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2 I. BRNETIĆ AND S.S. DRAGOMIR AND R. HOXHA AND J. PEČARIĆ

1. I NTRODUCTION

Throughout the paper(H, 〈·, ·〉) is a Hilbert space overC. Let us consider the Hilbert space
L2(Ω, H), of all strongly measurable functionsf defined on the measurable setΩ ⊂ Rn and
with values inH for which the integral

∫
Ω
‖f (t)‖2 dµ(t) is finite. Hereµ is a given positive

measure onΩ. Then the following Cauchy-Bunyakovsky-Schwarz (CBS) integral inequality
may be stated:

(1.1)

(∫
Ω

‖f (t)‖2 dµ(t) ·
∫

Ω

‖g (t)‖2 dµ(t)

) 1
2

≥
∣∣∣∣∫

Ω

〈f(t), g(t)〉dµ(t)

∣∣∣∣ .
This CBS inequality has several types of reverses. For a recent survey of these results see [6]

and the references therein.
This article is divided in four parts.
In the introduction we recall some known reverses of the CBS inequalities from [1], [3] and

[4]. In the second part, we state some known CBS inequalities from [1] and [3] in a more
general form. Also, some easier proofs are given and new refinements are stated.

In the third part we obtain two new integral inequalities. One of them is of the Klamkin-
McLenaghan type and the other can be compared with the result of S. S. Dragomir from [4].

In the fourth part we state analogous inequalities for the discrete case. These results are
generalizations of those obtained in [5].

First, we recall some known reverses of the CBS inequalities that have been obtained previ-
ously whenΩ was a compact interval inR. Notice that the proofs in obtaining these inequalities
do not depend on the domainΩ and therefore all the results can be translated for the more gen-
eral case whenΩ is a measurable set fromRn.

Theorem 1 (S. S. Dragomir [3], see also [6]). Let f, g ∈ L2
ρ([a, b]; H), whereL2

ρ([a, b]; H)
denotes the Hilbert space of all strongly measurable functionsh : [a, b] → H for which
the integral

∫ b

a
ρ(t) ‖h(t)‖2 dt is finite(whereρ : [a, b] → [0,∞) is measurable and given) and

c, C ∈ C with Re(Cc) > 0. If

(1.2) Re〈Cg(t)− f(t), f(t)− cg(t)〉 ≥ 0

for a.e.t ∈ [a, b], then we have the inequalities(∫ b

a

ρ(t) ‖f(t)‖2 dt ·
∫ b

a

ρ(t) ‖g(t)‖2 dt

) 1
2

≤ 1
2
· Re((C+c)·

R b
a ρ(t)〈f(t),g(t)〉dt)

(Re(Cc))
1
2

(1.3)

≤ 1
2
· |C+c|

(Re(Cc))
1
2
·
∣∣∣∫ b

a
ρ(t)〈f(t), g(t)〉dt

∣∣∣
and

0 ≤
∫ b

a

ρ(t) ‖f(t)‖2 dt ·
∫ b

a

ρ(t) ‖g(t)‖2 dt−
∣∣∣∣∫ b

a

ρ(t)〈f(t), g(t)〉dt

∣∣∣∣2(1.4)

≤ 1

4
· |C − c|2

Re(Cc)
·
∣∣∣∣∫ b

a

ρ(t)〈f(t), g(t)〉dt

∣∣∣∣2 .

The constants1
2

and 1
4

are best possible.
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REVERSES OF THECBS INTEGRAL INEQUALITY 3

Theorem 2 (S. S. Dragomir [4], see also [6]). Let f , g ∈ L2
ρ([a, b]; H) and c, C ∈ C with

C 6= −c. If the condition (1.2) is satisfied, then we have the inequalities

0 ≤
(∫ b

a

ρ(t) ‖f (t)‖2 dt ·
∫ b

a

ρ(t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣∫ b

a

ρ(t)〈f(t), g(t)〉dt

∣∣∣∣
(1.5)

≤
(∫ b

a

ρ(t) ‖f (t)‖2 dt ·
∫ b

a

ρ(t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣Re

(
C + c

|C + c|

∫ b

a

ρ(t)〈f(t), g(t)〉dt

)∣∣∣∣
≤
(∫ b

a

ρ(t) ‖f (t)‖2 dt ·
∫ b

a

ρ(t) ‖g (t)‖2 dt

) 1
2

− Re

(
C + c

|C + c|

∫ b

a

ρ(t)〈f(t), g(t)〉dt

)
≤ 1

4
· |C − c|2

|C + c|

∫ b

a

ρ(t) ‖g (t)‖2 dt.

The constant1
4

is best possible.

Theorem 3 (S. S. Dragomir [1], see also [6]). Let f , g ∈ L2(Ω, C), whereL2(Ω; C) denotes
the Hilbert space of all strongly measurable functionsh : Ω → C for which the integral∫

Ω
|h(s)|2dµ(s) is finite andc, C ∈ C. If

(1.6)
∫

Ω

Re
[
(Cg(s)− f(s))(f(s)− c · g(s))

]
dµ(s) > 0,

then the following inequality holds

(1.7)
∫

Ω

|f(s)|2dµ(s) ·
∫

Ω

|g(s)|2dµ(s)−
∣∣∣∣∫

Ω

f(s)g(s)dµ(s)

∣∣∣∣2
≤ 1

4
|C − c|2 ·

(∫
Ω

|g(s)|2dµ(s)

)2

.

In most of the theorems below we assume that the complex numbersc andC satisfy the
following condition:

(1.8) Re(cC) > 0.

2. K NOWN REVERSES OF THE CBS INEQUALITY REVISITED

The important result that we use in all our proofs is the following lemma:

Lemma 2.1. Letf andg be vector functions fromL2(Ω, H) which satisfy the condition

(2.1) Re〈Cg(x)− f(x), f(x)− cg(x)〉 ≥ 0

for µ− a.e. x ∈ Ω. Then the following inequality holds∫
Ω

‖f (x)‖2 dµ(x) + Re(cC)

∫
Ω

‖g (x)‖2 dµ(x)(2.2)

≤
∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x)

≤ |c + C|
∣∣∣∣∫

Ω

〈f(x), g(x)〉dµ(x)

∣∣∣∣ .
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4 I. BRNETIĆ AND S.S. DRAGOMIR AND R. HOXHA AND J. PEČARIĆ

Proof. Condition (2.1) is equivalent to the following one

‖f (x)‖2 + Re(cC) ‖g (x)‖2 ≤ Re
[
(c + C)〈f(x), g(x)〉

]
for µ− a.e. x ∈ Ω.

By integrating onΩ we obtain∫
Ω

‖f (x)‖2 dµ(x) + Re(cC)

∫
Ω

‖g (x)‖2 dµ(x) ≤
∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x).

From this we obtain the desired inequality (2.2), since for the complex numberw and the com-
plex valued functionz(x), we have:∫

Ω

Re(w · z(x))dµ(x) = Re

(∫
Ω

w · z(x)dµ(x)

)
= Re

(
w

∫
Ω

z(x)dµ(x)

)
≤
∣∣∣∣w ∫

Ω

z(x)dµ(x)

∣∣∣∣ = |w|
∣∣∣∣∫

Ω

z(x)dµ(x)

∣∣∣∣ .

Now we state the result of Theorem 1 in slightly generalized form. Also, the last inequality
from Theorem 1 is given with the natural refinement.

Theorem 2.2. If (1.8) and (2.1) are satisfied, then the following inequalities hold∫
Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)(2.3)

≤
(∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2
4 Re(cC)

≤ |c + C|2

4 Re(cC)
·
∣∣∣∣∫

Ω

〈f(x), g(x)〉dµ(x)

∣∣∣∣2
and

0 ≤
∫

Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)−
∣∣∣∣∫

Ω

〈f(x), g(x)〉dµ(x)

∣∣∣∣2(2.4)

≤
∫

Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)

−
(∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2
|c + C|2

≤ |C − c|2

4 Re(cC)

∣∣∣∣∫
Ω

〈f(x), g(x)〉dµ(x)

∣∣∣∣2 .

Proof. Inequalities (2.3) and (2.4) were essentially established by S. S. Dragomir in [2] and [3].
We give here a simpler proof as well.

Let

α =

∫
Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x)

2(Re(cC))
1
2

.
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By multiplying the inequality (2.2) with
∫

Ω
‖g (x)‖2 dµ(x) we obtain:∫

Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x) ≤
∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x)

×
∫

Ω

‖g (x)‖2 dµ(x)− Re(cC)

(∫
Ω

‖g (x)‖2 dµ(x)

)2

.

Then we have∫
Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)

≤ α2 − (α− (Re(cC))
1
2 ·
(∫

Ω

‖g (x)‖2 dµ(x)

)2

≤ α2,

i.e., we obtained the first part of the inequality (2.3).
Using inequality (2.2), the second part of the inequality (2.3) follows immediately.
The second chain of inequalities is easy to prove. Of course, the first inequality in (2.4) is the

CBS inequality, the second is equivalent to (2.2) and the last one, follows after trivial algebraic
manipulations.

Actually, from (2.3) we have

(2.5)
∫

Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)−
(∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2
|c + C|2

≤
(

1

4 Re(cC)
− 1

|c + C|2

)
·
(∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2

.

Also, we have

1

4 Re(cC)
− 1

|c + C|2
=
|c + C|2 − 4 Re(cC)

4 Re(cC) · |c + C|2
(2.6)

=
(C + c)(C + c)− 4 Re(cC)

4 Re(cC) · |c + C|2

=
|C|2 + |c|2 − 2 Re(cC)

4 Re(cC) · |c + C|2

=
|C − c|2

4 Re(cC) · |c + C|2
.

Now, the last part of the inequality (2.4) follows from (2.5), (2.6) and (2.2).

Remark 2.1. Fordµ(x) = ρ(x)dx, we obtain the results of Theorem 1.

From Theorem 2.2 we can easily obtain the following chain of inequalities:

Theorem 2.3. If (1.8) and (2.1) withg (x) = e, ||e|| = 1 are satisfied, then the following
inequalities hold ∫

Ω

‖f (x)‖ dµ(x) ≤ (µ(Ω) ·
∫

Ω

‖f (x)‖2 dµ(x))
1
2(2.7)

≤ |c + C|
2
√

Re(cC)
·
∣∣∣∣∫

Ω

〈f(x), e〉dµ(x)

∣∣∣∣
≤ |c + C|

2
√

Re(cC)
·
∥∥∥∥∫

Ω

f(x)dµ(x)

∥∥∥∥ .
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6 I. BRNETIĆ AND S.S. DRAGOMIR AND R. HOXHA AND J. PEČARIĆ

Proof. The first inequality follows directly from the quadratic-arithmetic mean inequality for
integrals:

1

µ(Ω)

∫
Ω

‖f (x)‖ dµ(x) ≤
(

1

µ(Ω)

∫
Ω

‖f (x)‖2 dµ(x)

) 1
2

.

The second one is an inequality (2.2) withg(x) = e, ||e|| = 1:(
µ(Ω) ·

∫
Ω

‖f (x)‖2 dµ(x)

) 1
2

≤ |c + C|
2
√

Re(cC)
·
∣∣∣∣∫

Ω

〈f(x), e〉dµ(x)

∣∣∣∣ .
The last inequality is a consequence of the CBS inequality:

|c + C|
2
√

Re(cC)
·
∣∣∣∣∫

Ω

〈f(x), e〉dµ(x)

∣∣∣∣ =
|c + C|

2
√

Re(cC)
·
∣∣∣∣〈∫

Ω

f(x)dµ(x), e

〉∣∣∣∣
≤ |c + C|

2
√

Re(cC)
·
∥∥∥∥∫

Ω

f(x)dµ(x)

∥∥∥∥ .

Now, we generalize the reverses of the CBS inequality stated in Theorem 3 with a refinement.
Also, we offer a simpler proof.

Theorem 2.4. If (2.1) is valid, then the following inequalities hold∫
Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)−
∣∣∣∣∫

Ω

〈f(x), g(x)〉dµ(x)

∣∣∣∣2(2.8)

≤
∫

Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)−
(∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2
|c + C|2

≤ 1

4
|C − c|2 ·

(∫
Ω

‖g (x)‖2 dµ(x)

)2

.

Proof. The first inequality in (2.8) is equivalent to (2.2). Let us prove the second inequality.
From Lemma 2.1 it follows that∫

Ω

‖f (x)‖2 dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)−
(∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2
|c + C|2

≤
∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)

− Re(cC)

(∫
Ω

‖g (x)‖2 dµ(x)

)2

−
(∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

)2
|c + C|2

=
1

4
|C − c|2

(∫
Ω

‖g (x)‖2 dµ(x)

)2

−

[(
Re(cC) +

1

4
|C − c|2

)(∫
Ω

‖g (x)‖2 dµ(x)

)2

−
∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)

+

(∫
Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x)
)2

|c + C|2

]
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=
1

4
|C − c|2

(∫
Ω

‖g (x)‖2 dµ(x)

)2

−

[
1

4
|C + c|2

(∫
Ω

‖g (x)‖2 dµ(x)

)2

−
∫

Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x) ·
∫

Ω

‖g (x)‖2 dµ(x)

+

(∫
Ω

Re[(c + C)〈f(x), g(x)〉]dµ(x)
)2

|c + C|2

]

=
1

4
|C − c|2(

∫
Ω

‖g (x)‖2 dµ(x))2

−

(
|c + C|

2
·
∫

Ω

‖g (x)‖2 dµ(x)−
∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

|c + C|

)2

≤ 1

4
|C − c|2 ·

(∫
Ω

‖g (x)‖2 dµ(x)

)2

.

And the proof is complete.

3. SOME NEW I NEQUALITIES

Now we are going to prove some new similar inequalities:

Theorem 3.1. If (1.8) and (2.1) are satisfied, withC 6= −c, then the following inequalities hold∫
Ω

‖f (x)‖ dµ(x) ·
∫

Ω

‖g (x)‖ dµ(x)−
∣∣∣∣∫

Ω

〈f(x), g(x)〉dµ(x)

∣∣∣∣(3.1)

≤
∫

Ω

‖f (x)‖ dµ(x) ·
∫

Ω

‖g (x)‖ dµ(x)−
∫

Ω
Re
[
(c + C)〈f(x), g(x)〉

]
dµ(x)

|c + C|

≤ |C − c|2

4|c + C|
·
∫

Ω

‖g (x)‖2 dµ(x).

Proof. The first inequality in (3.1) is equivalent to inequality (2.2). Let us prove the second
inequality.

By using the result of Lemma 2.1, we have∫
Ω

‖f (x)‖ dµ(x) ·
∫

Ω

‖g (x)‖ dµ(x)−
∫

Ω
Re[(c + C)〈f(x), g(x)〉]dµ(x)

|c + C|

≤
∫

Ω

‖f (x)‖ dµ(x) ·
∫

Ω

‖g (x)‖ dµ(x)

− 1

|c + C|
·
∫

Ω

‖f (x)‖2 dµ(x)− Re(cC)

|c + C|
·
∫

Ω

‖g (x)‖2 dµ(x)

=

(
|c + C|

4
− Re(cC)

|c + C|

)
·
∫

Ω

‖g (x)‖2 dµ(x)

− 1

|c + C|

(∫
Ω

‖f (x)‖ dµ(x)− |c + C|
2

·
∫

Ω

‖g (x)‖ dµ(x)

)2

≤ |c + C|2 − 4 Re(cC)

4|c + C|
·
∫

Ω

‖g (x)‖2 dµ(x)

=
|C − c|2

4|c + C|
·
∫

Ω

‖g (x)‖2 dµ(x).
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This concludes the proof.

Remark 3.1. It is interesting to compare the inequalities given in Theorem 3.1 with the inequal-
ities given in Theorem 2. The details are left to the interested reader.

Remark 3.2. Notice that the discrete version of (3.1) was obtained in [5, Theorem 4].

Also, by using Lemma 2.1, we prove an inequality of the Klamkin-McLenaghan type:

Theorem 3.2. If (1.8) and (2.1) are satisfied, then the following inequality holds

(3.2)

∫
Ω
‖f (x)‖2 dµ(x)∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ −
∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣∫
Ω
‖g (x)‖2 dµ(x)

≤ |C + c| − 2(Re(cC))
1
2 .

Proof. Again we start with the inequality (2.2):∫
Ω
‖f (x)‖2 dµ(x)∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ ≤ |c + C| − Re(cC)

∫
Ω
‖g (x)‖2 dµ(x)∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ .
Then we have∫

Ω
‖f (x)‖2 dµ(x)∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ −
∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣∫
Ω
‖g (x)‖2 dµ(x)

≤ |c + C| − Re(cC)

∫
Ω
‖g (x)‖2 dµ(x)∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ −
∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣∫
Ω
‖g (x)‖2 dµ(x)

= |C + c| − 2(Re(cC))
1
2

−

(Re(cC))
1
2 ·

(∫
Ω
‖g (x)‖2 dµ(x)

) 1
2∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ 12 −
∣∣∫

Ω
〈f(x), g(x)〉dµ(x)

∣∣ 12(∫
Ω
‖g (x)‖2 dµ(x)

) 1
2

2

≤ |C + c| − 2(Re(cC))
1
2 .

The proof is completed.

Remark 3.3. Notice that the discrete version of the above inequality (3.2) has been obtained in
[5, Theorem 2].

4. DISCRETE I NEQUALITIES

Now we state analogous inequalities for sums instead of integrals which will provide gen-
eralization for the results from [5]. Again, we suppose that (1.8) is satisfied for the complex
numbersc andC.

First, the analogue version of Lemma 2.1 for finite sequences is as follows:

Lemma 4.1. Let x1, ..., xn andy1, ...yn be vectors from inner product space(H, 〈·, ·〉) overC
or R which satisfy the following condition:

(4.1) Re〈Cyk − xk, xk − cyk〉 ≥ 0, ∀k = 1, ..., n.

Then the following inequality holds
n∑

k=1

||xk||2 + Re(cC)
n∑

k=1

||yk||2 ≤
n∑

k=1

Re[(c + C)〈xk, yk〉](4.2)

≤ |c + C|

∣∣∣∣∣
n∑

k=1

〈xk, yk〉

∣∣∣∣∣ .
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Now we state all the theorems for discrete case:

Theorem 4.2. If (1.8) and (4.1) are satisfied, then the following inequalities hold

n∑
k=1

||xk||2 ·
n∑

k=1

||yk||2 ≤
(∑n

k=1 Re[(c + C)〈xk, yk〉]
)2

4 Re(cC)
(4.3)

≤ |c + C|2

4 Re(cC)
·

∣∣∣∣∣
n∑

k=1

〈xk, yk〉

∣∣∣∣∣
2

and

0 ≤
n∑

k=1

||xk||2 ·
n∑

k=1

||yk||2 −

∣∣∣∣∣
n∑

k=1

〈xk, yk〉

∣∣∣∣∣
2

(4.4)

≤
n∑

k=1

||xk||2 ·
n∑

k=1

||yk||2 −
(∑n

k=1 Re[(c + C)〈xk, yk〉]
)2

|c + C|2

≤ |C − c|2

4 Re(cC)

∣∣∣∣∣
n∑

k=1

〈xk, yk〉

∣∣∣∣∣
2

and

n∑
k=1

||xk|| ≤

(
n ·

n∑
k=1

||xk||2
) 1

2

≤ |c + C|
2
√

Re(cC)
·

∣∣∣∣∣
n∑

k=1

〈xk, e〉

∣∣∣∣∣(4.5)

≤ |c + C|
2
√

Re(cC)
·

∥∥∥∥∥
n∑

k=1

xk

∥∥∥∥∥ ,

respectively.

Theorem 4.3. If (4.1) is valid, then the following inequalities hold

n∑
k=1

||xk||2 ·
n∑

k=1

||yk||2 −

∣∣∣∣∣
n∑

k=1

〈xk, yk〉

∣∣∣∣∣
2

(4.6)

≤
n∑

k=1

||xk||2 ·
n∑

k=1

||yk||2 −
(∑n

k=1 Re[(c + C)〈xk, yk〉]
)2

|c + C|2

≤ 1

4
|C − c|2 ·

(
n∑

k=1

||yk||2
)2

.

Finally, we can state that:

Theorem 4.4. If (1.8) and (4.1) are satisfied, then the following inequality is valid

(4.7)

∑n
k=1 ||xk||2

|
∑n

k=1〈xk, yk〉|
− |
∑n

k=1〈xk, yk〉|∑n
k=1 ||yk||2

≤ |C + c| − 2(Re(cC))
1
2 .
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Moreover, ifC 6= −c, then we also have
n∑

k=1

||xk|| ·
n∑

k=1

||yk|| −

∣∣∣∣∣
n∑

k=1

〈xk, yk〉

∣∣∣∣∣(4.8)

≤
n∑

k=1

||xk|| ·
n∑

k=1

||yk|| −
∑n

k=1 Re[(c + C)〈xk, yk〉]
|c + C|

≤ |C − c|2

4|c + C|
·

n∑
k=1

||yk||2.
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