ON THE CLASS OF TOTALLY POLYNOMIALLY POSINORMAL OPERATORS

E. SHINE LAL, T. PRASAD, P. RAMYA

Received 25 July, 2022; accepted 17 February, 2023; published 28 March, 2023.

Department of Mathematics,University College, Thiruvananthapuram, Kerala, 695034. India.
shinelal.e@gmail.com
Department of Mathematics, University of Calicut, Malapuram, Kerala 673635, India. prasadvalapil@gmail.com

Department of Mathematics, N.S.S College, Nemmara, Kerala, 678508 India. ramyagcc@gmail.com

Abstract. In this paper, we proved that if $T \in \mathcal{B}(\mathcal{H})$ is totally P-posinormal operator with $P(z)=z^{n}+\sum_{j=1}^{n-1} c_{j} z^{j}, c_{1}>0$, then $\operatorname{ker}(T-z I) \subseteq \operatorname{ker}(T-z I)^{*}$. Moreover, we study spectral continuity and range kernel orthogonality of these class of operators.

Key words and phrases: Totally P-posinormal operator, Riesz Projection, Finite operator.
2010 Mathematics Subject Classification Primary 47A10, 47B20.

[^0]© 2023 Austral Internet Publishing. All rights reserved.

1. Introduction and Preliminaries

Let \mathcal{H} be an infinite dimensional complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denotes the algebra of all bounded linear operators on \mathcal{H}. For $T \in \mathcal{B}(\mathcal{H})$, the nullspace and range of T are denoted as $\mathcal{N}(T)$ and $\mathcal{R}(T)$ respectively. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be hyponormal if $T^{*} T \geq T T^{*}$, M-hyponormal if $\left\|(T-z I)^{*} x\right\| \leq M\|(T-z I) x\|$ for all $z \in \mathbb{C}$ and for all $x \in \mathcal{H}$, and said to be dominant if for each $z \in \mathbb{C}$, there exist a constant $M(z) \geq 0$ such that $\left\|(T-z I)^{*} x\right\| \leq$ $M(z)\|(T-z I) x\|$ for all $x \in \mathcal{H}$. It is well known that all the M-hyponormal operators are dominant.

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be posinormal if $\lambda^{2} T^{*} T \geq T T^{*}$, for some $\lambda \geq 0$ ([12]). $T \in \mathcal{B}(\mathcal{H})$ is said to be polynomially (P)-posinormal if $\lambda^{2} T^{*} T \geq P(T) P\left(T^{*}\right)$, where $P(z)$ is a polynomial with zero constant term and for some $\lambda \geq 0([11])$. If $P(z)=z$, then all the posinormal operator are polynomially (P)-posinormal. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be totally P-posinormal if $\left\|(P(T-z I))^{*} x\right\| \leq M(z)\|(T-z I) x\|$ for all $x \in \mathcal{H}$, where $P(z)$ is a polynomial with zero constant term and $M(z)$ is bounded on compact sets of $\mathbb{C}([11])$. In general,

$$
\text { hyponormal } \subset M \text { - hyponormal } \subset \text { totally } P \text { - posinormal. }
$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is dominant if and only if $T-z I$ is posinormal for all $z \in \mathbb{C}$ ([12]).

2. Properties of totally P-posinormal operators

Now, we prove that part of a totally P-posinormal operator on a closed subspace is again a totally P-posinormal operator.
Theorem 2.1. Let $T \in \mathcal{B}(\mathcal{H})$ and let \mathcal{M} be a closed subspace of \mathcal{H} which is invariant under T. If T is totally P-posinormal operator, then $\left.T\right|_{\mathcal{M}}$ is totally P-posinormal.
Proof. Let $P(z)=z^{n}+\sum_{j=1}^{n-1} c_{j} z^{j}$. Let $x \in \mathcal{M}$ and Q be an orthogonal projection on to \mathcal{M}. Since $\left.Q T^{*}\right|_{\mathcal{M}}=\left(\left.T\right|_{\mathcal{M}}\right)^{*}$,

$$
\left(\left.T\right|_{\mathcal{M}}-z I\right)^{*} x=Q(T-z I)^{*} x
$$

$\left.Q\left(T^{*}\right)^{2}\right|_{\mathcal{M}}=\left(\left.T^{2}\right|_{\mathcal{M}}\right)^{*},\left(\left(\left.T\right|_{\mathcal{M}}-z I\right)^{2}\right)^{*} x=Q(T-z I)^{* 2} x$.
Hence, $\left(\left(\left.T\right|_{\mathcal{M}}-z I\right)^{n}\right)^{*} x=Q(T-z I)^{* n} x$ for all $n \in \mathbb{N}$.
Thus, $\left(P\left(\left.T\right|_{\mathcal{M}}-z I\right)\right)^{*} x=Q(P(T-z I))^{*} x$.
Since T is totally P-posinormal, we have

$$
\begin{aligned}
\left\|\left(P\left(\left.T\right|_{\mathcal{M}}-z I\right)\right)^{*} x\right\| & =\left\|Q(P(T-z I))^{*} x\right\| \\
& \leq M(z)\|(T-z I) x\| \\
& =M(z)\left\|\left(\left.T\right|_{\mathcal{M}}-z I\right) x\right\|
\end{aligned}
$$

This completes the proof.
Let $\mathcal{P B}$ denotes the collection of all totally P-posinormal operators, where $P(z)=z^{n}+$ $\sum_{j=1}^{n-1} c_{j} z^{j}, c_{1}>0$.
Theorem 2.2. If $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P B}$, then $\mathcal{N}(T-z I) \subseteq \mathcal{N}(T-z I)^{*}$.
Proof. Since T is totally P-posinormal operator, we have

$$
\begin{equation*}
(P(T-z I))(P(T-z I))^{*} \leq M(z)^{2}(T-z I)^{*}(T-z I) \tag{2.1}
\end{equation*}
$$

Let $x \in \mathcal{N}(T-z I)$. From equation (2.1), we have

$$
(P(T-z I))(P(T-z I))^{*} x=0
$$

Therefore, $\left\|(P(T-z I))^{*} x\right\|^{2}=0$. Hence, $x \in \mathcal{N}\left((P(T-z I))^{*}\right)$.
Thus, $\overline{c_{1}}(T-z I)^{*} x=-(T-z I)^{* n} x+\sum_{j=2}^{n-1}-\overline{c_{j}}(T-z I)^{* j} x$.
Hence,

$$
\begin{aligned}
\left\|\overline{c_{1}}(T-z I)^{*} x\right\| & \leq\left\|(P(T-z I))^{*} x\right\| \\
& \leq M(z)\|(T-z I) x\| .
\end{aligned}
$$

Since $x \in \mathcal{N}(T-z I)$, we have $\overline{c_{1}}(T-z I)^{*} x=0$. As $c_{1}>0$, we have $(T-z I)^{*} x=0$. Hence, $\mathcal{N}(T-z I) \subseteq \mathcal{N}(T-z I)^{*}$.

Let $T \in \mathcal{B}(\mathcal{H})$ and λ be an isolated point of $\sigma(T)$. Then there exist $D_{\lambda}=\{z \in \mathbb{C}:|z-\lambda| \leq$ $r\}$ with $D_{\lambda} \cap \sigma(T)=\{\lambda\}$. The operator defined by

$$
E_{\lambda}=\frac{1}{2 \pi i} \int_{\partial D_{\lambda}}(z I-T)^{-1} d z
$$

is called Riesz projection of T with respect to λ, where ∂D_{λ} denotes the boundary of D_{λ}. It is well known that the Riesz projection E_{λ} satisfies the properties $E_{\lambda}^{2}=E_{\lambda}, E_{\lambda} T=T E_{\lambda}, N(T-$ $\lambda I) \subseteq R\left(E_{\lambda}\right)([2])$.
$T \in \mathcal{B}(\mathcal{H})$ is said to satisfy the property $H(q)$, if $H_{0}(T-\lambda I)=\mathcal{N}(T-\lambda I)^{q}$ for all $\lambda \in \mathbb{C}$ and for some integer $q \geq 1$, where $H_{0}(T)=\left\{x \in \mathcal{H}: \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|^{\frac{1}{n}}=0\right\}$. It is well known that totally P-posinormal operators satisfy the property $H(q)$. Hence the following theorem holds for bounded totally P-posinormal operators by ([6]).

Theorem 2.3. ([6]) Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P B}$ and $\sigma(T)=\{\lambda\}$, then $T=\lambda I$.
In ([2]), M Cho and Y M Han proved that if $T \in \mathcal{B}(\mathcal{H})$ is a M-hyponormal operator, then $\mathcal{N}\left(E_{\lambda}\right)=\mathcal{R}(T-\lambda I)$. Now we prove this result holds for bounded totally P-posinormal operators also. For proving the result we use the following.

Theorem 2.4. ([9]) Suppose $T \in \mathcal{B}(\mathcal{H})$ and E_{λ} be the Riesz projection with respect to an isolated eigen value λ. Then
(1) E_{λ} is a projection.
(2) $\mathcal{R}\left(E_{\lambda}\right)$ and $\mathcal{N}\left(E_{\lambda}\right)$ are invariant under T.
(3) $\sigma\left(\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}\right)=\{\lambda\}$ and $\sigma\left(\left.T\right|_{\mathcal{N}\left(E_{\lambda}\right)}\right)=\sigma(T) \backslash\{\lambda\}$.
(4) $\mathcal{N}(T-\lambda I) \subseteq \mathcal{R}\left(E_{\lambda}\right)$.

Theorem 2.5. Suppose $T \in \mathcal{B}(\mathcal{H})$ is a totally P-posinormal operator and λ is an isolated point of $\sigma(T)$. Then $\mathcal{N}(T-\lambda I)=\mathcal{R}\left(E_{\lambda}\right)$.

Proof. From Theorem 2.4, we have $\mathcal{N}(T-\lambda I) \subseteq \mathcal{R}\left(E_{\lambda}\right)$.
Restriction $\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}$ is totally P-posinormal, by Theorem 2.1. Since λ is an isolated eigen value of T, we have $\sigma\left(\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}\right)=\{\lambda\}$, by Theorem 2.4 .
If $\lambda=0$, then $\sigma\left(\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}\right)=\{0\}$. From Theorem 2.3 , we have $\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}=0$. Hence, $\mathcal{R}\left(E_{\lambda}\right) \subseteq$ $\mathcal{N}(T)$. If $\lambda \neq 0$, then $\sigma\left(\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}\right)=\{\lambda\}$. Thus $\sigma\left(\left.T\right|_{\mathcal{R}\left(E_{\lambda}\right)}-\left.\lambda I\right|_{\mathcal{R}\left(E_{\lambda}\right)}\right)=\{0\}$. From Theorem 2.3. we have $\left.(T-\lambda I)\right|_{\mathcal{R}\left(E_{\lambda}\right)}=0$. Hence, $\mathcal{R}\left(E_{\lambda}\right) \subseteq \mathcal{N}(T-\lambda I)$.

For $T \in \mathcal{B}(\mathcal{H})$, let $\sigma_{p}(T)$ and $\sigma_{a}(T)$ denotes the point spectrum and approximate point spectrum of T. If $\lambda \in \sigma_{p}(T)$ and $\bar{\lambda} \in \sigma_{p}\left(T^{*}\right)$, then λ is in the joint point spectrum, $\sigma_{j p}(T)$. If $\lambda \in \sigma_{a}(T)$ and $\bar{\lambda} \in \sigma_{a}\left(T^{*}\right)$, then we say that λ is in the joint approximate point spectrum, $\sigma_{j a}(T)$.

Theorem 2.6. [1] Let \mathcal{H} be a complex Hilbert space. Then there exists a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and $\phi: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{K})$ satisfying the following properties for every $A, B \in \mathcal{B}(\mathcal{H})$ and $\alpha, \beta \in \mathbb{C}$.
(1) $\phi\left(A^{*}\right)=\phi(A)^{*}, \phi\left(I_{\mathcal{H}}\right)=I_{\mathcal{K}}, \phi(\alpha A+\beta B)=\alpha \phi(A)+\beta \phi(B)$,

$$
\phi(A B)=\phi(A) \phi(B),\|\phi(A)\|=\|A\|, \phi(A) \leq \phi(B) \text { if } \mathrm{A} \leq \mathrm{B}
$$

(2) $\phi(A) \geq 0$ if $\mathrm{A} \geq 0$
(3) $\sigma_{a}(A)=\sigma_{a}(\phi(A))=\sigma_{p}(\phi(A))$.
(4) $\sigma_{j a}(A)=\sigma_{j p}(\phi(A))$.

Theorem 2.7. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P B}$, then $\sigma_{a}(T)=\sigma_{j a}(T)$.
Proof. Since T is totally P-posinormal,

$$
\begin{equation*}
M(z)^{2}(T-z I)^{*}(T-z I)-(P(T-z I))(P(T-z I))^{*} \geq 0 \tag{2.2}
\end{equation*}
$$

Hence from Theorem 2.6, we have
$M(z)^{2}(\phi(T)-z I)^{*}(\phi(T)-z I)-(P(\phi(T)-z I))(P(\phi(T)-z I))^{*}$
$=M(z)^{2} \phi\left((T-z I)^{*}\right) \phi(T-z I)-\phi(P(T-z I)) \phi\left(P(T-z I)^{*}\right)$
$=\phi\left(M(z)^{2}(T-z I)^{*}(T-z I)-(P(T-z I))(P(T-z I))^{*}\right)$.
Also from equation (2.2) and Theorem 2.6, we have

$$
\phi\left(M(z)^{2}(T-z I)^{*}(T-z I)-(P(T-z I))(P(T-z I))^{*}\right) \geq 0
$$

Hence $\phi(T)$ is totally P-posinormal.
From Theorem 2.6, we have $\sigma_{a}(T)=\sigma_{p}(\phi(T))$. Since $\phi(T)$ is totally P-posinormal, we have $\mathcal{N}(\phi(T)-z I) \subset \mathcal{N}(\phi(T)-z I)^{*}\left(\right.$ from Theorem 2.2). Hence, $\sigma_{p}(\phi(T))=\sigma_{j p}(\phi(T))$. From Theorem 2.6, $\sigma_{j p}(\phi(T))=\sigma_{j a}(T)$. Hence $\sigma_{a}(T)=\sigma_{j a}(T)$.
Theorem 2.8. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P B}$, then
(1) If $\sigma(T)=\{0\}$, then T is nilpotent.
(2) The matrix representation of T on $\mathcal{H}=N(T-\lambda I) \oplus(N(T-\lambda I))^{\perp}$ is

$$
T=\left(\begin{array}{cc}
\lambda I & 0 \\
0 & B
\end{array}\right)
$$

where λ is a nonzero eigen value of T. Also $\lambda \notin \sigma_{p}(B)$ for some operator B and $\sigma(T)=\{\lambda\} \cup \sigma(B)$.

Proof. Since $\sigma(T)=\{0\}$, it follows from Theorem 2.3 that $T=0$. Hence T is nilpotent.
Let λ be a nonzero eigen value of T. Since $T \in \mathcal{P B}$, by Theorem 2.2 , we have $\mathcal{N}(T-\lambda I) \subseteq$ $\mathcal{N}(T-\lambda I)^{*}$. Therefore, $\mathcal{N}(T-\lambda I)^{\perp}$ is invariant under T. Hence, $\mathcal{\mathcal { N }}(T-\lambda I)$ reduces T. Thus,

$$
T=\left(\begin{array}{cc}
\lambda I & 0 \\
0 & B
\end{array}\right)
$$

where $B=\left.T\right|_{\mathcal{N}(T-\lambda I)^{\perp}}$. Let $x \in \mathcal{N}(B-\lambda I)$. Then

$$
(T-\lambda I)\binom{0}{x}=\binom{0}{(B-\lambda I) x}=\binom{0}{0} .
$$

Hence, $x \in \mathcal{N}(T-\lambda I)$. Since $B=\left.T\right|_{\mathcal{N}(T-\lambda I)^{\perp}}$, we have $x \in \mathcal{N}(T-\lambda I)^{\perp}$. Thus, $x=0$. Hence, $\mathcal{N}(B-\lambda I)=0$. i.e, $\lambda \notin \sigma_{p}(B)$. Since $T=\lambda I \oplus B$, we have $\sigma(T)=\{\lambda\} \cup \sigma(B)$.

Let \mathcal{L} and \mathcal{S} denotes the set of all compact and bounded subsets of \mathbb{C} respectively. Let (X, d) be a metric space and the function $f: X \rightarrow \mathcal{S}$ is upper continuous (lower continuous) at x_{0} if for each $\epsilon>0$, there is a $\delta>0$ such that $f(x) \subseteq\left(f\left(x_{0}\right)\right)_{\epsilon}$ (respectively, $\left.f\left(x_{0}\right) \subseteq(f(x))_{\epsilon}\right)$ for all x with $d\left(x, x_{0}\right)<\delta$, where $\left(f\left(x_{0}\right)\right)_{\epsilon}=\left\{z \in \mathbb{C}: \operatorname{dist}\left(z, f\left(x_{0}\right)\right\}<\epsilon\right\}$. Define spectral
map $\sigma: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{L}$, which maps $T \in \mathcal{B}(\mathcal{H})$ to spectrum of T ([3]). Spectral properties are studied for many class of operators for instant ([4, 5, 7, 13, 15]). Now we discuss the continuity of spectral map on the set of all totally P-posinormal operators.
Theorem 2.9. The spectral map σ is continuous on all class of $\mathcal{P B}$ operators.
Proof. Let $T \in \mathcal{B}(\mathcal{H})$ and $T \in \mathcal{P B}$. Then from Theorem 2.8, if $\sigma(T)=\{0\}$, then T is nilpotent. Also from the proof of Theorem 2.6, $\phi(T)$ is totally P-posinormal. From Theorem 2.8 and [5, Theorem 1.1], we have the spectral map σ is continuous on the set of all totally P-posinormal operators.

3. Finite operator

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be a finite operator if

$$
\|I-(T X-X T)\| \geq 1
$$

for all $X \in \mathcal{B}(\mathcal{H})([14])$. Finite operator is a starting point of commutator approximation, which has many applications in quantum theory. In [14], J P Williams proved that all normal and hyponormal operators are finite. Properties of finite operators is studied in [10].

Next we show that bounded $T \in \mathcal{P B}$ is a finite operator.
Theorem 3.1. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P} \mathcal{B}$, then T is a finite operator.
Proof. First we show that $\sigma_{j a}(T) \neq \emptyset$. Let $z \in \sigma_{a}(T)$. Then there exist a sequence $\left(x_{n}\right)$ in \mathcal{H} with $\left\|x_{n}\right\|=1$ and $(T-z I) x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since T is totally P-posinormal, we have

$$
\left\|(P(T-z I))^{*} x_{n}\right\| \leq M(z)\left\|(T-z I) x_{n}\right\| .
$$

Hence, $\left\|(P(T-z I))^{*} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. We have,

$$
(P(T-z I))^{*} x_{n}=(T-z I)^{* n} x_{n}+\sum_{j=1}^{n-1} \overline{c_{j}}(T-z I)^{* j} x_{n}
$$

Hence,
$\overline{c_{1}}(T-z I)^{*} x_{n}=(P(T-z I))^{*} x_{n}-(T-z I)^{* n} x_{n}+\sum_{j=2}^{n-1}-\overline{c_{j}}(T-z I)^{* j} x_{n}$. Since $c_{1}>0$, we have

$$
\begin{aligned}
\left\|\overline{c_{1}}(T-z I)^{*} x_{n}\right\| & \leq\left\|(P(T-z I))^{*} x_{n}\right\|+\left\|(T-z I)^{* n} x_{n}+\sum_{j=2}^{n-1} \overline{c_{j}}(T-z I)^{* j} x_{n}\right\| \\
& \leq 2\left\|(P(T-z I))^{*} x_{n}\right\|
\end{aligned}
$$

Since $\left\|(P(T-z I))^{*} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, we have $\left\|\overline{c_{1}}(T-z I)^{*} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. As $c_{1}>0,\left\|(T-z I)^{*} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Hence, $\bar{z} \in \sigma_{a}\left(T^{*}\right)$. Thus, $z \in \sigma_{j a}(T)$. Hence $\sigma_{a}(T)=\sigma_{j a}(T)$. Since $\partial \sigma(T) \subset \sigma_{a}(T)$, we have $\sigma_{j a}(T) \neq \emptyset$. Hence, from [14, Theorem 6] T is a finite operator.

Let \mathcal{F} be a complex Banach space. Let $a, b \in \mathcal{F}$. If $\|a\| \leq\|a+z b\|$ for all $z \in \mathbb{C}$ then we say that a is orthogonal to b in the sense of Birkhoff. Geometrically it means that the line $\{a+z b: z \in \mathbb{C}\}$ is tangent to the open ball centered at zero and having radius $\|a\|([[10])$.

If

$$
\|A\| \leq\|A-(T X-X T)\|
$$

for all $X \in \mathcal{B}(\mathcal{H})$ and for all $A \in \mathcal{N}\left(\delta_{T}\right)$, where $\delta_{T}(X)=T X-X T$, then we say that $R\left(\delta_{T}\right)$ is orthogonal to $\mathcal{N}\left(\delta_{T}\right)$.

Next we show that $R\left(\delta_{T}\right)$ is orthogonal to $\mathcal{N}\left(\delta_{T}\right)$ for a totally P-posinormal operator. For proving the result we use the following lemma.

Lemma 3.2. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P B}$ and $A \in \mathcal{B}(\mathcal{H})$ is a normal operator with $A T=T A$.
Then

$$
|\lambda| \leq\|A-(T X-X T)\|
$$

for all $\lambda \in \sigma_{p}(A)$ and for all $X \in \mathcal{B}(\mathcal{H})$.
Proof. Let $\lambda \in \sigma_{p}(A)$. If $\lambda=0$, the result trivially holds. If $\lambda \neq 0$. Let $D_{\lambda}=\mathcal{N}(A-\lambda I)$. Since A is a normal operator with $A T=T A$ and by Fuglede-Putnam theorem, we have $A^{*} T=T A^{*}$. Hence D_{λ} reduces T and A. Thus the matrix representation of T and A on $D_{\lambda} \oplus D_{\lambda}^{\perp}$ is

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right), \quad A=\left(\begin{array}{cc}
\lambda I & 0 \\
0 & A_{2}
\end{array}\right)
$$

Let

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right)
$$

Hence $A-(T X-X T)=\left(\begin{array}{cc}\lambda I-\left(T_{1} X_{1}-X_{1} T_{1}\right) & B \\ R & S\end{array}\right)$,
where $B, R, S \in \mathcal{B}(\mathcal{H})$. Then

$$
\begin{aligned}
\|A-(T X-X T)\| & \geq\left\|\lambda I-\left(T_{1} X_{1}-X_{1} T_{1}\right)\right\| \\
& =|\lambda|\left\|I-\left(T_{1} \frac{X_{1}}{\lambda}-\frac{X_{1}}{\lambda} T_{1}\right)\right\|
\end{aligned}
$$

Since D_{λ} is invariant under T and $T_{1}=\left.T\right|_{D_{\lambda}}$, we have T_{1} is a totally P-posinormal operator from Theorem 2.1. Also from Theorem 3.1, T_{1} is a finite operator. Therefore, $\| A-(T X-$ $X T) \| \geq|\lambda|$.
Theorem 3.3. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \mathcal{P B}$ and $A \in \mathcal{B}(\mathcal{H})$ is a normal operator with $A T=T A$. Then $R\left(\delta_{T}\right)$ is orthogonal to $\mathcal{N}\left(\delta_{T}\right)$.
Proof. Let ϕ be the function as mentioned in Theorem 2.6. Since A is normal, $\phi(A)$ is normal. Since T is totally P-posinormal and from the proof of Theorem 2.7 , we have $\phi(T)$ is totally P posinormal. Also from Theorem 3.1, $\phi(T)$ is a finite operator. Since $A T=T A, \phi(A) \phi(T)=$ $\phi(T) \phi(A)$. Let $\lambda \in \sigma_{p}(\phi(A))$. From Theorem 3.2, we have

$$
\begin{equation*}
|\lambda| \leq\|\phi(A)-(\phi(T) \phi(X)-\phi(X) \phi(T))\|=\|A-(T X-X T)\| \tag{3.1}
\end{equation*}
$$

for all $X \in \mathcal{B}(\mathcal{H})$. Since $\phi(A)$ and A are normal, we have

$$
\begin{equation*}
\|\phi(A)\|=\sup _{\mu \in \sigma(\phi(A))}|\mu| \text { and }\|\mathrm{A}\|=\sup _{\mu \in \sigma(\mathrm{A})}|\mu| \tag{3.2}
\end{equation*}
$$

Since A is normal and from Theorem 2.6, we have $\sigma(A)=\sigma_{a}(A)=\sigma_{p}(\phi(A))$. Hence from equation (3.1) and equation (3.2), we have

$$
\|\phi(A)\|=\|A\| \leq\|A-(T X-X T)\|
$$

for all $X \in \mathcal{B}(\mathcal{H})$.

References

[1] S. K. BERBERIAN, Approximate proper values, Proc. Amer. Math. Soc., 13 (1962), pp. 111-114.
[2] M. CHO and Y. M. HAN, Riesz idempotent and algebraically M-hyponormal operators, Integral Equations Operator Theory, 53 (2005), pp. 311-320.
[3] J. B. CONWAY and B. B. MORREL, Operators that are points of spectral continuity, Integral Equations Operator Theory, 2 (1979), pp. 174-198.
[4] S. V. DJORDJEVIĆ, Continuity of the essential spectrum in the class of quasihyponormal operators, Vesnik Math., 50 (1998), pp. 71-74.
[5] B. P. DUGGAL, I. H. JEON and I. H. KIM, Continuity of the spectrum on a class of upper triangular operator matrices, J. math. Anal. Appl., 370 (2010), pp. 584-587.
[6] B. P. DUGGAL, Weyl's theorem for algebraically totally heriditarily normaloid operator, J. math. Anal. Appl., 308 (2005), pp. 578-587.
[7] I. S. HWANG and W. Y. LEE, The spectrum is continuous on the set of p-hyponormal operators, Math. Z., 235 (2000), pp. 151-157.
[8] S. KOSTOV and I. TODOROV, Functional model for polynomially posinormal operators, Integral Equations Operator Theory, 40 (2001), pp. 61-79.
[9] C. S. KUBRUSLY, Spectral theory of operators on Hilbert spaces, Birkhauser, Springer, Newyork, 2012.
[10] S. MECHERI, Finite operators and orthogonality, Nihonkai Math. J., 19 (2008), pp. 53-60.
[11] R. NICKOLOV and ZH. ZHELEV, Totally P-Posinormal operators are subscalar, Integral Equations Operator Theory, 43 (2002), pp. 346-355.
[12] H. C. RHALY, Posinormal operators, J. Math. Soc. Japan., 46 (1994), pp. 587 -605.
[13] T. PRASAD, Spectral properties of some extensions of isometric operators, Ann. Funct. Anal., 11 (2020), pp. 626-633.
[14] J. P. WILLIAMS, Finite operators, Proc. Amer. Math. Soc., 26 (1970), pp. 129-135.
[15] F. ZUO and S. MACHERI, Spectral properties of k-quasi-M-hyponormal operators, Complex Anal. Oper. Theory., 12 (2018), pp. 1877-1887.

[^0]: ISSN (electronic): 1449-5910

