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2 I. BRNETIC AND S.S. DRAGOMIR AND R. HOXHA AND J. PECARIC

1. INTRODUCTION

Throughout the papétH, (-, -)) is a Hilbert space ove€. Let us consider the Hilbert space
L*(Q, H), of all strongly measurable functiorfsdefined on the measurable setc R™ and
with values inH for which the integralf,, || f (¢ )||? du(t) is finite. Herey is a given positive
measure orf2. Then the following Cauchy-Bunyakovsky-Schwarz (CBS) integral inequality
may be stated:

(1.1) (/QHf(t)szu(t)~/QHg(t)HQdu(t))é2

This CBS inequality has several types of reverses. For a recent survey of these results see [6]
and the references therein.

This article is divided in four parts.

In the introduction we recall some known reverses of the CBS inequalities from 1], [3] and
[4]. In the second part, we state some known CBS inequalities from [1][and [3] in a more
general form. Also, some easier proofs are given and new refinements are stated.

In the third part we obtain two new integral inequalities. One of them is of the Klamkin-
McLenaghan type and the other can be compared with the result of S. S. Dragomirifrom [4].

In the fourth part we state analogous inequalities for the discrete case. These results are
generalizations of those obtained/in [5].

First, we recall some known reverses of the CBS inequalities that have been obtained previ-
ously when2 was a compact interval IR. Notice that the proofs in obtaining these inequalities
do not depend on the domdihand therefore all the results can be translated for the more gen-
eral case whef is a measurable set froRr".

/ <f<t>,g<t>>du<t>].

Theorem 1(S. S. Dragomir([8], see alsol[6]Let f, g € L2([a,b]; H), where L?([a, b]; H)
denotes the Hilbert space of all strongly measurable functions [a,b] — H for which
the mtegralf p(t) ||h(t)||” dt is finite (wherep : [a, b] — [0, 00) is measurable and givérand
¢, C € Cwith Re(Cc) > 0. If

(1.2) Re(Cy(t) = f(t), f(t) —cg(t)) = 0

fora.e.t € [a, b], then we have the inequalities

b % oy, (b
[ sonea [ oo laora) < %-R“C”f“”(?”i“""“”“)

(Re(C)) 2

1 C+c
<1 ';
(Re(Ct))2

dt)

and

2

b b b
14) o< / o(t) | £ dt - / o(t) l9(t) 2 dt — / P (), g()dt

L O
4 Re(C?)

2

VAN

b
- / p(1) (1), g(t))dt

The constantg and ; are best possible.
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Theorem 2 (S. S. Dragomir([4], see also![6]Let f, g € Li([a, bl; H) and¢,C € C with
C # —c. If the condition[(1.R) is satisfied, then we have the inequalities

(1.5)
o< ([ownsanra [ owls@ra) -

<([oonserta [ (t)Hth); i

([ ooisora: [ olsora) —re(SEE [ s,y
(/ / ) ne( )

c+d ), "

[N

[ stiso, o0

e ( Ig i Z ab p(t)(f(), g(t)>dt) ’

1 |C—¢f? [*

2
=4 C+ J, p(t) llg ()| dt.

The constang is best possible.

Theorem 3(S. S. Dragomir[[1], see alsbl[6]Let f, g € L*(Q2,C), where L?(Q2; C) denotes
the Hilbert space of all strongly measurable functions 2 — C for which the integral
Jo, |R(s)|*dpu(s) is finite ande, C' € C. If

1.6) | Re [(€Cots) = 16N (G~ 23061 aus) >

then the following inequality holds

2

1.7) / () Pdu(s) - / l9(s)Pdps) —

/Q £(5)g(s) du(s)

<qlc—ek ([ |g<s>|2du<s>)2.

In most of the theorems below we assume that the complex numbserd C' satisfy the
following condition:

(1.8) Re(eC) > 0.

2. KNOWN REVERSES OF THE CBS INEQUALITY REVISITED

The important result that we use in all our proofs is the following lemma:

Lemma 2.1. Let f and g be vector functions fromi?(Q2, H) which satisfy the condition

(2.1) Re(Cg(x) — f(2), f(x) — cg(x)) > 0
for u — a.e. x € Q. Then the following inequality holds
2.2 |15 @)1 duta) + Re(eC) [ g @I dute)

< / Re[(© + O)(£(x), g(x))|dp(z)
Q

<lc+C]|

/Q (f(2). g(2))du(z)
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Proof. Condition [2.1) is equivalent to the following one

1f @)[* + Re(@C) g (2)||* < Re [(€ + C)(f (), g(x))]

foru—a.e.xz € Q.
By integrating orf2 we obtain

/Qllf(x)IIQdu(fv) + Re(EC)/QIIQ(x)IIZdu(l“) < /QRG[(E + O){f(2), g(2))du().

From this we obtain the desired inequality (2.2), since for the complex numbed the com-
plex valued functiorx(z), we have:

/Q Re(w - 2(z))du(z) = Re ( /Q w-z(a:)d,u(a:)) = Re (w /Q z(m)du(m))

< \w | @duta)| = ol | [ se)auta)|.

Now we state the result of Theor¢m 1 in slightly generalized form. Also, the last inequality
from Theorenj L is given with the natural refinement.

= [w]

Theorem 2.2.1f (1.8) and [2.1) are satisfied, then the following inequalities hold

(2.3) / I (@) dyu(a / lg @) du(z

(fQRe @+ O)(f(2), g(x)))dp(x))”
4 Re(eC)

~ / (f(2). g(x))du()

lc+ C|? 2

~ 4Re(cC)

and

2

(2.4) OS/Q!|f($)|l2du($)-/QHg(fE)szu(x)—

S/Q||f($)||2dﬂ($)'/Q||9(90)||2dﬂ($)

 (JyRel(e+ O){f(x), g(a)dp(x))”
e+ CP?

@) gte)inte)
Proof. Inequalities[(2.3) and (2.4) were essentially established by S. S. Dragomir in [2]/and [3].

We give here a simpler proof as well.
Let

Q(f (@), g(x))dp(x)

2

€ —cf?
~ 4Re(cC)

o =

f(z), g(x)))dp(z)
cC))

N

J,Rel(@+ O)(f
2(Re(
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By multiplying the |nequaI|ty.2) withfy, [|g (z )|I? d(z) we obtain:

/ I (@) du( / lg @) dua / Re[(c + O){f(x), g(x))ldu(x)

< [ o @) (o) - Refe) ( / ug<:c>u2du<x>) |
Then we have

/Q 1 (@) du(z) - / lg @) diu(z)

< a® — (a— (Re(eC))

[NIES

2
(o) <
i.e., we obtained the first part of the inequallty {2.3).

Using inequality[(2.R), the second part of the inequality|(2.3) follows immediately.

The second chain of inequalities is easy to prove. Of course, the first inequdity|in (2.4) is the
CBS inequality, the second is equivalent[to [2.2) and the last one, follows after trivial algebraic
manipulations.

Actually, from (2.3) we have

2.5) / 1f @) dpla) - / o @) du(e) — Yo Rele+ O (@), g@)ldp())

lc+ C|?
1 1 i ?
< (s~ mrer) ([ relE+ O seplnt) )
Also, we have
1 1 e+ C]?—4Re(c0)

2.6 _ _
(2.6) 1Re(cC) Jc+C]P~ 4Re(cC)-|c+ CP

(C +¢)(C +7¢) — 4Re(c0)
T 4Re(@0) - e+ CP?
IC|? + |c|* — 2Re(eC)
" 4Re(@C) - e+ C2
€ —cf?
" 4Re(cC) - e+ C2
Now, the last part of the inequality (2.4) follows from (2.5), (2.6) gnd](2s2).
Remark 2.1. Fordu(z) = p(z)dz, we obtain the results of Theorgr 1.
From Theorem 2|2 we can easily obtain the following chain of inequalities:

Theorem 2.3.1f ([L.8) and [2.1) withg (z) = e,]|e|| = 1 are satisfied, then the following
inequalities hold

2.7) / I (@) du(z / 1 (@I du())

lc+ C|
<W' /Q<f( ), €)dula)

]c+C’|
Re(eC)
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Proof. The first inequality follows directly from the quadratic-arithmetic mean inequality for

integrals:
o L@ < (o [ 1@ )

The second one |s an |nequall-2 2) Wgtlhv) =e, |le|| = 1:

(um» / Hf(w)HQdu(x))é < 2'R+—(C‘C) [ 1) dauta).

The last inequality is a consequence of the CBS inequality:

z'%eé'm/gf@%@dﬂ@\— el </ o >
< VR

Now, we generalize the reverses of the CBS inequality stated in Théprem 3 with a refinement.
Also, we offer a simpler proof.

Theorem 2.4.1f (2.7)) is valid, then the following inequalities hold

@8 [ @ Pt [ ls@IF duta \/

/ I @I duto) - [ Yl @I dita _ (pRel(e + O){f(x). g(x))]dpu(x)

lc+CJ?
<= ([ lo@IPaute >) .

Proof. The first inequality in[(2/8) is equivalent to (P.2). Let us prove the second inequality.
From Lemma 211 it follows that

17 @ duta / o o ) — el + D). gl ()

\c—l—CP

/ Rel(c + O){(f(x), g(a))]dpu(x / lg @) du(z
- ( / W W)) (o Rel(@ + O){f(2), () )du())

lc+ C|?
“hear ([ o)

- |(retecy+ 1|c—c|2) (f ||g<x>||2du<x>)2

/Q Re{(c + 0)(/(2), g(x))dp(x / lg @) du(z
 UnRel(®+ O)(f (@), ()] du(x)) ]

lc+ C?

2
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:}l|c_c|2 (/ ||g(x)||2d,u(x))2_ 1|C+c\2 (/ ||g(:v)||2du<:v>>2
/QRe[(c—l—C’ /Hg I du(a

+u¢ww+mu<><»mw»]

lc+ C?

:im_q@émum%mwf

_(wzm AM@wwM@_kRﬂaumﬂmﬂmmwm»

lc+ C|
<he—ar ([ loraw)

And the proof is completes

2

3. SOME NEW INEQUALITIES
Now we are going to prove some new similar inequalities:
Theorem 3.1.1f (1.8) and [2.1) are satisfied, with # —c, then the following inequalities hold

@Y [ 1@l [ o] dute \/

</wxu@x:/wawm_k%hwmwugmnwm

lc+ C|
—cf? /
d
<ot [ @I dute

Proof. The first inequality in[(3]1) is equivalent to inequalify (2.2). Let us prove the second
inequality.
By using the result of Lemnja 2.1, we have

Jo Rel(@ +0)(f (x), g(a))du(a)
L ur@lduta)- [ g @anta e
_LWxMww/MxWMw

- e [ @R - 25 o @ duta

_(le+Cl]  Re(eC) /” ) di
B 4 lc+C| 9 (@) dplx

—r:a(/fow x_“+“:4wuww@02

lc + C|* — 4Re(cC)
< FIEEe] ot )| dp(x

L [lg@IP duta
4|c+C’| AL
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This concludes the proog

Remark 3.1. Itis interesting to compare the inequalities given in Thedrefn 3.1 with the inequal-
ities given in Theorer|2. The details are left to the interested reader.

Remark 3.2. Notice that the discrete version ¢f (B.1) was obtainedlin [5, Theorem 4].
Also, by using Lemm@ 2]1, we prove an inequality of the Klamkin-McLenaghan type:
Theorem 3.2.1f (L.8) and [2.1) are satisfied, then the following inequality holds

fQHf ||2du() | Jolf @), g())dp(z)| ol
3.2 C + ¢l —2(Re(eC))z.
CD o] s ey 1€+~ 2
Proof. Again we start Wlth the inequality (3.2):
Jollf (= H du( ) - fQHg x H dp(z)
ot s@nauta] = RO @) o]
Then we have
fQHf HQdu(aﬁ)  Jolf @), g(x))dp(a)|
folf (@), g(@)dn(@)] Hg H dp(x)
Jo ||g< >|| du( ) ol @), g(@))dp(z)]
c+ C|—Re
< e+ Ol = Rl ™ - e e P dnts
= |C+c| - Q(Re(cc>)%
(Re(@C))" - <f“”g 'Qd” @)’ ol otelidnia)
UQ x))dp(x )}2 (fQHg | dﬂ(x))Q

<|C + | = 2(Re(e0))z.
The proof is completedch

Remark 3.3. Notice that the discrete version of the above inequdlity| (3.2) has been obtained in
[5, Theorem 2].

4. DISCRETE INEQUALITIES

Now we state analogous inequalities for sums instead of integrals which will provide gen-
eralization for the results from [5]. Again, we suppose that|(1.8) is satisfied for the complex
numbers: andC.

First, the analogue version of Lemina]2.1 for finite sequences is as follows:

Lemma 4.1. Letxy, ..., z,, andy,, ...y, be vectors from inner product spa¢¥, (-, -)) overC
or R which satisfy the following condition:

(4.2) Re(Cyr — zp,xr —cyp) >0, Vk=1,...,n
Then the following inequality holds
(4.2) D llzel? +Re(@C) > [luel* < Y Re[(@+ )y, )]
k=1 k=1 k=1
< e+ C] Z<$k7yk> :
k=1
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Now we state all the theorems for discrete case:

Theorem 4.2.1f (1.8) and [4.1) are satisfied, then the following inequalities hold

@) SV IMEEES Rell+ D))
.
- th—gg- > {wn ue)
and
(4.4) 0§é|1$k112-§\\yk\|2— ) 2

<3l 3 el — (Zm BACH O i)
k= k=1

o+ CP
M i@ i) 2
= 4Re(eC) [0
and
(4.5) > ] < ( ZH%W) | | D (ke
k=1 ) k=1
|c+C\
Re(eC) kz:

respectively.

Theorem 4.3.1f (4.1)) is valid, then the following inequalities hold

(4.6) Sl 3l = |3 dwe v
k=1 k=1 k=1
n n n _ o 9
<3 NP3 g — i BACE O i)
= k=1

2

le+ C?

2
1 n
< jio- e (i)
k=1
Finally, we can state that:

Theorem 4.4.1f (1.8) and [4.1) are satisfied, then the following inequality is valid

ZZ:1 ||371~c||2 |ZZ:1<$k,yk>| _ 1
4.7 — C +c|l —2(Re(eC))2.
(*.7) S Gyl S e S 1€+l - 2ARe(@C)
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Moreover, ifC' # —c, then we also have

(4.8) Z||$k|| ZHka - Z (Tk, Y)
k=1

< Z ol Z o) - = B D)

n

C|2 2
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