 2.3.For 2α + 3 neither zero nor a negative integer, the following results holds true.

e−
1
2
x

1F1

[
α

2α + 3
; x

]
(2.3)

= 0F1

[
−

α + 1
2

;
x2

16

]
− 3x

2(2α + 3)
0F1

[
−

α + 3
2

;
x2

16

]
+

3αx2

4(α + 2)(2α + 1)(2α + 3)
0F1

[
−

α + 5
2

;
x2

16

]
− αx3

8(α + 2)(2α + 3)2(2α + 5)
0F1

[
−

α + 7
2

;
x2

16

]
.

Theorem 2.4.For 2α− 3 neither zero nor a negative integer, the following results holds true.

e−
1
2
x

1F1

[
α

2α− 3
; x

]
(2.4)

= 0F1

[
−

α− 5
2

;
x2

16

]
+

3x

2(2α− 3)
0F1

[
−

α− 3
2

;
x2

16

]
+

3(α− 3)x2

4(α− 1)(2α− 3)(2α− 5)
0F1

[
−

α− 1
2

;
x2

16

]
+

(α− 3)x3

8(α− 1)(2α− 1)(2α− 3)2 0F1

[
−

α + 1
2

;
x2

16

]
.

Proof. (a) Derivation of the result (2.1).
In order to establish the result (2.1) asserted in Theorem 2.1, we shall first establish the

following contiguous relation involving three1F1 viz.

(2.5) 1F1

[
α

2α + 2
; x

]
= 1F1

[
α

2α + 1
; x

]
− αx

2(α + 1)(2α + 1)
1F1

[
α + 1
2α + 3

; x

]
.

For this, denoting the left-hand side of (2.5) byS, we have

S = 1F1

[
α

2α + 2
; x

]
.

Expressing1F1 with the help of the definition (1.3), we have

S =
∞∑

n=0

(α)n

(2α + 2)n

xn

n!

=
∞∑

n=0

(α)n xn

n!

Γ(2α + 2)

Γ(2α + 2 + n)

=
∞∑

n=0

(α)n xn

n!

(2α + 1)Γ(2α + 1)

(2α + 1 + n)Γ(2α + 1 + n)
.

This means
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S =
∞∑

n=0

(α)n

(2α + 1)n

xn

n!

{
2α + 1

2α + 1 + n

}

=
∞∑

n=0

(α)n

(2α + 1)n

xn

n!

{
(2α + 1 + n)− n

2α + 1 + n

}

=
∞∑

n=0

(α)n

(2α + 1)n

xn

n!

{
1− n

2α + 1 + n

}

=
∞∑

n=0

(α)n

(2α + 1)n

xn

n!
−

∞∑
n=0

(α)n xn

(2α + 1)n(2α + 1 + n)(n− 1)!
.

Thus,

S =1F1

[
α

2α + 1
; x

]
−

∞∑
m=0

(α)m+1 xm+1

(2α + 1)m+1(2α + m + 2)m!

=1F1

[
α

2α + 1
; x

]
− αx

(2α + 1)

∞∑
m=0

(α + 1)m xm

(2α + 2)m(2α + 2 + m)m!

=1F1

[
α

2α + 1
; x

]
− αx

(2α + 1)

∞∑
m=0

(α + 1)m xmΓ(2α + 2)

(2α + 2 + m)Γ(2α + 2 + m)m!

=1F1

[
α

2α + 1
; x

]
− αx

(2α + 1)(2α + 2)

∞∑
m=0

(α + 1)m xmΓ(2α + 3)

Γ(2α + 3 + m)m!

=1F1

[
α

2α + 1
; x

]
− αx

2(α + 1)(2α + 2)

∞∑
m=0

(α + 1)m xm

(2α + 3)mm!

=1F1

[
α

2α + 1
; x

]
− αx

2(α + 1)(2α + 2)
1F1

[
α + 1
2α + 3

; x

]
,

which is the right-hand side of (2.5). This completes the proof of the contiguous relation in-
volving three1F1.

We are now ready to establish the result (2.1). For this, multiply both sides of the relation
(2.5) bye−

x
2 , we have

e−
x
2 1F1

[
α

2α + 2
; x

]
(2.6)

= e−
x
2 1F1

[
α

2α + 1
; x

]
− αx

2(α + 1)(2α + 2)
e−

x
2 1F1

[
α + 1
2α + 3

; x

]
.

We now observe that in the right-hand side of (2.6), if we apply the result (1.9) and after little
simplification, we easily arive at the right-hand side of (2.1) asserted in Theorem 2.1.

This completes the proof of the results (2.1) asserted in Theorem 2.1.

(b) Derivation of the result (2.2).
In order to establish the result (2.2) asserted in Theorem 2.2, we shall use the following

contiguous relation involving three1F1, which can be easily derived a similar lines that of (2.5):
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(2.7) 1F1

[
α

2α− 2
; x

]
= 1F1

[
α− 1
2α− 3

; x

]
+

(α− 2)x

2(α− 1)(2α− 3)
1F1

[
α

2α− 1
; x

]
.

Now multiply both sides of the equation (2.7) bye−
x
2 , we have

e−
x
2 1F1

[
α

2α− 2
; x

]
= e−

x
2 1F1

[
α− 1
2α− 3

; x

]
+

(α− 2)x

2(α− 1)(2α− 3)
e−

x
2 1F1

[
α

2α− 1
; x

]
.

Now in the right-hand, applying the result (1.10) and after little simplification, we easily arive
at the right-hand side of (2.2).

This completes the proof of the results (2.2) asserted in Theorem 2.2.

(c) Derivation of the result (2.3).
For establishing the result (2.3) asserted in Theorem 2.3, we shall use the following contigu-

ous relation involving three1F1 viz.

(2.8) 1F1

[
α

2α + 3
; x

]
= 1F1

[
α

2α + 2
; x

]
− αx

2(α + 1)(2α + 3)
1F1

[
α + 1
2α + 4

; x

]
.

The result (2.3) follows by multiplying both sides of (2.5) bye−
x
2 and making use of the

result (2.2). We omit the details.

(d) Derivation of the result (2.4).
For establishing the result (2.4) asserted in Theorem 2.4, we shall use the following contigu-

ous relation involving three1F1 viz.

(2.9) 1F1

[
α

2α− 3
; x

]
= 1F1

[
α− 1
2α− 4

; x

]
+

(α− 3)x

2(α− 2)(2α− 3)
1F1

[
α

2α− 2
; x

]
.

The result (2.4) follows by multiplying both sides of (2.9) bye−
x
2 and making use of the

result (2.3). We left the details for the interested readers.

Remark 2.1. The results (2.1) and (2.2) have also been obtained by Ainkooran, et al. [1] by
using the classical Gauss’s summation theorem (1.7)

3. DERIVATIONS OF THE RESULTS (2.1) TO (2.4) BY I NTEGRAL M ETHOD DEVELOPED

BY M ACROBERT

In this section, we shall establish the results (2.1) to (2.4) asserted in the four theorems given
in the previous section. For this, we shall establish the following two results closely related to
the results (1.6) and (1.17) that are required (and presumably new) in our present investigation.

∫ 1

−1

x2ezx(1− x2)α−1 dx(3.1)

=
z2

2

Γ(α)Γ(3
2
)

Γ(α + 5
2
)

0F1

[
−

α + 5
2

;
z2

4

]
+

Γ(α)Γ(3
2
)

Γ(α + 3
2
)

0F1

[
−

α + 3
2

;
z2

4

]
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and ∫ 1

−1

x3ezx(1− x2)α−1 dx(3.2)

=
z3

4

Γ(α)Γ(3
2
)

Γ(α + 7
2
)

0F1

[
−

α + 7
2

;
z2

4

]
+

3z

2

Γ(α)Γ(3
2
)

Γ(α + 5
2
)

0F1

[
−

α + 5
2

;
z2

4

]
.

Proof. In order to establish the result (3.1), we proceed as follows. Differentiating the result
(1.17) with respect toz, we have

∫ 1

−1

x2ezx(1− x2)α−1 dx(3.3)

=
Γ(α)Γ(3

2
)

Γ(α + 3
2
)

0F1

[
−

α + 3
2

;
z2

4

]
+ z

Γ(α)Γ(3
2
)

Γ(α + 3
2
)

d

dz
0F1

[
−

α + 3
2

;
z2

4

]
.

But it is not much difficult to see that

d

dz
0F1

[
−

α + 3
2

;
z2

4

]
=

z2

2

Γ(α)Γ(3
2
)

Γ(α + 5
2
)

0F1

[
−

α + 5
2

;
z2

4

]
.

Thus from (3.3), we have the result (3.1).
In exactly the same manner, the result (3.2) can be derived from the result (3.1). We, however,

prefer to omit the details.
Now we are ready to establish the results (2.1) to (2.4) by employing the integral method

developed by MacRobert.

(a) Derivation of the result (2.1)
In order to derive the result (2.1) asserted in Theorem 2.1, we proceed as follows. It is easy

to see that the result (2.1) can be re-written in the following form:

1F1

[
α

2α + 2
; 2x

]
(3.4)

= ex
{

0F1

[
−

α + 1
2

;
x2

4

]
− x

(α + 1)
0F1

[
−

α + 3
2

;
x2

4

]
+

αx2

(α + 1)(2α + 1)(2α + 3)
0F1

[
−

α + 5
2

;
x2

4

]}
.

Now, if we start with the right-hand side of (3.4) and making use of the following integral
representation of1F1 viz

1F1

[
α
ρ

; x

]
=

Γ(ρ)

Γ(α)Γ(ρ− α)

∫ 1

0

exttα−1(1− t)ρ−α−1dt

provided Re(ρ) > Re(α) > 0, we have

1F1

[
α

2α + 2
; 2x

]
=

Γ(2α + 2)

Γ(α)Γ(α + 2)

∫ 1

0

e2xttα−1(1− t)α+1dt

which, upon puttingT = 2t − 1 and using the Legendre’s duplication formula for the gamma
function, leads to
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1F1

[
α

2α + 2
; 2x

]
= ex Γ(α + 1)Γ(α + 3

2
)

√
πΓ(α)Γ(α + 2)

∫ 1

−1

exT (1− T 2)α−1(1− 2T + T 2)dT.

Now, separating the integral into three integrals and applying the known results (1.6), (1.17)
and (3.1) immediately leads to the right-hand side of (2.1). This completes the derivation of the
result (2.1).

(b) Derivation of the result (2.2)
Proceeding exactly as explained in the cases (a) above, it is not difficult to see that

1F1

[
α

2α− 2
; 2x

]
= ex Γ(α− 1)Γ(α− 3

2
)

√
πΓ(α)Γ(α− 2)

∫ 1

−1

exT (1− T 2)α−3(1 + 2T + T 2)dT.

Now, separating the integral into three integrals and applying the known results (1.6), (1.17)
and (3.1), we arrive easily at the right-hand side of (2.2). This completes the derivation of the
result (2.2).

(c) Derivation of the result (2.3)
Proceeding exactly as explained in the case (a) and (b) above, it is not difficult to arrive at the

following expression:

1F1

[
α

2α + 3
; 2x

]
= ex Γ(α + 2)Γ(α + 3

2
)

√
πΓ(α)Γ(α + 3)

∫ 1

−1

exT (1− T 2)α−1(1− 3T + 3T 2 − T 3)dT.

Now, separating the integral into four integrals and making use of the known results (1.6),
(1.17) and (3.2), we easily reach at the right-hand side of (2.3). This completes the proof of the
result (2.3).

(d) Derivation of the result (2.4)
Proceeding exactly as explained above in the cases (a), (b) and (c), it is quite simple to reach

at the following expression:

1F1

[
α

2α− 3
; 2x

]
= ex Γ(α− 1)Γ(α− 3

2
)

√
πΓ(α)Γ(α− 3)

∫ 1

−1

exT (1− T 2)α−1(1 + 3T + 3T 2 + T 3)dT.

Now, separating the above integral into four integrals and making use of the known results
(1.6), (1.17) and (3.2), we easily arrive at the right-hand side of (2.4). This completes the proof
of the result (2.4).

4. CONCLUDING REMARK

In this paper, we have established four well-known results closely related to the Kummer’s
second theorem by two different methods. In the first method, we have used the technique
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of contiguous functions relations involving three1F1 while in the second method, we have
employed the technique developed by MacRobert.

We conclude this paper by remarking that by the same technique developed by MacRobert,

the derivation of the general result of the form1F1

[
α

2α± i
; 2x

]
for i = 0, 1, 2, · · · are under

investigation and will form a part of the subsequent paper in this direction.
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