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ABSTRACT. We present new upper bounds based on the so-called degree of nondensifiability
(DND), for some quantification (see the references and definitions in the paper) of the Banach—
Saks property. To be more precise, we prove that the mentioned quantification of a bounded
subset of a Banach space can be bounded above by the DND of the convex hull of such a subset,
multiplied by a constant. As a consequence of our main result, we derive an upper bound for
the Banach-Saks property of bounded linear operators between Banach spaces. Through several
examples, we show that such bounds are the best possible.
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2 G. GARCIA

1. INTRODUCTION

In 1930 Banach and Saks proved|in [4] (see &l$o [5]) that, with the actual terminology, every
bounded sequence ii?(0, 1), with 1 < p < 0o, has a convergent Cesaro subsequence. That is
to say, each bounded sequelieg),>1 C LP(0, 1) contains a subsequence, pu}, );>1, such
that the sums- > | z,,, converge inL?(0,1). Since the separation between the elements of
a sequence in a bounded subset of a Banach space is closely related to the compactness of such
a subset, the Banach and Saks result mentioned above is interesting and relevant. Therefore, it
is not a surprising fact that there is a vast literature related to this problem (or, more generally,
to the study of the separation between the elements of a bounded sequence), see, for instance,
[2,5,7,16] 17|, 18] and references therein.

We give the following formal definition of a Banach-Saks set and the Banach-Saks property,
see, for instance, [5, 17].

Definition 1.1. A bounded subseB of a Banach spacd is said to be a Banach-Saks set if
each sequence iB has a Cesaro convergent subsequence. A Banach apacsaid to have
the Banach—Saks property if its closed unit ball is a Banach-Saks set.

In our context, by ajuantitativeversion of a theorem, which relates some notions, roughly
speaking, we mean that the implications between such notions are replaced by inequalities
between certain quantities. Thus, several quantitative versions to the Banach-Saks sets as well as
the Banach-Saks property have been defined and studied in [5,/17, 18] and references therein. In
Section B, for a given bounded and non-empty suBsgfta Banach spac& suchquantification
of the Banach-Saks sets and the Banach-Saks property will be denoted, respectivél$)as
andbs(Uy), Uy being the close unit ball oX'. In other words, for a given bounded subgedf
a Banach spac¥, the numbebs(B) can be considered as the distance (in the specified sense)
from B to the class of Banach-Saks subsets{ofwhile the numbebs(Ux) measures (in the
specified sense) the lack of the Banach-Saks propetky. of

On the other hand, in the present paper we use the so-called degree of nondensifiability
(DND), explained in detail in Sectidn 2, to provide an upper bound for the nuniérs)
andbs(Ux). The DND has been already used to prove a quantitative version of some classical
theorems from Functional Analysis in/[9,/10,/11]. To be more precise, in Thelorgm 3.2 we
provide an upper bound for the numbe( B) based on the DND of the convex hull 8f Such
an upper bound is improved whéhis convex.

Also, as a consequence of our main result, we provide an upper bound (also based on the
DND) for other quantities related to the Banach-Saks property of a bounded subset as well as of
a given bounded linear operator between two Banach spaces. Such an upper bound for bounded
linear operators is proved to be the best possible.

2. THE DEGREE OF NONDENSIFIABILITY

Before recalling the concept of the degree of nondensifiability of a non-empty and bounded
subset of a Banach space, it is convenient to recall the following concepts introduced in [20].
In what follows, (M, d) is a metric space an(M) the class of the non-empty and bounded
subsets ofl/.

Definition 2.1. Let B € B(M) anda > 0. A continuous mapping : [0, 1] — (M, d) is said
to be ann-dense curve i if the following conditions hold:

(i) ~([0,1]) € B.
(i) For eachz € B thereisy € ~([0, 1]) such thati(z,y) < a.

If for eacha > 0 there is arv-dense curve i3, thenB is said to be densifiable.
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Note that givenB € B(M), fixing anyz, € B, the mappingy(t) := z, for all t € [0, 1] is,
trivially, an a-dense curve irB for any «a greater than or equal to the diameterifAlso, the
a-dense generalize the so-callgahce-filling curvessee([24]. For a detailed exposition of the
a-dense curves and the densifiable sets,/see [6, 20, 19,121, 22].

Example 2.1. Let any integerN > 1, —oco < a; < b; < 400 be real numbers and’ :=
1Y, [a:, b;]. For a given integern > 1, definey : [0,1] — RY as

1=

by — as

br —
(1—cos(mmt)),...,ay + — 5 aN(l—cos(mnN’lt))),

for eacht € [0,1].Then,y is a M ¥ =L-dense curve irC, whereM = max{b; —a; : i =
1,..., N} (se€f6]).

Now, we can give the following definition, see [14, 21].

Definition 2.2. For a givenB € B(M), the degree of nondensifiability (DND) &f is defined
as

Y(t) == (a1 + (by — a1)t, az +

¢(B) :=inf{a >0:Tp, # 0},
wherel s , stands for the class ef-dense curves ifs.

Let us note that, from the above considerations, givenamy3(M ), the DND of B is well
defined, because < ¢(B) < Diam(B) (the diameter of3).

Example 2.2.1f Uy denotes the closed unit ball of a Banach spacéen
1, if X isinfinite dimensional

¢(Ux) =

0, otherwise

By the well-known Hahn-Mazurkiewicz theorem (see, for instance| [24, 25]) 8 set3(M )
is the continuous image ¢d, 1] if, and only if, B is a Peano Continuum (i.e., compact, con-
nected, and locally connected). So, the DND measures, in the specified sense, the distance from
B to the class of its Peano Continua.

Some basic properties of the DND, proved.in/[14], are listed in the following result.

Proposition 2.1. The DNDg¢ satisfies the following properties:

(M-1) Regularity on the class of non-empty, bounded, and arc-connected détsidfB) = 0
if, and only if, B is precompact, for each € B(M) arc-connected.

(M-2) Invariant under closurey(B) = ¢(B), for eachB € B(M).

Additionally, if M := X is a Banach space, then the following conditions are also satisfied:

(B-1) Semi-homogeneityi(cB) = |c|¢(B), for eachc € R and B € B(X).

(B-2) Invariant under translationsp(zy + B) = ¢(B), for eachzy € X and B € B(X).

(B-3) For eachBy, By € B(X),

¢(Conv(B; U Bs)) < max {¢(Conv(Bi)), ¢(Conv(By)) } < max {¢(B1), ¢(B2)}.
Some of the above properties are also satisfied by the measures of noncompactness but, as
we have pointed out in Sectipf 1, the DND is not a measure of noncompactness. However, as
proved in [8,14], the DND is related to some measures of noncompactness. For instance, by

recalling that the Hausdorff measure of noncompactne#s ef 3(X) (see, for instance, [3]),
X being a Banach space, is defined as

X(B) := inf{€>0:BC {z1,..., 2.} + eUx, Withxl,...,xneX},
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whereUx stands for the closed unit ball of, in [14, Theorem 2.5] we proved the following
result:

Proposition 2.2. For eachB € B(X) arc-wise connected, the inequalities

X(B) < ¢(B) < 2x(B)
hold and are the best possible.

3. THE INEQUALITIES

In this section{ X, || - ||) will denotes a real Banach space, infinite dimensional unless other-
wise specified, and’x its closed unit ball. As in the previous sectid?(,.X ) denotes the class
of non-empty and bounded subsetsXafAlso, for a given subse¥ of N (the natural numbers),
|N| is the cardinality ofV. The following concepts are crucial for our goals.

Definition 3.1. Let B € B(X). The arithmetic separation of a sequeficg) C B is defined to
be

asep(z,) : 1nf{—H an—z )| i m € N, Ny, No C N[Ny | = |No| =m

neNy ne Nz

max Ny < minNz}.
Also, we will denotebs(B) := sup{asep(z,) : (z,) C B}.

The above concepts were introduced and studied by Kryczka, the arithmetic separation of
a sequence in [18] and the numbel B) in [17]. Let us note that, roughly speakings(B)
measures, in the specified sense, how cloge ts the class of Banach-Saks subsets{ofin
particular,bs(Ux ) measures thdeviationof X from the Banach-Saks property. These consid-
erations are clearer in light of the statement (1) of the following result.

Proposition 3.1. Given By, By € B(X), the Banach-Saks measure satisfies the following prop-
erties:
(1) bs(By) = 0if, and only if, By is a Banach-Saks set. In particulds(Ux) = 0 if, and only
if, X has the Banach-Saks property.
(2) bs(rBy) = |r|bs(By) forall r € R.
(3) If B, C B thean(Bl) < bS(BQ)
(4) bS(Bl) = bS(Bl)
(5) bs(B; U By) = max {bs(By),bs(B>)}.
(6) If B; and B, are convex, thebhs(B; + By) < bs(Bj) + bs(Bs).

Proof. We only prove (4), the other properties were proved in Corollary 8 and Proposition 9
of [17]. By (3), bs(B;) < bs(B;). To get the opposite inequality, let us note thatiif,) is

a sequence i3y, given anys > 0 there is a sequender,,) is a sequence i, such that

|Zn — zn|| < § foreachn € N. So, givenm € N, andN;, N, C N with |N;| = |N;| = m and

max [N; < min N, we have

—H DT D ) H<€+—H PR IED] |

neNy neNa neNy n€Na

Thereforeasep(z,) < asep(z,)+¢, and from the arbitrariness ef> 0, asep(7,) < asep(z,).
Consequentlyps(B;) < bs(By).
|

At this point, it is convenient to give the following example.
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Example 3.1.Let¢, and/; be, respectively, the Banach spaces of the (real) null and summable
absolute value sequences, both endowed with their usual norms. THEn) itnwas proved the
following equalities:

bs(Uy,) =1, bs(Uy,) =2

Now, we can state and prove the following result.

Theorem 3.2.For a givenB € B(X), we have the inequality

(3.1) bs(B) < 2¢(ConV(B)).
Moreover, if B is convex then
(3.2) bs(B) < bs(Ux)é(B)-

In both cases, the above inequalities are the best possible.

Proof. Let any sequenceér,,) C B. For givenm € N andN;, Ny C N, with |N;| = |Ny| =m
andmax N; < min Ns, let us define

A(m, N1, Na) -:_H D= wl

neNy neNa

Now, let anye > 0 and~y a(¢(Conv(B)) + )-dense curve ilConv(5). For eachh € N let
(yn) C ([0, 1]) @ sequence such that

2, — yn|| < ¢(Conv(B)) + foralln € N.

€
47
Then, we have

A(m, Ny, Ns) S% an_zyn HJF_H Z?/n—z% H+

neNy neN; neNy ne Nz

(3.3)

%HZ%—Z%HQWMV ++—HZ%_Z"|

neNs ne Ny neNy neNo

As ~([0, 1]) is compact,(y,) has a convergent subsequence, for simplicity denoted in same
way, and in particular, such subsequence is a Cauchy sequence. So, th¥ie)are N and
na(e) > ny(e) > N(e) such that

(3.4) ||yn1(e Yns E)H <
Therefore, form[(3]3) andl (3.4) we conclude that

asep(z,,) < A(L, {n1(e)}, {na(e)}) < 2¢(Conv(B)) +e,

and from the arbitrariness> 0, asep(z,,) < 2¢(Conv(B)). So, taking supremum over all the
sequenceér,) in B, the inequality[(3.]1) follows.

The class of Banach spaces where inequality (3.1) is strict is large. Inde&dyéean infinite
dimensional uniformly convex Banach space d@nd= (z,) a bounded but not precompact
sequence. Then, as Kakutani proved_in [1B]has the Banach-Saks property, ite(B) = 0.

We recall that a set of a locally convex linear space is precompact if and only if its convex
hull is, see, for instance, [23, p. 50]. So, by virtue of property (M-1) of Proposition 2.1,
¢(Conv(B)) > 0 because of3 is not precompact. Thems(B) < ¢(Conv(B)). In Example

[3.2 we will show that inequality (3] 1) can be an equality.

l\.')lm
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Next, assumeB is convex. By Propositions 2.1 afd 3.1 we can assume, without loss of
generality, thaB is also closed. Let any > 0. If v is a(¢(B) + ¢)-dense curve itB, asB is
closed and convex, we have

K := Conv(y([0,1])) C B.
As K is convex and compact (see, for instance, [1, Theorem 5.35]), by the Hahn-Mazurkiewicz
theorem, there exists a continuous mapping|0, 1] — X such thatu([0, 1]) = K. Clearly,
wis a(¢(B) + ¢)-dense curve irB. Therefore, we have

B C K+ (¢(B) +¢)Ux.
Thus, by Proposition 3|1, we find
bs(B) < bs(K) 4 (¢(B) + €)bs(Ux) = (¢(B) + €)bs(Ux ).

From the arbitrariness af > 0, the inequality[(3.R) holds.
On the other hand, in view of Examples|3.1 2.2, we have:

bs<Uco) =1<2= 2¢(Uco)7 bS(Uﬁl) =2= 2¢(U€1)

Consequently, inequality (3.2) is the best possible.
|

Looking at the proof of Theorem 3.2, itis clear that the inequakiy3) < 2¢(B) also holds.
However, according to property (B-3) of Propositjon] 2.1, the inequality of Thepprgm 3.2 is finer.
Indeed, let us conside® := {z1,zo} C X with 21,2z, € X andz; # x4, beingX an arbitrary
Banach space. Thehs(B) = 2¢(Conv(B)) = 0 but¢(B) = ||z — x2|| > 0.

As we have pointed out in Sectiph 1, the Banach-Saks and the weak Banach-Saks properties
are closely related with the compactness and weak compactness of such set. Also, from the well
known Mazur and Krein-Smulian theorems (see, for instance, [1, Theorems 3.65 and 5.35], we
know that a compact or a weakly compact set have a precompact or relatively weakly compact
convex hull. However, it is worth to say that, in general and as it was shownlin [19], the convex
hull of a Banach-Saks set not need to be a Banach-Saks set. In other words, there are Banach
spaces such that the cla83 X ) := {B € B(X) : bs(B) = 0 < bs(Conv(B)) is non-empty.

In the next examples we show that the equalityB) < 2¢(Conv(B)) is the best possible
for non-convex and bounded subsets.

Example 3.2.Let, foreachn € N, e, then-th basic vector of,, and consider the sét := (e,,).
Then, it is immediate to check that(B) = 2.

Now, lety,(t) := e; forall t € [0,1]. As|lxz — v,(¢)|| < 1 for eacht € [0,1] andz €
Conv(B), v, is a 1-dense curve irConv(B). Thus,¢(Conv(B)) < 1. We will prove in the
below lines the opposite inequality.

Let v be ana-dense curve ifConv(B), for somea > 0. Then according t¢3, Theorem
11.4.1], fixed anye > 0 there is an integefV. > 1 such that

> lyal <& forally = (y.) € ¥([0,1)).
n>Ng
So, for eachy := (y,,) € v([0, 1]), we have
||€Na _yH Z ]‘_yNs Z ]‘_67

and consequently > 1 — . Noticing the arbitrariness of > 0, we infer thate > 1 and
therefore
¢(Conv(B)) > 1.

So, we have
bs(B) = 2 = 2¢(Conv(B)).
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Let us note that, alss(Uy) < 2, for bounded and convex subsets®finequality (3.2) is, in
general, finer than (3.1). We illustrate this fact in the following example.

Example 3.3.For 1 < p < o let J, be the James’ space of all real null sequences (z,,)
with finite

:0</{:1<...<kn,n22}.

n—1
H‘THP ‘= sup { Z |xki+1 — Tk,
=1

Then, according tq17], bs(U;,) = 21/P Therefore, for each convex and not precompact
B € B(J,), by Theorerfi 3|2 we have

bs(B) < 2'7¢(B) < 2¢(B).

In order to state some inequalities between the DND and other quantities related with the
Banach-Saks property, we need to recall the following numbers (see, for instance, [17]).

Definition 3.2. Let B € B(X). The alternated arithmetic separation/fs defined as

) 1 e
aasep(B) := inf {N Z enty, - N C Nisfinite ¢, := :i:l}.
neN
andabs(B) := sup{aasep(z,) : (z,) C B}.
_If X, Y are Banach spaces aiid X — Y a bounded linear operator, we define the number
bs(T') := bs(T'(Ux)). If bs(T") = 0, T'is said to be a Banach-Saks operator.

The numbenbs(B) is a quantification of the so-called alternate signs Banach—Saks property,
which is defined in the same way that the Banach-Saks property but replacing the Cesaro sums
by the sums- >"" | (—1)*x,,. The numbebs(T') is a natural way to quantify the Banach-Saks
property of a linear operatdr : X — Y.

In the following results, as consequence of Thedrem 3.2 and by using the DND, we provide
an upper for the concepts of Definitipn 3.2.

Corollary 3.3. Let B € B(X). Thenabs(B) < ¢(Conv(B)). In particular, if B is convex then

abs(B) < %bs(B)¢(B).

Proof. According to [17, Corollary 8pbs(B) < ibs(B), and the result follows from this
equality and Theorein 3.3.

Corollary 3.4. Let X,Y two Banach spaces aril : X — Y a bounded linear operator.
Then,

(3.5) bs(T) < ¢(T(Ux))bs(Uy).
Moreover, the above inequalities are the best possible.

Proof. As T'(Uy) is a bounded and convex subsetafby Theoren 32 inequality (3.5) holds.
In the below examples we will show that such inequality is the best possible.
1
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Example 3.4.Let¢, be the space, endowed with the norm

Ty
el = el + 3 Bl forae = (z,) €
where|| - ||o stands for the usual norm of, andT : ¢, — ¢, the identity map. One can check
that
(3.6) IT|| =2, bs(Us)=1, bs(T)=2.

Now, let anye > 0 and N := N(g) > 1 suchthaty .. 27" < ¢/2. Letg :=
(91,.--,9n) ¢ [0,1] — RN be as-dense curve if—1,1]"; see Examplé 2|1. Defing :
0,1] — ¢ as

() = (1(t), ..., gn(8),0,...,0,...), forallte0,1].

It is clear that~ is continuous andy([0,1]) ¢ T'(U,,). Also, giveny := (y,) € T(U.,,), for

some lett € [0, 1] be such that|g(t) — (y1,...,yn)|le < /2, where|| - ||| stands for the
Euclidean norm. The existence of such & [0, 1] follows from the fact thay is a c-dense
curve in[—1,1]" and|y,| < 1 for eachn > 1. Then, we have

€ € |Yn|
—~l <m - wlin>N+10 + — + — < 1+e
ly =~ < ax{2,sup{|y| n= }} 9 n%l on €

From the arbitrariness of > 0 we infer thaip(7'(co)) < 1 and therefore, noticing Examgle 8.1
we conclude that

max { || T|[bs(Us, ), ¢(T(Ur,) ) bs(Uz, ) } = 2 = bs(T).
That is to say, inequality (3.5) of Corollafy 3.4 become into an equality in this example.

Example 3.5. Let us define the operat@r : ¢, — ¢, asT'(x) := %x forall z € /.

Then, noticing Examp@.bs(T) = 1l andbs(U,,) = 2. By Exampl2 and Proposition
2.1,6(T(U,,)) = 1/2. Therefore,
So, here the inequality (3.5) become into an equality.

On the other hand it is important to stress that, in general, there i net0 such that
k¢(Conv(B)) < bs(B). Indeed, from the considerations of Secfipn 1, for a givenp < +oo
we havebs(Urr,1y) = 0 but, from Exampl2q§(ULp(071)) = 1. However, in the spacg
such inequality holds, as we prove in the following result.

Proposition 3.5. Let B € B(¢;). Then,¢(Conv(B)) < bs(B) and this inequality is the best
possible. In particular, ifB is convex then

(37) 6(B) < bs(B) < 26(B).

Proof. Let x denote the Hausdorff measure of noncompactness, given in Sggtion[2.] In [16] it
was proved thabs(B) = 2x(B), for eachB € B(¢,). Therefore, by Propositidn 2.2, we find
¢(Conv(B)) < bs(B).

If B is precompact (or, equivalently, &shas the Schur property, relatively weakly compact),
by (M-1) of Propositiori 2]1 and noticing tha$(B) = 0, we havep(Conv(B)) = 0 = bs(B).
Also, from Example§ 2|2 anjd 3.1, we hawd/,,) = 1 < 2 = bs(U,, ).

The right-hand inequality iry (3.7) follows directly from Theorgm]|3.2.
|
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4. FINAL REMARKS

In the present paper, by using the DND, we proved in The¢rein 3.2 and Cofollary 3.3 some
upper bounds for thquantificationof a non-empty and bounded subsgebf a Banach space,
bs(B), as well as of a given bounded linear operdtdsetween Banach spacés(7'). As we
have illustrated with several examples, such bounds are the best possible. Also, in Corollary
[3.4, we have provided an upper bound for the so-called alternated arithmetic separdtion of
abs(B).

As we have shown, in general, the DND cannot be used to state a lower bound for the above-
mentioned numbers related to the Banach-Saks properties. However, for the Banach,space
is possible to derive a lower bound for the numbs€(B), whereB is a non-empty and bounded
subset of;. In [9], lower bounds for the numbebs(B) were stated using the so-called weak
measures of noncompactness. Therefore, it seems that to provide a lower bound for the number
bs(B) based on the DND, we need to define, in some sense, a DND for the weak topology of a
Banach space.

In [18], the relationships between the Banach-Saks property and real interpolation of opera-
tors were studied. So, in future works, it could be interesting to analyze (if any) the relationships
between the DND and the real interpolation of operators.
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