

ON THE CLASS OF TOTALLY POLYNOMIALLY POSINORMAL OPERATORS

E. SHINE LAL, T. PRASAD, P. RAMYA

Received 25 July, 2022; accepted 17 February, 2023; published 28 March, 2023.

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE, THIRUVANANTHAPURAM, KERALA, 695034. INDIA. shinelal.e@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALICUT, MALAPURAM, KERALA 673635, INDIA. prasadvalapil@gmail.com

DEPARTMENT OF MATHEMATICS, N.S.S COLLEGE, NEMMARA, KERALA, 678508 INDIA. ramyagcc@gmail.com

ABSTRACT. In this paper, we proved that if $T \in \mathcal{B}(\mathcal{H})$ is totally *P*-posinormal operator with $P(z) = z^n + \sum_{j=1}^{n-1} c_j z^j, c_1 > 0$, then $ker(T - zI) \subseteq ker(T - zI)^*$. Moreover, we study spectral continuity and range kernel orthogonality of these class of operators.

Key words and phrases: Totally P-posinormal operator, Riesz Projection, Finite operator.

2010 Mathematics Subject Classification. Primary 47A10, 47B20.

ISSN (electronic): 1449-5910

^{© 2023} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{H} be an infinite dimensional complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H} . For $T \in \mathcal{B}(\mathcal{H})$, the nullspace and range of T are denoted as $\mathcal{N}(T)$ and $\mathcal{R}(T)$ respectively. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *hyponormal* if $T^*T \ge TT^*$, *M-hyponormal* if $||(T - zI)^*x|| \le M ||(T - zI)x||$ for all $z \in \mathbb{C}$ and for all $x \in \mathcal{H}$, and said to be *dominant* if for each $z \in \mathbb{C}$, there exist a constant $M(z) \ge 0$ such that $||(T - zI)^*x|| \le$ M(z)||(T - zI)x|| for all $x \in \mathcal{H}$. It is well known that all the *M*-hyponormal operators are dominant.

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *posinormal* if $\lambda^2 T^* T \ge TT^*$, for some $\lambda \ge 0$ ([12]). $T \in \mathcal{B}(\mathcal{H})$ is said to be *polynomially* (P)-*posinormal* if $\lambda^2 T^* T \ge P(T)P(T^*)$, where P(z) is a polynomial with zero constant term and for some $\lambda \ge 0$ ([11]). If P(z) = z, then all the posinormal operator are polynomially (P)-posinormal. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *totally* P-*posinormal* if $||(P(T - zI))^* x|| \le M(z)||(T - zI)x||$ for all $x \in \mathcal{H}$, where P(z) is a polynomial with zero constant term and M(z) is bounded on compact sets of \mathbb{C} ([11]). In general,

 $hyponormal \subset M - hyponormal \subset totally P - posinormal.$

An operator $T \in \mathcal{B}(\mathcal{H})$ is dominant if and only if T - zI is posinormal for all $z \in \mathbb{C}$ ([12]).

2. **Properties of totally** *P***-posinormal operators**

Now, we prove that part of a totally P-posinormal operator on a closed subspace is again a totally P-posinormal operator.

Theorem 2.1. Let $T \in \mathcal{B}(\mathcal{H})$ and let \mathcal{M} be a closed subspace of \mathcal{H} which is invariant under T. If T is totally P-posinormal operator, then $T|_{\mathcal{M}}$ is totally P-posinormal.

Proof. Let $P(z) = z^n + \sum_{j=1}^{n-1} c_j z^j$. Let $x \in \mathcal{M}$ and Q be an orthogonal projection on to \mathcal{M} . Since $QT^*|_{\mathcal{M}} = (T|_{\mathcal{M}})^*$,

$$(T|_{\mathcal{M}} - zI)^* x = Q(T - zI)^* x.$$

 $Q(T^*)^2|_{\mathcal{M}} = (T^2|_{\mathcal{M}})^*, ((T|_{\mathcal{M}} - zI)^2)^* x = Q(T - zI)^{*2}x.$ Hence, $((T|_{\mathcal{M}} - zI)^n)^* x = Q(T - zI)^{*n}x$ for all $n \in \mathbb{N}$. Thus, $(P(T|_{\mathcal{M}} - zI))^* x = Q(P(T - zI))^* x.$ Since *T* is totally *P*-posinormal, we have

$$|(P(T|_{\mathcal{M}} - zI))^* x|| = ||Q(P(T - zI))^* x||$$

$$\leq M(z)||(T - zI)x||$$

$$= M(z)||(T|_{\mathcal{M}} - zI)x||.$$

This completes the proof.

Let \mathcal{PB} denotes the collection of all totally *P*-posinormal operators, where $P(z) = z^n + \sum_{j=1}^{n-1} c_j z^j, c_1 > 0.$

Theorem 2.2. If $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$, then $\mathcal{N}(T - zI) \subseteq \mathcal{N}(T - zI)^*$.

Proof. Since T is totally P-posinormal operator, we have

(2.1)
$$(P(T-zI)) (P(T-zI))^* \le M(z)^2 (T-zI)^* (T-zI)$$

Let $x \in \mathcal{N}(T - zI)$. From equation (2.1), we have

$$(P(T - zI)) (P(T - zI))^* x = 0.$$

Therefore, $|| (P(T - zI))^* x ||^2 = 0$. Hence, $x \in \mathcal{N}((P(T - zI))^*)$. Thus, $\overline{c_1}(T - zI)^* x = -(T - zI)^{*n}x + \sum_{j=2}^{n-1} -\overline{c_j}(T - zI)^{*j}x$. Hence,

$$\|\overline{c_1}(T - zI)^* x\| \le \| (P(T - zI))^* x\| \\ \le M(z) \| (T - zI) x \|.$$

Since $x \in \mathcal{N}(T-zI)$, we have $\overline{c_1}(T-zI)^*x = 0$. As $c_1 > 0$, we have $(T-zI)^*x = 0$. Hence, $\mathcal{N}(T-zI) \subseteq \mathcal{N}(T-zI)^*$.

Let $T \in \mathcal{B}(\mathcal{H})$ and λ be an isolated point of $\sigma(T)$. Then there exist $D_{\lambda} = \{z \in \mathbb{C} : |z - \lambda| \le r\}$ with $D_{\lambda} \cap \sigma(T) = \{\lambda\}$. The operator defined by

$$E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D_{\lambda}} (zI - T)^{-1} dz$$

is called *Riesz projection* of T with respect to λ , where ∂D_{λ} denotes the boundary of D_{λ} . It is well known that the Riesz projection E_{λ} satisfies the properties $E_{\lambda}^2 = E_{\lambda}, E_{\lambda}T = TE_{\lambda}, N(T - \lambda I) \subseteq R(E_{\lambda})$ ([2]).

 $T \in \mathcal{B}(\mathcal{H})$ is said to satisfy the property H(q), if $H_0(T - \lambda I) = \mathcal{N}(T - \lambda I)^q$ for all $\lambda \in \mathbb{C}$ and for some integer $q \ge 1$, where $H_0(T) = \{x \in \mathcal{H} : \lim_{n \to \infty} ||T^n x||^{\frac{1}{n}} = 0\}$. It is well known that totally *P*-posinormal operators satisfy the property H(q). Hence the following theorem holds for bounded totally *P*-posinormal operators by ([6]).

Theorem 2.3. ([6]) Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$ and $\sigma(T) = \{\lambda\}$, then $T = \lambda I$.

In ([2]), M Cho and Y M Han proved that if $T \in \mathcal{B}(\mathcal{H})$ is a *M*-hyponormal operator, then $\mathcal{N}(E_{\lambda}) = \mathcal{R}(T - \lambda I)$. Now we prove this result holds for bounded totally *P*-posinormal operators also. For proving the result we use the following.

Theorem 2.4. ([9]) Suppose $T \in \mathcal{B}(\mathcal{H})$ and E_{λ} be the Riesz projection with respect to an isolated eigen value λ . Then (1) E_{λ} is a projection. (2) $\mathcal{R}(E_{\lambda})$ and $\mathcal{N}(E_{\lambda})$ are invariant under T.

(3) $\sigma(T|_{\mathcal{R}(E_{\lambda})}) = \{\lambda\} \text{ and } \sigma(T|_{\mathcal{N}(E_{\lambda})}) = \sigma(T) \setminus \{\lambda\}.$ (4) $\mathcal{N}(T - \lambda I) \subseteq \mathcal{R}(E_{\lambda}).$

Theorem 2.5. Suppose $T \in \mathcal{B}(\mathcal{H})$ is a totally *P*-posinormal operator and λ is an isolated point of $\sigma(T)$. Then $\mathcal{N}(T - \lambda I) = \mathcal{R}(E_{\lambda})$.

Proof. From Theorem 2.4, we have $\mathcal{N}(T - \lambda I) \subseteq \mathcal{R}(E_{\lambda})$. Restriction $T|_{\mathcal{R}(E_{\lambda})}$ is totally *P*-posinormal, by Theorem 2.1. Since λ is an isolated eigen value of *T*, we have $\sigma(T|_{\mathcal{R}(E_{\lambda})}) = \{\lambda\}$, by Theorem 2.4. If $\lambda = 0$, then $\sigma(T|_{\mathcal{R}(E_{\lambda})}) = \{0\}$. From Theorem 2.3, we have $T|_{\mathcal{R}(E_{\lambda})} = 0$. Hence, $\mathcal{R}(E_{\lambda}) \subseteq \mathcal{N}(T)$. If $\lambda \neq 0$, then $\sigma(T|_{\mathcal{R}(E_{\lambda})}) = \{\lambda\}$. Thus $\sigma(T|_{\mathcal{R}(E_{\lambda})} - \lambda I|_{\mathcal{R}(E_{\lambda})}) = \{0\}$. From Theorem 2.3, we have $(T - \lambda I)|_{\mathcal{R}(E_{\lambda})} = 0$. Hence, $\mathcal{R}(E_{\lambda}) \subseteq \mathcal{N}(T - \lambda I)$.

For $T \in \mathcal{B}(\mathcal{H})$, let $\sigma_p(T)$ and $\sigma_a(T)$ denotes the point spectrum and approximate point spectrum of T. If $\lambda \in \sigma_p(T)$ and $\overline{\lambda} \in \sigma_p(T^*)$, then λ is in the joint point spectrum, $\sigma_{jp}(T)$. If $\lambda \in \sigma_a(T)$ and $\overline{\lambda} \in \sigma_a(T^*)$, then we say that λ is in the joint approximate point spectrum, $\sigma_{ja}(T)$. **Theorem 2.6.** [1] Let \mathcal{H} be a complex Hilbert space. Then there exists a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and $\phi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{K})$ satisfying the following properties for every $A, B \in \mathcal{B}(\mathcal{H})$ and $\alpha, \beta \in \mathbb{C}$.

(1) $\phi(A^*) = \phi(A)^*, \ \phi(I_{\mathcal{H}}) = I_{\mathcal{K}}, \ \phi(\alpha A + \beta B) = \alpha \phi(A) + \beta \phi(B),$ $\phi(AB) = \phi(A)\phi(B), \ \|\phi(A)\| = \|A\|, \ \phi(A) \le \phi(B) \text{ if } A \le B$ (2) $\phi(A) \ge 0 \text{ if } A \ge 0$ (3) $\sigma_a(A) = \sigma_a(\phi(A)) = \sigma_p(\phi(A)).$

(4)
$$\sigma_{ja}(A) = \sigma_{jp}(\phi(A)).$$

Theorem 2.7. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$, then $\sigma_a(T) = \sigma_{ja}(T)$.

Proof. Since T is totally P-posinormal,

(2.2)
$$M(z)^{2}(T-zI)^{*}(T-zI) - (P(T-zI))(P(T-zI))^{*} \ge 0$$

Hence from Theorem 2.6, we have

$$\begin{split} &M(z)^2(\phi(T) - zI)^*(\phi(T) - zI) - (P(\phi(T) - zI)) \left(P(\phi(T) - zI)\right)^* \\ &= M(z)^2 \phi((T - zI)^*) \phi(T - zI) - \phi \left(P(T - zI)\right) \phi \left(P(T - zI)^*\right) \\ &= \phi \left(M(z)^2(T - zI)^*(T - zI) - (P(T - zI)) \left(P(T - zI)\right)^*\right). \\ & \text{Also from equation (2.2) and Theorem 2.6, we have} \end{split}$$

$$\phi\left(M(z)^{2}(T-zI)^{*}(T-zI) - (P(T-zI))\left(P(T-zI)\right)^{*}\right) \geq 0.$$

Hence $\phi(T)$ is totally *P*-posinormal.

From Theorem 2.6, we have $\sigma_a(T) = \sigma_p(\phi(T))$. Since $\phi(T)$ is totally *P*-posinormal, we have $\mathcal{N}(\phi(T) - zI) \subset \mathcal{N}(\phi(T) - zI)^*$ (from Theorem 2.2). Hence, $\sigma_p(\phi(T)) = \sigma_{jp}(\phi(T))$. From Theorem 2.6, $\sigma_{jp}(\phi(T)) = \sigma_{ja}(T)$. Hence $\sigma_a(T) = \sigma_{ja}(T)$.

Theorem 2.8. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$, then

(1) If $\sigma(T) = \{0\}$, then T is nilpotent.

(2) The matrix representation of T on $\mathcal{H} = N(T - \lambda I) \oplus (N(T - \lambda I))^{\perp}$ is

$$T = \begin{pmatrix} \lambda I & 0\\ 0 & B \end{pmatrix},$$

where λ is a nonzero eigen value of T. Also $\lambda \notin \sigma_p(B)$ for some operator B and $\sigma(T) = \{\lambda\} \cup \sigma(B)$.

Proof. Since $\sigma(T) = \{0\}$, it follows from Theorem 2.3 that T = 0. Hence T is nilpotent. Let λ be a nonzero eigen value of T. Since $T \in \mathcal{PB}$, by Theorem 2.2, we have $\mathcal{N}(T - \lambda I) \subseteq \mathcal{N}(T - \lambda I)^*$. Therefore, $\mathcal{N}(T - \lambda I)^{\perp}$ is invariant under T. Hence, $\mathcal{N}(T - \lambda I)$ reduces T. Thus,

$$T = \begin{pmatrix} \lambda I & 0\\ 0 & B \end{pmatrix},$$

where $B = T|_{\mathcal{N}(T-\lambda I)^{\perp}}$. Let $x \in \mathcal{N}(B-\lambda I)$. Then

$$(T - \lambda I) \begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ (B - \lambda I)x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Hence, $x \in \mathcal{N}(T - \lambda I)$. Since $B = T|_{\mathcal{N}(T - \lambda I)^{\perp}}$, we have $x \in \mathcal{N}(T - \lambda I)^{\perp}$. Thus, x = 0. Hence, $\mathcal{N}(B - \lambda I) = 0$. i.e, $\lambda \notin \sigma_p(B)$. Since $T = \lambda I \oplus B$, we have $\sigma(T) = \{\lambda\} \cup \sigma(B)$.

Let \mathcal{L} and \mathcal{S} denotes the set of all compact and bounded subsets of \mathbb{C} respectively. Let (X, d) be a metric space and the function $f : X \to \mathcal{S}$ is upper continuous (lower continuous) at x_0 if for each $\epsilon > 0$, there is a $\delta > 0$ such that $f(x) \subseteq (f(x_0))_{\epsilon}$ (respectively, $f(x_0) \subseteq (f(x))_{\epsilon}$) for all x with $d(x, x_0) < \delta$, where $(f(x_0))_{\epsilon} = \{z \in \mathbb{C} : dist(z, f(x_0))\} < \epsilon\}$. Define spectral

map $\sigma : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{L}$, which maps $T \in \mathcal{B}(\mathcal{H})$ to spectrum of T ([3]). Spectral properties are studied for many class of operators for instant ([4, 5, 7, 13, 15]). Now we discuss the continuity of spectral map on the set of all totally *P*-posinormal operators.

Theorem 2.9. The spectral map σ is continuous on all class of \mathcal{PB} operators.

Proof. Let $T \in \mathcal{B}(\mathcal{H})$ and $T \in \mathcal{PB}$. Then from Theorem 2.8, if $\sigma(T) = \{0\}$, then T is nilpotent. Also from the proof of Theorem 2.6, $\phi(T)$ is totally P-posinormal. From Theorem 2.8 and [5, Theorem 1.1], we have the spectral map σ is continuous on the set of all totally P-posinormal operators.

3. FINITE OPERATOR

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be a *finite operator* if

$$\|I - (TX - XT)\| \ge 1$$

for all $X \in \mathcal{B}(\mathcal{H})$ ([14]). Finite operator is a starting point of commutator approximation, which has many applications in quantum theory. In [14], J P Williams proved that all normal and hyponormal operators are finite. Properties of finite operators is studied in [10].

Next we show that bounded $T \in \mathcal{PB}$ is a finite operator.

Theorem 3.1. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$, then T is a finite operator.

Proof. First we show that $\sigma_{ja}(T) \neq \emptyset$. Let $z \in \sigma_a(T)$. Then there exist a sequence (x_n) in \mathcal{H} with $||x_n|| = 1$ and $(T - zI)x_n \to 0$ as $n \to \infty$. Since T is totally P-posinormal, we have

$$||(P(T - zI))^* x_n|| \le M(z) ||(T - zI) x_n||.$$

Hence, $||(P(T - zI))^*x_n|| \to 0$ as $n \to \infty$. We have,

$$(P(T - zI))^* x_n = (T - zI)^{*n} x_n + \sum_{j=1}^{n-1} \overline{c_j} (T - zI)^{*j} x_n$$

Hence,

$$\overline{c_1}(T-zI)^*x_n = (P(T-zI))^*x_n - (T-zI)^{*n}x_n + \sum_{j=2}^{n-1} -\overline{c_j}(T-zI)^{*j}x_n.$$
 Since $c_1 > 0$, we have

have

$$\|\overline{c_1}(T-zI)^*x_n\| \le \|(P(T-zI))^*x_n\| + \|(T-zI)^{*n}x_n + \sum_{j=2}^{n-1}\overline{c_j}(T-zI)^{*j}x_n\| \le 2\|(P(T-zI))^*x_n\|.$$

Since $||(P(T - zI))^*x_n|| \to 0$ as $n \to \infty$, we have $||\overline{c_1}(T - zI)^*x_n|| \to 0$ as $n \to \infty$. As $c_1 > 0$, $||(T - zI)^*x_n|| \to 0$ as $n \to \infty$. Hence, $\overline{z} \in \sigma_a(T^*)$. Thus, $z \in \sigma_{ja}(T)$. Hence $\sigma_a(T) = \sigma_{ja}(T)$. Since $\partial \sigma(T) \subset \sigma_a(T)$, we have $\sigma_{ja}(T) \neq \emptyset$. Hence, from [14, Theorem 6] T is a finite operator.

Let \mathcal{F} be a complex Banach space. Let $a, b \in \mathcal{F}$. If $||a|| \leq ||a + zb||$ for all $z \in \mathbb{C}$ then we say that a is orthogonal to b in the sense of Birkhoff. Geometrically it means that the line $\{a + zb : z \in \mathbb{C}\}$ is tangent to the open ball centered at zero and having radius ||a|| ([10]). If

$$\|A\| \le \|A - (TX - XT)\|$$

for all $X \in \mathcal{B}(\mathcal{H})$ and for all $A \in \mathcal{N}(\delta_T)$, where $\delta_T(X) = TX - XT$, then we say that $R(\delta_T)$ is orthogonal to $\mathcal{N}(\delta_T)$.

Next we show that $R(\delta_T)$ is orthogonal to $\mathcal{N}(\delta_T)$ for a totally *P*-posinormal operator. For proving the result we use the following lemma.

Lemma 3.2. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$ and $A \in \mathcal{B}(\mathcal{H})$ is a normal operator with AT = TA. *Then*

$$|\lambda| \le \|A - (TX - XT)\|$$

for all $\lambda \in \sigma_p(A)$ and for all $X \in \mathcal{B}(\mathcal{H})$.

Proof. Let $\lambda \in \sigma_p(A)$. If $\lambda = 0$, the result trivially holds. If $\lambda \neq 0$. Let $D_{\lambda} = \mathcal{N}(A - \lambda I)$. Since A is a normal operator with AT = TA and by Fuglede-Putnam theorem, we have $A^*T = TA^*$. Hence D_{λ} reduces T and A. Thus the matrix representation of T and A on $D_{\lambda} \oplus D_{\lambda}^{\perp}$ is

$$T = \begin{pmatrix} T_1 & 0\\ 0 & T_2 \end{pmatrix}, \quad A = \begin{pmatrix} \lambda I & 0\\ 0 & A_2 \end{pmatrix}$$

Let

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$$

Hence $A - (TX - XT) = \begin{pmatrix} \lambda I - (T_1X_1 - X_1T_1) & B \\ R & S \end{pmatrix}$,

where $B, R, S \in \mathcal{B}(\mathcal{H})$. Then

$$|A - (TX - XT)|| \ge ||\lambda I - (T_1 X_1 - X_1 T_1)||$$

= $|\lambda| ||I - \left(T_1 \frac{X_1}{\lambda} - \frac{X_1}{\lambda} T_1\right)|$

Since D_{λ} is invariant under T and $T_1 = T|_{D_{\lambda}}$, we have T_1 is a totally P-posinormal operator from Theorem 2.1. Also from Theorem 3.1, T_1 is a finite operator. Therefore, $||A - (TX - XT)|| \ge |\lambda|$.

Theorem 3.3. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{PB}$ and $A \in \mathcal{B}(\mathcal{H})$ is a normal operator with AT = TA. Then $R(\delta_T)$ is orthogonal to $\mathcal{N}(\delta_T)$.

Proof. Let ϕ be the function as mentioned in Theorem 2.6. Since A is normal, $\phi(A)$ is normal. Since T is totally P-posinormal and from the proof of Theorem 2.7, we have $\phi(T)$ is totally P-posinormal. Also from Theorem 3.1, $\phi(T)$ is a finite operator. Since AT = TA, $\phi(A)\phi(T) = \phi(T)\phi(A)$. Let $\lambda \in \sigma_p(\phi(A))$. From Theorem 3.2, we have

(3.1)
$$|\lambda| \le \|\phi(A) - (\phi(T)\phi(X) - \phi(X)\phi(T))\| = \|A - (TX - XT)\|,$$

for all $X \in \mathcal{B}(\mathcal{H})$. Since $\phi(A)$ and A are normal, we have

(3.2)
$$\|\phi(A)\| = \sup_{\mu \in \sigma(\phi(A))} |\mu| \text{ and } \|A\| = \sup_{\mu \in \sigma(A)} |\mu|$$

Since A is normal and from Theorem 2.6, we have $\sigma(A) = \sigma_a(A) = \sigma_p(\phi(A))$. Hence from equation (3.1) and equation (3.2), we have

$$\|\phi(A)\| = \|A\| \le \|A - (TX - XT)\|,$$

for all $X \in \mathcal{B}(\mathcal{H})$.

REFERENCES

- [1] S. K. BERBERIAN, Approximate proper values, Proc. Amer. Math. Soc., 13 (1962), pp. 111–114.
- [2] M. CHO and Y. M. HAN, Riesz idempotent and algebraically M-hyponormal operators, *Integral Equations Operator Theory*, 53 (2005), pp. 311–320.
- [3] J. B. CONWAY and B. B. MORREL, Operators that are points of spectral continuity, *Integral Equations Operator Theory*, **2** (1979), pp. 174–198.

- [4] S. V. DJORDJEVIĆ, Continuity of the essential spectrum in the class of quasihyponormal operators, *Vesnik Math.*, **50** (1998), pp. 71–74.
- [5] B. P. DUGGAL, I. H. JEON and I. H. KIM, Continuity of the spectrum on a class of upper triangular operator matrices, *J. math. Anal. Appl.*, **370** (2010), pp. 584–587.
- [6] B. P. DUGGAL, Weyl's theorem for algebraically totally heriditarily normaloid operator, *J. math. Anal. Appl.*, **308** (2005), pp. 578–587.
- [7] I. S. HWANG and W. Y. LEE, The spectrum is continuous on the set of p-hyponormal operators, *Math. Z.*, 235 (2000), pp. 151–157.
- [8] S. KOSTOV and I. TODOROV, Functional model for polynomially posinormal operators, *Integral Equations Operator Theory*, **40** (2001), pp. 61–79.
- [9] C. S. KUBRUSLY, Spectral theory of operators on Hilbert spaces, Birkhauser, Springer, Newyork, 2012.
- [10] S. MECHERI, Finite operators and orthogonality, Nihonkai Math. J., 19 (2008), pp. 53-60.
- [11] R. NICKOLOV and ZH. ZHELEV, Totally P-Posinormal operators are subscalar, *Integral Equa*tions Operator Theory, 43 (2002), pp. 346–355.
- [12] H. C. RHALY, Posinormal operators, J. Math. Soc. Japan., 46 (1994), pp. 587-605.
- [13] T. PRASAD, Spectral properties of some extensions of isometric operators, Ann. Funct. Anal., 11 (2020), pp. 626–633.
- [14] J. P. WILLIAMS, Finite operators, Proc. Amer. Math. Soc., 26 (1970), pp. 129–135.
- [15] F. ZUO and S. MACHERI, Spectral properties of k-quasi-M-hyponormal operators, *Complex Anal. Oper. Theory.*, **12** (2018), pp. 1877–1887.