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ABSTRACT. We present new upper bounds based on the so-called degree of nondensifiability
(DND), for some quantification (see the references and definitions in the paper) of the Banach–
Saks property. To be more precise, we prove that the mentioned quantification of a bounded
subset of a Banach space can be bounded above by the DND of the convex hull of such a subset,
multiplied by a constant. As a consequence of our main result, we derive an upper bound for
the Banach-Saks property of bounded linear operators between Banach spaces. Through several
examples, we show that such bounds are the best possible.
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2 G. GARCÍA

1. I NTRODUCTION

In 1930 Banach and Saks proved in [4] (see also [5]) that, with the actual terminology, every
bounded sequence inLp(0, 1), with 1 < p < ∞, has a convergent Cesàro subsequence. That is
to say, each bounded sequence(xn)n≥1 ⊂ Lp(0, 1) contains a subsequence, put(xnk

)k≥1, such
that the sums1

m

∑m
k=1 xnk

converge inLp(0, 1). Since the separation between the elements of
a sequence in a bounded subset of a Banach space is closely related to the compactness of such
a subset, the Banach and Saks result mentioned above is interesting and relevant. Therefore, it
is not a surprising fact that there is a vast literature related to this problem (or, more generally,
to the study of the separation between the elements of a bounded sequence), see, for instance,
[2, 5, 7, 16, 17, 18] and references therein.

We give the following formal definition of a Banach-Saks set and the Banach-Saks property,
see, for instance, [5, 17].

Definition 1.1. A bounded subsetB of a Banach spaceX is said to be a Banach-Saks set if
each sequence inB has a Cesàro convergent subsequence. A Banach spaceX is said to have
the Banach–Saks property if its closed unit ball is a Banach-Saks set.

In our context, by aquantitativeversion of a theorem, which relates some notions, roughly
speaking, we mean that the implications between such notions are replaced by inequalities
between certain quantities. Thus, several quantitative versions to the Banach-Saks sets as well as
the Banach-Saks property have been defined and studied in [5, 17, 18] and references therein. In
Section 3, for a given bounded and non-empty subsetB of a Banach spaceX suchquantification
of the Banach-Saks sets and the Banach-Saks property will be denoted, respectively, asbs(B)
andbs(UX), UX being the close unit ball ofX. In other words, for a given bounded subsetB of
a Banach spaceX, the numberbs(B) can be considered as the distance (in the specified sense)
from B to the class of Banach-Saks subsets ofX, while the numberbs(UX) measures (in the
specified sense) the lack of the Banach-Saks property ofX.

On the other hand, in the present paper we use the so-called degree of nondensifiability
(DND), explained in detail in Section 2, to provide an upper bound for the numbersbs(B)
andbs(UX). The DND has been already used to prove a quantitative version of some classical
theorems from Functional Analysis in [9, 10, 11]. To be more precise, in Theorem 3.2 we
provide an upper bound for the numberbs(B) based on the DND of the convex hull ofB. Such
an upper bound is improved whenB is convex.

Also, as a consequence of our main result, we provide an upper bound (also based on the
DND) for other quantities related to the Banach-Saks property of a bounded subset as well as of
a given bounded linear operator between two Banach spaces. Such an upper bound for bounded
linear operators is proved to be the best possible.

2. THE DEGREE OF NONDENSIFIABILITY

Before recalling the concept of the degree of nondensifiability of a non-empty and bounded
subset of a Banach space, it is convenient to recall the following concepts introduced in [20].
In what follows,(M, d) is a metric space andB(M) the class of the non-empty and bounded
subsets ofM .

Definition 2.1. Let B ∈ B(M) andα ≥ 0. A continuous mappingγ : [0, 1] −→ (M, d) is said
to be anα-dense curve inB if the following conditions hold:

(i) γ([0, 1]) ⊂ B.
(ii) For eachx ∈ B there isy ∈ γ([0, 1]) such thatd(x, y) ≤ α.

If for eachα > 0 there is anα-dense curve inB, thenB is said to be densifiable.
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BANACH-SAKS PROPERTY AND THE DEGREE OF NONDENSIFIABILITY 3

Note that givenB ∈ B(M), fixing anyx0 ∈ B, the mappingγ(t) := x0 for all t ∈ [0, 1] is,
trivially, an α-dense curve inB for anyα greater than or equal to the diameter ofB. Also, the
α-dense generalize the so-calledspace-filling curves, see [24]. For a detailed exposition of the
α-dense curves and the densifiable sets, see [6, 20, 19, 21, 22].

Example 2.1. Let any integerN > 1, −∞ < ai ≤ bi < +∞ be real numbers andC :=∏N
i=1[ai, bi]. For a given integerm > 1, defineγ : [0, 1] −→ RN as

γ(t) :=
(
a1 +(b1−a1)t, a2 +

b2 − a2

2
(1− cos(πmt)), . . . , aN +

bN − aN

2
(1− cos(πmN−1t))

)
,

for eacht ∈ [0, 1].Then,γ is a M
√

N−1
m

-dense curve inC, whereM = max{bi − ai : i =
1, . . . , N} (see[6]).

Now, we can give the following definition, see [14, 21].

Definition 2.2. For a givenB ∈ B(M), the degree of nondensifiability (DND) ofB is defined
as

φ(B) := inf
{
α ≥ 0 : ΓB,α 6= ∅

}
,

whereΓB,α stands for the class ofα-dense curves inB.

Let us note that, from the above considerations, given anyB ∈ B(M), the DND ofB is well
defined, because0 ≤ φ(B) ≤ Diam(B) (the diameter ofB).

Example 2.2. If UX denotes the closed unit ball of a Banach spaceX then

φ(UX) =

 1, if X is infinite dimensional

0, otherwise

By the well-known Hahn-Mazurkiewicz theorem (see, for instance, [24, 25]) a setB ∈ B(M)
is the continuous image of[0, 1] if, and only if, B is a Peano Continuum (i.e., compact, con-
nected, and locally connected). So, the DND measures, in the specified sense, the distance from
B to the class of its Peano Continua.

Some basic properties of the DND, proved in [14], are listed in the following result.

Proposition 2.1. The DNDφ satisfies the following properties:

(M-1) Regularity on the class of non-empty, bounded, and arc-connected sets ofM : φ(B) = 0
if, and only if,B is precompact, for eachB ∈ B(M) arc-connected.

(M-2) Invariant under closure:φ(B) = φ(B̄), for eachB ∈ B(M).

Additionally, ifM := X is a Banach space, then the following conditions are also satisfied:

(B-1) Semi-homogeneity:φ(cB) = |c|φ(B), for eachc ∈ R andB ∈ B(X).
(B-2) Invariant under translations:φ(x0 + B) = φ(B), for eachx0 ∈ X andB ∈ B(X).
(B-3) For eachB1, B2 ∈ B(X),

φ
(
Conv(B1 ∪B2)

)
≤ max

{
φ
(
Conv(B1)

)
, φ

(
Conv(B2)

)}
≤ max

{
φ(B1), φ(B2)

}
.

Some of the above properties are also satisfied by the measures of noncompactness but, as
we have pointed out in Section 1, the DND is not a measure of noncompactness. However, as
proved in [8, 14], the DND is related to some measures of noncompactness. For instance, by
recalling that the Hausdorff measure of noncompactness ofB ∈ B(X) (see, for instance, [3]),
X being a Banach space, is defined as

χ(B) := inf
{
ε > 0 : B ⊂ {x1, . . . , xn}+ εUX , with x1, . . . , xn ∈ X

}
,
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4 G. GARCÍA

whereUX stands for the closed unit ball ofX, in [14, Theorem 2.5] we proved the following
result:

Proposition 2.2. For eachB ∈ B(X) arc-wise connected, the inequalities

χ(B) ≤ φ(B) ≤ 2χ(B)

hold and are the best possible.

3. THE INEQUALITIES

In this section,(X, ‖ · ‖) will denotes a real Banach space, infinite dimensional unless other-
wise specified, andUX its closed unit ball. As in the previous section,B(X) denotes the class
of non-empty and bounded subsets ofX. Also, for a given subsetN of N (the natural numbers),
|N | is the cardinality ofN . The following concepts are crucial for our goals.

Definition 3.1. Let B ∈ B(X). The arithmetic separation of a sequence(xn) ⊂ B is defined to
be

asep(xn) := inf
{ 1

m

∥∥( ∑
n∈N1

xn −
∑
n∈N2

xn

)∥∥ : m ∈ N, N1, N2 ⊂ N, |N1| = |N2| = m,

max N1 < min N2

}
.

Also, we will denotebs(B) := sup{asep(xn) : (xn) ⊂ B}.

The above concepts were introduced and studied by Kryczka, the arithmetic separation of
a sequence in [18] and the numberbs(B) in [17]. Let us note that, roughly speaking,bs(B)
measures, in the specified sense, how close isB to the class of Banach-Saks subsets ofX. In
particular,bs(UX) measures thedeviationof X from the Banach-Saks property. These consid-
erations are clearer in light of the statement (1) of the following result.

Proposition 3.1. GivenB1, B2 ∈ B(X), the Banach-Saks measure satisfies the following prop-
erties:

(1) bs(B1) = 0 if, and only if,B1 is a Banach-Saks set. In particular,bs(UX) = 0 if, and only
if, X has the Banach-Saks property.

(2) bs(rB1) = |r|bs(B1) for all r ∈ R.
(3) If B1 ⊂ B2 thenbs(B1) ≤ bs(B2).
(4) bs(B1) = bs(B̄1).
(5) bs(B1 ∪B2) = max

{
bs(B1), bs(B2)

}
.

(6) If B1 andB2 are convex, thenbs(B1 + B2) ≤ bs(B1) + bs(B2).

Proof. We only prove (4), the other properties were proved in Corollary 8 and Proposition 9
of [17]. By (3), bs(B1) ≤ bs(B̄1). To get the opposite inequality, let us note that if(x̄n) is
a sequence in̄B1, given anyε > 0 there is a sequence(xn) is a sequence inB1 such that
‖x̄n − xn‖ ≤ ε

2
for eachn ∈ N. So, givenm ∈ N, andN1, N2 ⊂ N with |N1| = |N2| = m and

max N1 < min N2 we have
1

m

∥∥( ∑
n∈N1

x̄n −
∑
n∈N2

x̄n

)∥∥ ≤ ε +
1

m

∥∥( ∑
n∈N1

xn −
∑
n∈N2

xn

)∥∥.

Therefore,asep(x̄n) ≤ asep(xn)+ε, and from the arbitrariness ofε > 0, asep(x̄n) ≤ asep(xn).
Consequently,bs(B̄1) ≤ bs(B1).

At this point, it is convenient to give the following example.
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BANACH-SAKS PROPERTY AND THE DEGREE OF NONDENSIFIABILITY 5

Example 3.1.Letc0 and`1 be, respectively, the Banach spaces of the (real) null and summable
absolute value sequences, both endowed with their usual norms. Then, in[17] it was proved the
following equalities:

bs(Uc0) = 1, bs(U`1) = 2.

Now, we can state and prove the following result.

Theorem 3.2.For a givenB ∈ B(X), we have the inequality

(3.1) bs(B) ≤ 2φ
(
Conv(B)

)
.

Moreover, ifB is convex then

(3.2) bs(B) ≤ bs(UX)φ(B).

In both cases, the above inequalities are the best possible.

Proof. Let any sequence(xn) ⊂ B. For givenm ∈ N andN1, N2 ⊂ N, with |N1| = |N2| = m
andmax N1 < min N2, let us define

∆(m, N1, N2) :=
1

m

∥∥( ∑
n∈N1

xn −
∑
n∈N2

xn

)∥∥.

Now, let anyε > 0 andγ a (φ(Conv(B)) + ε
4
)-dense curve inConv(B). For eachn ∈ N let

(yn) ⊂ γ([0, 1]) a sequence such that

‖xn − yn‖ ≤ φ
(
Conv(B)

)
+

ε

4
, for all n ∈ N.

Then, we have

(3.3)

∆(m, N1, N2) ≤
1

m

∥∥( ∑
n∈N1

xn −
∑
n∈N1

yn

)∥∥ +
1

m

∥∥( ∑
n∈N1

yn −
∑
n∈N2

yn

)∥∥+

1

m

∥∥( ∑
n∈N2

yn −
∑
n∈N2

xn

)∥∥ ≤ 2φ
(
Conv(B)

)
+

ε

2
+

1

m

∥∥( ∑
n∈N1

yn −
∑
n∈N2

yn

)∥∥.

As γ([0, 1]) is compact,(yn) has a convergent subsequence, for simplicity denoted in same
way, and in particular, such subsequence is a Cauchy sequence. So, there areN(ε) ∈ N and
n2(ε) > n1(ε) ≥ N(ε) such that

(3.4) ‖yn1(ε) − yn2(ε)

∥∥ ≤ ε

2
.

Therefore, form (3.3) and (3.4) we conclude that

asep(xn) ≤ ∆
(
1, {n1(ε)}, {n2(ε)}

)
≤ 2φ

(
Conv(B)

)
+ ε,

and from the arbitrarinessε > 0, asep(xn) ≤ 2φ(Conv(B)). So, taking supremum over all the
sequences(xn) in B, the inequality (3.1) follows.

The class of Banach spaces where inequality (3.1) is strict is large. Indeed, letX be an infinite
dimensional uniformly convex Banach space andB := (xn) a bounded but not precompact
sequence. Then, as Kakutani proved in [15],B has the Banach-Saks property, i.e.bs(B) = 0.
We recall that a set of a locally convex linear space is precompact if and only if its convex
hull is, see, for instance, [23, p. 50]. So, by virtue of property (M-1) of Proposition 2.1,
φ(Conv(B)) > 0 because ofB is not precompact. Then,bs(B) < φ(Conv(B)). In Example
3.2 we will show that inequality (3.1) can be an equality.
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6 G. GARCÍA

Next, assumeB is convex. By Propositions 2.1 and 3.1 we can assume, without loss of
generality, thatB is also closed. Let anyε > 0. If γ is a(φ(B) + ε)-dense curve inB, asB is
closed and convex, we have

K := Conv
(
γ([0, 1])

)
⊂ B.

As K is convex and compact (see, for instance, [1, Theorem 5.35]), by the Hahn-Mazurkiewicz
theorem, there exists a continuous mappingω : [0, 1] −→ X such thatω([0, 1]) = K. Clearly,
ω is a(φ(B) + ε)-dense curve inB. Therefore, we have

B ⊂ K + (φ(B) + ε)UX .

Thus, by Proposition 3.1, we find

bs(B) ≤ bs(K) + (φ(B) + ε)bs(UX) = (φ(B) + ε)bs(UX).

From the arbitrariness ofε > 0, the inequality (3.2) holds.
On the other hand, in view of Examples 3.1 and 2.2, we have:

bs(Uc0) = 1 < 2 = 2φ(Uc0), bs(U`1) = 2 = 2φ(U`1).

Consequently, inequality (3.2) is the best possible.

Looking at the proof of Theorem 3.2, it is clear that the inequalitybs(B) ≤ 2φ(B) also holds.
However, according to property (B-3) of Proposition 2.1, the inequality of Theorem 3.2 is finer.
Indeed, let us considerB := {x1, x2} ⊂ X with x1, x2 ∈ X andx1 6= x2, beingX an arbitrary
Banach space. Then,bs(B) = 2φ(Conv(B)) = 0 butφ(B) = ‖x1 − x2‖ > 0.

As we have pointed out in Section 1, the Banach-Saks and the weak Banach-Saks properties
are closely related with the compactness and weak compactness of such set. Also, from the well
known Mazur and Krein-Šmulian theorems (see, for instance, [1, Theorems 3.65 and 5.35], we
know that a compact or a weakly compact set have a precompact or relatively weakly compact
convex hull. However, it is worth to say that, in general and as it was shown in [19], the convex
hull of a Banach-Saks set not need to be a Banach-Saks set. In other words, there are Banach
spaces such that the classN (X) := {B ∈ B(X) : bs(B) = 0 < bs(Conv(B)) is non-empty.

In the next examples we show that the equalitybs(B) ≤ 2φ
(
Conv(B)

)
is the best possible

for non-convex and bounded subsets.

Example 3.2.Let, for eachn ∈ N, en then-th basic vector of̀1, and consider the setB := (en).
Then, it is immediate to check thatbs(B) = 2.

Now, letγ1(t) := e1 for all t ∈ [0, 1]. As ‖x − γ1(t)‖ ≤ 1 for eacht ∈ [0, 1] and x ∈
Conv(B), γ1 is a 1-dense curve inConv(B). Thus,φ(Conv(B)) ≤ 1. We will prove in the
below lines the opposite inequality.

Let γ be anα-dense curve inConv(B), for someα > 0. Then according to[3, Theorem
II.4.1], fixed anyε > 0 there is an integerNε ≥ 1 such that∑

n≥Nε

|yn| ≤ ε, for all y := (yn) ∈ γ([0, 1]).

So, for eachy := (yn) ∈ γ([0, 1]), we have

‖eNε − y‖ ≥ 1− yNε ≥ 1− ε,

and consequentlyα ≥ 1 − ε. Noticing the arbitrariness ofε > 0, we infer thatα ≥ 1 and
therefore

φ(Conv(B)) ≥ 1.

So, we have
bs(B) = 2 = 2φ

(
Conv(B)

)
.
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Let us note that, asbs(UX) ≤ 2, for bounded and convex subsets ofX inequality (3.2) is, in
general, finer than (3.1). We illustrate this fact in the following example.

Example 3.3. For 1 < p < ∞ let Jp be the James’ space of all real null sequencesx = (xn)
with finite

‖x‖p := sup
{ n−1∑

i=1

|xki+1
− xki

| : 0 < k1 < . . . < kn, n ≥ 2
}
.

Then, according to[17], bs(UJp) = 21/p. Therefore, for each convex and not precompact
B ∈ B(Jp), by Theorem 3.2 we have

bs(B) ≤ 21/pφ(B) < 2φ(B).

In order to state some inequalities between the DND and other quantities related with the
Banach-Saks property, we need to recall the following numbers (see, for instance, [17]).

Definition 3.2. Let B ∈ B(X). The alternated arithmetic separation ofB is defined as

aasep(B) := inf
{ 1

N

∑
n∈N

εnxn : N ⊂ N is finite , εn := ±1
}
.

andabs(B) := sup{aasep(xn) : (xn) ⊂ B}.
If X, Y are Banach spaces andT : X −→ Y a bounded linear operator, we define the number

b̃s(T ) := bs(T (UX)). If b̃s(T ) = 0, T is said to be a Banach-Saks operator.

The numberabs(B) is a quantification of the so-called alternate signs Banach–Saks property,
which is defined in the same way that the Banach-Saks property but replacing the Cesàro sums
by the sums1

m

∑m
k=1(−1)kxnk

. The number̃bs(T ) is a natural way to quantify the Banach-Saks
property of a linear operatorT : X −→ Y .

In the following results, as consequence of Theorem 3.2 and by using the DND, we provide
an upper for the concepts of Definition 3.2.

Corollary 3.3. LetB ∈ B(X). Then,abs(B) ≤ φ(Conv(B)). In particular, if B is convex then

abs(B) ≤ 1

2
bs(B)φ(B).

Proof. According to [17, Corollary 8]abs(B) ≤ 1
2
bs(B), and the result follows from this

equality and Theorem 3.2.

Corollary 3.4. Let X,Y two Banach spaces andT : X −→ Y a bounded linear operator.
Then,

(3.5) b̃s(T ) ≤ φ
(
T (UX)

)
bs(UY ).

Moreover, the above inequalities are the best possible.

Proof. As T (UX) is a bounded and convex subset ofY , by Theorem 3.2 inequality (3.5) holds.
In the below examples we will show that such inequality is the best possible.
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8 G. GARCÍA

Example 3.4.Let ĉ0 be the spacec0 endowed with the norm

|‖x‖| := ‖x‖0 +
∑
n≥1

|xn|
2n

for all x := (xn) ∈ c0,

where‖ · ‖0 stands for the usual norm ofc0, andT : c0 −→ ĉ0 the identity map. One can check
that

(3.6) ‖T‖ = 2, bs(Uĉ0) = 1, b̃s(T ) = 2.

Now, let anyε > 0 and N := N(ε) > 1 such that
∑

n≥N+1 2−n ≤ ε/2. Let g :=

(g1, . . . , gN) : [0, 1] −→ RN be a ε
2
-dense curve in[−1, 1]N ; see Example 2.1. Defineγ :

[0, 1] −→ ĉ0 as

γ(t) :=
(
g1(t), . . . , gN(t), 0, . . . , 0, . . .

)
, for all t ∈ [0, 1].

It is clear thatγ is continuous andγ([0, 1]) ⊂ T (Uc0). Also, giveny := (yn) ∈ T (Uc0), for
some lett ∈ [0, 1] be such that‖g(t) − (y1, . . . , yN)‖e ≤ ε/2, where‖ · ‖e‖ stands for the
Euclidean norm. The existence of such at ∈ [0, 1] follows from the fact thatg is a ε-dense
curve in[−1, 1]N and|yn| ≤ 1 for eachn ≥ 1. Then, we have

|‖y − γ(t)‖| ≤ max
{ε

2
, sup{|yn| : n ≥ N + 1}

}
+

ε

2
+

∑
n≥N+1

|yn|
2n

≤ 1 + ε.

From the arbitrariness ofε > 0 we infer thatφ(T (c0)) ≤ 1 and therefore, noticing Example 3.1
we conclude that

max
{
‖T‖bs(Uc0), φ

(
T (U`1)

)
bs(Uĉ0)

}
= 2 = b̃s(T ).

That is to say, inequality (3.5) of Corollary 3.4 become into an equality in this example.

Example 3.5.Let us define the operatorT : `1 −→ `1 asT (x) := 1
2
x for all x ∈ `1.

Then, noticing Example 3.1,̃bs(T ) = 1 andbs(U`1) = 2. By Example 2.2 and Proposition
2.1,φ(T (U`1)) = 1/2. Therefore,

b̃s(T ) = 1 = φ
(
T (U`1)

)
bs(U`1).

So, here the inequality (3.5) become into an equality.

On the other hand it is important to stress that, in general, there is notk > 0 such that
kφ(Conv(B)) ≤ bs(B). Indeed, from the considerations of Section 1, for a given1 < p < +∞
we havebs(ULp(0,1)) = 0 but, from Example 2.2,φ(ULp(0,1)) = 1. However, in the spacè1
such inequality holds, as we prove in the following result.

Proposition 3.5. Let B ∈ B(`1). Then,φ(Conv(B)) ≤ bs(B) and this inequality is the best
possible. In particular, ifB is convex then

(3.7) φ(B) ≤ bs(B) ≤ 2φ(B).

Proof. Let χ denote the Hausdorff measure of noncompactness, given in Section 2. In [16] it
was proved thatbs(B) = 2χ(B), for eachB ∈ B(`1). Therefore, by Proposition 2.2, we find
φ(Conv(B)) ≤ bs(B).

If B is precompact (or, equivalently, as`1 has the Schur property, relatively weakly compact),
by (M-1) of Proposition 2.1 and noticing thatbs(B) = 0, we haveφ(Conv(B)) = 0 = bs(B).
Also, from Examples 2.2 and 3.1, we haveφ(U`1) = 1 < 2 = bs(U`1).

The right-hand inequality in (3.7) follows directly from Theorem 3.2.
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4. FINAL REMARKS

In the present paper, by using the DND, we proved in Theorem 3.2 and Corollary 3.3 some
upper bounds for thequantificationof a non-empty and bounded subsetB of a Banach space,
bs(B), as well as of a given bounded linear operatorT between Banach spaces,b̃s(T ). As we
have illustrated with several examples, such bounds are the best possible. Also, in Corollary
3.4, we have provided an upper bound for the so-called alternated arithmetic separation ofB,
abs(B).

As we have shown, in general, the DND cannot be used to state a lower bound for the above-
mentioned numbers related to the Banach-Saks properties. However, for the Banach space`1, it
is possible to derive a lower bound for the numberbs(B), whereB is a non-empty and bounded
subset of̀ 1. In [5], lower bounds for the numberabs(B) were stated using the so-called weak
measures of noncompactness. Therefore, it seems that to provide a lower bound for the number
bs(B) based on the DND, we need to define, in some sense, a DND for the weak topology of a
Banach space.

In [18], the relationships between the Banach-Saks property and real interpolation of opera-
tors were studied. So, in future works, it could be interesting to analyze (if any) the relationships
between the DND and the real interpolation of operators.
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