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2 M ING FAN

1. I NTRODUCTION AND PRELIMINARIES

The main topic of interpolation theory is concerned with the boundedness of linear operators
acting between several Banach spaces. Recently, the interpolation results for certain nonlin-
ear operators were obtained, for which cancellation plays an important roll. Many important
inequalities for the Lebesgue integration spaces and the trace classes can be formulated and
studied in terms of commutator estimates between a bounded linear operator and certain qua-
silogarithmic operator which is neither bounded nor linear with the interpolation scale indexed
by a numerical parameter between0 and1. See [5] and references therein.

In [9], the author formulated the commutator theorem for a wide family of the real interpola-
tion methods, theK- andJ-methods due to Brudnyi and Krugljak associated with the function
space parameters of quasi-power type, which replace the numerical parameters in the classical
interpolation methods. The purpose of the present paper is to study the nonlinear quasilogarith-
mic operators arising from the above mentioned interpolation methods and the corresponding
commutator estimates by combining the results obtained in [9] with the reiteration of interpola-
tion methods, which will be formulated in the sequel, and the well-known Aronszajn-Gagliardo
construction [1]. Some open problems posted in [5] are also handled.

This paper is organized as follows. In the the rest of this introductory section, we collect
some useful definitions and notations from interpolation theory. Section 2 is devoted to a reiter-
ation result concerning theK- andJ-methods of interpolation with quasi-power parameters. In
Section 3, we study the quasilogarithmic operators related toK- andJ-functionals, which are
determined by a much wide choice of Lipschitz functions and possesse the uniformly bounded
commutator property on the real interpolation spaces. The main result in this section is an in-
equality concerning the duality of the quasilogarithmic operators, and the relationship between
the corresponding domain and range spaces. In Section 4, we investigate the quasilogarithmic
operators related toEα-functionals, and establish the equivalence of the various domain and
range spaces of different operators. In the final section, we apply the results from Sections 2 &
3 on the non-commutative symmetric spaces of measurable operators affilated with a semi-finite
von Neumann algebra. The non-commutative version of some known inequalities is obtained.

Throughout this paper, the notations⊆ and = between two Hausdorff topological vector
spaces stand for continuous inclusion and isomorphic equivalence respectively. LetX =
(X0, X1) be a Banach couple with∆X = X0 ∩ X1 andΣX = X0 + X1, and letX be a
quasi-normed intermediate space forX, we denote byX0 the regularization ofX for X, byX ′

the Banach space dual ofX0 whenX is a Banach space, and we writeX
′
= (X ′

0, X
′
1) as the

dual couple ofX. According to (4.1.1) of [4], an operator (not necessarily linear)T acting from
a Banach spaceX to a Banach spaceY is said to be bounded if∥∥T∥∥

X,Y
= sup

{∥∥Tx∥∥
Y

/∥∥x∥∥
X

∣∣∣ x ∈ X, x 6= 0
}
<∞.

The notationB (X, Y ) (resp.,B
(
X, Y

)
) stands for the space of all bounded linear operators

from quasi-Banach spaceX to quasi-Banach spaceY (resp., from Banach coupleX to Banach
coupleY ). We simply writeB (X) = B (X,X) andB

(
X
)

= B
(
X,X

)
. ForT ∈ B (Xj, Yj)

(j = 0, 1), we denote ∥∥T∥∥
j
=
∥∥T∥∥

Xj ,Yj
(j = 0, 1).

ForT ∈ B
(
X, Y

)
, we denote

∥∥T∥∥
X,Y

=
∥∥T∥∥

0
∨
∥∥T∥∥

1
. Further information about interpolation

theory can be found in [3] and [4].
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REAL INTERPOLATION METHODS AND QUASILOGARITHMIC OPERATORS 3

Let X andY be Banach spaces. Recall that an operatorΩ: X −→ Y is said to be quasi-
additive if Ω(−x) = Ω(x) and limλ→0 Ω(λx) = 0 in Y for all x in X, and if there exists a
positive constantc such that

(1.1)
∥∥∥Ω(x1 + x2

)
− Ω

(
x1

)
− Ω

(
x2

)∥∥∥
Y
≤ c

(∥∥x1

∥∥
X

+
∥∥x2

∥∥
X

)
for all x1, x2 in X. A homogeneous quasi-additive operator is said to be quasi-linear. Now let
X be a Banach couple, and letX be an interpolation space forX. If Ω: X → X is a quasi-
linear operator, then one can define the twisted (direct) sum ofX associated withΩ, denoted by
X ⊕Ω X, by the set of all pairs of elements(x, y) ∈ ΣX ⊕ ΣX such that∥∥(x, y)∥∥

X⊕ΩX
=
∥∥x∥∥

X
+
∥∥Ωx− y

∥∥
X
<∞.

Observe thatX ⊕Ω X is a quasi-Banach space. The domain space ofΩ is defined by

Dom(Ω) = DomX(Ω) =
{
x ∈ X

∣∣∣Ωx ∈ X }
with the quasi-norm

∥∥x∥∥
Dom(Ω)

=
∥∥x∥∥

X
+
∥∥Ωx∥∥

X
. If we identify x with (x, 0) and consider

Dom(Ω) as a subspace ofX ⊕Ω X, then the range space ofΩ is defined by

Ran(Ω) = RanX(Ω) =
(
X ⊕Ω X

)/
DomX(Ω)

with the quotient quasi-norm. If we only assume thatΩ: X → X is quasi-additive satisfying
the condition

(1.2) lim
λ→λ0

∥∥Ω(λx)− Ω(λ0x)
∥∥
X

= 0

for all x ∈ X, then the spacesX ⊕Ω X, DomX(Ω) and RanX(Ω) can be defined in a
similar way. These spaces are Hausdorff topological vector spaces in this case. In fact, if
(x1, y1), (x2, y2) ∈ X ⊕Ω X, then(x1 + x2, y1 + y2) ∈ X ⊕Ω X by (1.1). If (x, y) ∈ X ⊕Ω X
andλ ∈ R, thenλ(x, y) ∈ X ⊕Ω X by (1.1) repeatedly whenλ is a rational number and by
(1.2) whenλ is an irrational number. ForT ∈ B

(
X, Y

)
, we denote the commutator[

T,Ω
]

= TΩ− ΩT.

Let F be an interpolation functor, and letΩ: F
(
X
)
→ F

(
X
)

be a quasi-additive operator
satisfying (1.2) for each Banach coupleX. The operatorΩ is said to possesse the uniformly
bounded commutator property (UBCP in short) if there exists a positive constantC depending
onΩ andF such that

(1.3)
∥∥∥[T,Ω]x∥∥∥

Y
≤ C

∥∥T∥∥
X,Y

∥∥x∥∥
X

for all Banach couplesX andY with X = F
(
X
)

andY = F
(
Y
)
, and for allT ∈ B

(
X, Y

)
.

Let X be a Banach couple. Fort > 0, theJ- andK-functionals defined on∆X andΣX,
respectively, are given by

J(t, x) = J
(
t, x;X

)
=
∥∥x∥∥

0
∨
(
t
∥∥x∥∥

1

)
for x ∈ ∆X, and

K(t, x) = K
(
t, x;X

)
= inf

{∥∥x0

∥∥
0
+ t
∥∥x1

∥∥
1

∣∣∣ x = x0 + x1, xj ∈ Xj (j = 0, 1)
}

for x ∈ ΣX. Let Φ be a Banach function space over
(
R+, dt

/
t
)

such that1 ∧ t ∈ Φ and∫ ∞

0

1 ∧ (1/t) |x(t)| dt
t
<∞ for all x ∈ Φ.
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4 M ING FAN

We define
KΦ

(
X
)

=
{
x ∈ ΣX

∣∣∣ ∥∥x∥∥
KΦ

=
∥∥K(t, x)

∥∥
Φ
<∞

}
by (3.3.1) of [4], and defineJΦ

(
X
)

as the space of allx ∈ ΣX, which permits a canonical
representationx =

∫∞
0
u(t)dt

/
t for a strongly measurable functionu : R+ → ∆X, with the

norm ∥∥x∥∥
JΦ

= inf
u

∥∥J(t, u(t))∥∥
Φ
<∞

by (3.4.3) of [4]. According to Corollary 4.1.9 of [4],KΦ andJΦ are exact interpolation functors
for all Banach couples under the action of bounded (not necessarily linear) operators. More
precisely, ifX andY are Banach couples and ifT : X → Y are bounded (not necessarily
linear) operators in the sense of Definition 4.1.1 of [4] thatT acting fromΣX to ΣY such that,
there existsλ > 0, for anyxj ∈ Xj (j = 0, 1) and for anyε > 0,

T (x0 + x1) = y0 + y1

for someyj ∈ Yj with
∥∥yj∥∥Yj ≤ λ

∥∥xj∥∥Xj + ε (j = 0, 1). We put
∥∥T∥∥

X,Y
= inf λ. Thus,

(1.4)
∥∥Tx∥∥

KΦ(Y )
≤
∥∥T∥∥

X,Y

∥∥x∥∥
KΦ(X)

for all x ∈ KΦ

(
X
)
, and

(1.5)
∥∥Tx∥∥

JΦ(Y )
≤
∥∥T∥∥

X,Y

∥∥x∥∥
JΦ(X)

for all x ∈ JΦ

(
X
)
.

The function spaceΦ is said to be a quasi-power parameter space for real interpolation if the
Calderón operatorS is bounded onΦ, whereS is defined by(

Sf
)
(t) =

∫ ∞

0

1 ∧
(
t
/
s
)
f(s)

ds

s
.

In this case, the equivalenceJΦ

(
X
)

= KΦ

(
X
)

holds with the isomorphism constant depending
on Φ. By a slight abuse of notation, we may use the quasi-power parameterΦ to represent the
corresponding methodsJΦ andKΦ, and may simply write

XΦ = JΦ

(
X
)

= KΦ

(
X
)
.

Let Φ′ be the Köthe dual ofΦ. ThenΦ′ is also a quasi-power parameter space for real interpo-
lation, and the duality

(1.6)
(
XΦ

)′
=
(
X
′)

Φ′

holds with the isomorphism constant depending onΦ. For1 ≤ p ≤ ∞ and0 ≤ θ ≤ 1, let

Lpθ =

{
f ∈ L0(R+, dt/t)

∣∣∣∣∣ ∥∥f∥∥Lpθ =

(∫ ∞

0

(
f(t)

tθ

)p
dt

t

)1/p
}
,

lpθ =
{
a =

(
aν
)∞
ν=−∞

∣∣∣ ∥∥a∥∥
lpθ

=
(∑

ν

(
2−νθ|aν |

)p)1/p }
,

and letL
p

=
(
Lp0, L

p
1

)
andl

p
=
(
lp0, l

p
1

)
. In particular, we denote

Xθ,p = XLpθ
= X lpθ

for 0 < θ < 1 and1 ≤ p <∞.
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2. REITERATION FOR INTERPOLATION SPACES

In this section, we formulate a reiteration result concerning the interpolation spaceXΦ, where
Φ is a quasi-power parameter space for real interpolation. This result is a natural extension of
Theorem 3.5.3 in [3], which is interesting in its own right and plays an important role in the
sequel. For1 ≤ p ≤ ∞, let Lp = Lp(R+, dt). For rearrangement invariant (r. i. in short)
function spaces, we mean those Banach function spaces of measurable real valued functions on
(R+, dt) which are exact interpolation spaces for the Banach couple

(
L1, L∞). We refer to [2]

for the background of r. i. function spaces.

It is known that each r. i. function space can be obtained by the real interpolation method [6].
For convenience of references, we include a lemma concerning the connection between the r. i.
function spaces with the non-trivial Boyd indices and the quasi-power parameter spaces for real
interpolation.

Lemma 2.1. Assume thatE is an r. i. function space over(R+, dt) with the Boyd indicesαE
andαE . Then

0 < αE ≤ αE < 1

iff there exists a quasi-power parameter spaceΦ for real interpolation such thatE is equivalent
to (L1, L∞

)
Φ
.

Proof. If 0 < αE ≤ αE < 1, then we define

Φ =
{
f
∣∣ f(t)

/
t ∈ E

}
with the norm

∥∥f∥∥
Φ

=
∥∥∥f(t)

/
t
∥∥∥
E
. We choose nowp0 andp1 with

1 < p0 < 1
/
αE ≤ 1

/
αE < p1 <∞,

According to Theorem 3.5.16 in [2],E is an interpolation space for the couple
(
Lp0 , Lp1

)
. As a

consequence, the Calderón operatorS is bounded onΦ. In addition,1∧
(
1
/
t
)
∈ Lp0∩Lp1 ⊆ E .

This implies that1 ∧ t ∈ Φ and∫ ∞

0

1 ∧
(
1
/
t
)
|f(t)| dt

t
≤
∥∥∥1 ∧ (1/t)∥∥∥

Lp
′
0∩Lp

′
1
·
∥∥∥f(t)

/
t
∥∥∥
Lp0+Lp1

<∞

for all f ∈ Φ. Therefore,Φ is a quasi-power parameter space for real interpolation. LetΦ̂ =
KΦ

(
L1, L∞

)
. Forf ∈ Φ̂, by Proposition 3.1.18 in [4], we have

K
(
t, f ;L1, L∞

)
=

∫ t

0

f ∗(s)ds,

wheref ∗ is the nonincreasing rearrangement off , and hence

(2.1)
∥∥f∥∥

Φ̂
=
∥∥∥∫ t

0

f ∗(s)ds
∥∥∥

Φ
.

If f ∈ E , then
∥∥f∥∥E =

∥∥f ∗∥∥E =
∥∥tf∗(t)∥∥

Φ
. We claim that this norm is equivalent to

∥∥f∥∥
Φ̂
. In

fact, the inequalitytf∗(t) ≤
∫ t

0
f ∗(s)ds implies

(2.2)
∥∥tf∗(t)∥∥

Φ
≤
∥∥∥∫ t

0

f ∗(s)ds
∥∥∥

Φ
.

On the other hand,

(2.3)
∥∥∥∫ t

0

f ∗(s)ds
∥∥∥

Φ
=
∥∥∥∫ t

0

sf ∗(s)ds
/
s
∥∥∥

Φ
≤
∥∥S∥∥

Φ

∥∥tf∗(t)∥∥
Φ
.
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6 M ING FAN

Conversely, ifΦ is a quasi-power parameter space for real interpolation, thenΦ̂ = KΦ

(
L1, L∞

)
is an r. i. space over

(
R+, dt

)
. If f ∈ Φ̂, then by Proposition 3.5.2 in [2] and (2.1)–(2.3), we

have ∥∥∥∥∥
∫ ∞

0

(
1

t
∧ 1

s

)
f(s)ds

∥∥∥∥∥
Φ̂

≤

∥∥∥∥∥
∫ ∞

0

(
1 ∧ t

s

)
f ∗(s)ds

∥∥∥∥∥
Φ

≤
∥∥S∥∥

Φ

∥∥tf∗(t)∥∥
Φ
≤
∥∥S∥∥

Φ

∥∥f∥∥
Φ̂
.

By Theorem 3.5.15 of [2],0 < αΦ̂ ≤ αΦ̂ < 1. Therefore, ifE is equivalent to
(
L1, L∞

)
Φ
, then

0 < αE ≤ αE < 1.

Theorem 2.2. Let Φ be a quasi-power parameter space for real interpolation, and letΦ̂ =
KΦ

(
L1, L∞

)
. If θ0, θ1, p0, p1 are real numbers satisfying

1 <
1

1− θ0

< p0 < 1
/
αΦ̂ ≤ 1

/
αΦ̂ <

1

1− θ1

< p1 <∞,

then there exists another quasi-power parameter spaceΨ for real interpolation such that

XΦ =
(
Xθ0,p0 , Xθ1,p1

)
Ψ

with the isomorphism constant depending onθ0, θ1, p0, p1 andΦ.

Proof. By Theorem 3.5.16 of [2],̂Φ is an interpolation space for the couple
(
Lp0 , Lp1

)
over

(R+, dt). We define now a function spaceΨ over
(
R+, dt

/
t
)

by

Ψ =
{
f
∣∣ g(t) = tθ0−1f(tθ1−θ0) ∈ Φ̂

}
with the norm

∥∥f∥∥
Ψ

=
∥∥g∥∥

Φ̂
, and show thatΨ is a quasi-power parameter space for real

interpolation. Observe first thattθ0−1 ∧ tθ1−1 ∈ Lp0 ∩ Lp1 ⊆ Φ̂, which implies that

1 ∧ t = t
1−θ0
θ1−θ0

(
t
θ0−1
θ1−θ0 ∧ t

θ1−1
θ1−θ0

)
∈ Ψ.

If f ∈ Ψ with g(t) = tθ0−1f(tθ1−θ0) ∈ Φ̂, then

f(t) = t
1−θ0
θ1−θ0 g

(
t

1
θ1−θ0

)
.

This, together with integration-by-parts and Hölder’s inequality, gives that∫ ∞

0

(
1 ∧ 1

t

)
|f(t)|dt

t
=

∫ ∞

0

(
1 ∧ 1

t

)
t

1−θ0
θ1−θ0

∣∣∣∣g(t 1
θ1−θ0

)∣∣∣∣dtt
=
(
θ1 − θ0

)(∫ 1

0

t−θ0|g(t)|dt+

∫ ∞

1

t−θ1|g(t)|dt
)

≤

(
θ1 − θ0

(1− θ0p′0)
1/p′0

(∫ 1

0

|g(t)|p0dt
)1/p0

+

+
θ1 − θ0

(θ1p′1 − 1)1/p′1

(∫ ∞

1

|g(t)|p1dt
)1/p1

)
<∞.

Let us now consider the Calderón operatorS on the function spaceΨ. Forg ∈ Φ̂, let(
Ŝg
)
(t) =

∫ ∞

0

(
s

t

)1−θ0
∧
(
s

t

)1−θ1
g(s)

ds

s
.
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By Theorem 3.5.15 of [2],̂S is a bounded operator on̂Φ with the norm
∥∥Ŝ∥∥

Φ̂
< ∞. Conse-

quently, iff ∈ Ψ with g(t) = tθ0−1f(tθ1−θ0) ∈ Φ̂, then

(Sf)(t) =

∫ t

0

f(s)
ds

s
+ t

∫ ∞

t

f(s)

s

ds

s

=

∫ t

0

s
1−θ0
θ1−θ0 g

(
s

1
θ1−θ0

)ds
s

+ t

∫ ∞

t

s
1−θ1
θ1−θ0 g

(
s

1
θ1−θ0

)ds
s

=
(
θ1 − θ0

)(∫ t
1

θ1−θ0

0

s1−θ0g(s)
ds

s
+ t

∫ ∞

t
1

θ1−θ0
s1−θ1g(s)

ds

s

)
,

and hence

tθ0−1(Sf)
(
tθ1−θ0

)
=

(
θ1 − θ0

) ∫ ∞

0

(
s

t

)1−θ0
∧
(
s

t

)1−θ1
g(s)

ds

s

=
(
θ1 − θ0

)
(Ŝg)(t).

This implies that∥∥Sf∥∥
Ψ

=
(
θ1 − θ0

)∥∥Ŝg∥∥
Φ̂
≤
(
θ1 − θ0

)∥∥Ŝ∥∥
Φ̂

∥∥g∥∥
Φ̂

=
(
θ1 − θ0

)∥∥Ŝ∥∥
Φ̂

∥∥f∥∥
Ψ
,

which means thatS is bounded onΨ.

Let Y =
(
Xθ0,p0 , Xθ1,p1

)
. ThenKΨ

(
Y
)

= JΨ

(
Y
)

= Y Ψ. We are ready to show the
equivalence

(2.4) XΦ = Y Ψ.

Forx ∈ Y Ψ, let
KX(t) = K

(
t, x;X

)
and KY (t) = K

(
t, x;Y

)
.

As in the proof of Theorem 3.5.3 of [3], we have

(2.5) K
(
t, x;X

)
≤ C1t

θ0K
(
tθ1−θ0 , x;Y

)
,

whereC1 is a positive constant depending onθ0, θ1, p0, p1. Recall thatKX(t) is increasing
whileKX(t)

/
t is decreasing. ThusKX(t)

/
t =

(
KX(t)

/
t
)∗ ∈ Φ̂. This, together with (2.2) and

(2.5), implies that∥∥x∥∥
KΦ(X)

=
∥∥KX(x)

∥∥
Φ

=
∥∥∥t(KX(t)

/
t
)∗∥∥∥

Φ
≤
∥∥KX(t)

/
t
∥∥

Φ̂

≤ C1

∥∥∥tθ0−1KY

(
tθ1−θ0)

∥∥∥
Φ̂

= C1

∥∥∥K(t, x;Y )∥∥∥
Ψ

= C1

∥∥x∥∥
KΨ(Y )

.

On the other hand, forx ∈ XΦ, we see that∫ ∞

0

(
1 ∧ 1

t

)
K
(
t, x;X

)dt
t
<∞,

which implies that
(
1 ∧ (1/t)

)
K
(
t, x;X

)
→ 0 ast → 0 or ∞. According to the continuous

version of the fundamental lemma of real interpolation [11], there exists a decompositionx =∫∞
0
u(t)dt

/
t such that

J
(
t, u(t);X

)
≤ 2K

(
t, x;X

)
.

By combining this with another estimate in the proof of Theorem 3.5.3 of [3], we have

tθ0K
(
tθ1−θ0 , x;Y

)
≤ C2

∫ ∞

0

(
t

s

)θ0
∧
(
t

s

)θ1
KX(s)

ds

s
= C2tŜ

(
KX(t)

/
t
)
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for a positive constantC2 depending onθ0, θ1, p0, p1. Consequently,∥∥x∥∥
KΨ(Y )

=
∥∥∥K(t, x;Y )∥∥∥

Ψ
=
∥∥∥tθ0−1KY

(
tθ1−θ0)

∥∥∥
Φ̂

≤ C2

∥∥∥Ŝ(KX(t)
/
t
)∥∥∥

Φ̂
≤ C2

∥∥Ŝ∥∥
Φ̂

∥∥KX(t)
/
t
∥∥

Φ̂
≤ C2

∥∥Ŝ∥∥
Φ̂

∥∥S∥∥
Φ

∥∥x∥∥
KΦ(X)

.

The last inequality follows from (2.1) and (2.3). Therefore,

XΦ =
(
Xθ0,p0 , Xθ1,p1

)
Ψ

with the isomorphism constant depending onθ0, θ1, p0, p1 andΦ.

3. ON OPERATOR Ωψ AND DUALITY

Here and throughout, we always assume thatψ : R −→ R is a Lipschitz function satisfying

(3.1)
∣∣ψ(t)− ψ(s)

∣∣ ≤ γψ
∣∣t− s

∣∣,
whereγψ is a positive constant depending onψ. We introduce now the quasilogarithmic opera-
torsΩJ

ψ andΩK
ψ as below. Letc > 1 be a constant which is fixed during the discussion. Given

x ∈ JΦ

(
X
)
, we may choose the decompositionx =

∫∞
0
u(t) dt

/
t in ΣX with u : R+ → ∆X

and
∥∥∥J(t, u(t))∥∥∥

Φ
≤ c

∥∥x∥∥
JΦ
. Let

ΩJ
ψ(x) = ΩJ

ψ,X
(x) =

∫ ∞

0

ψ
(
log t

)
u(t)

dt

t
.

Forx ∈ ΣX, we choose the decompositionx = x0(t) + x1(t), t > 0, satisfying

K(t, x) ≤
∥∥x0(t)

∥∥
0
+ t
∥∥x1(t)

∥∥
1
≤ cK(t, x), t > 0.

It is always possible to choosexj(t) (j = 0, 1) to be continuous. Now we define

(3.2) ΩK
ψ (x) = ΩK

ψ,X
(x) = −

∫ 1

0

x0(t)dψ
(
log t

)
+

∫ ∞

1

x1(t)dψ
(
log t

)
+ ψ(0)x.

Observe that bothΩJ
ψ andΩK

ψ are quasi-linear operators. According to Theorem 3.3 of [9],
if Φ is a quasi-power parameter space for real interpolation, thenΩK

ψ = ΩJ
ψ modulo bounded

operators onXΦ; and thus we may denoteΩψ = ΩK
ψ = ΩJ

ψ. Observe that, by Theorem 4.3 of
[9], the operator

Ωψ : XΦ → XΦ

possesses the UBCP (1.3). Consequently, the operatorΩψ is well-defined up to a bounded error,
and hence the domain and range spaces ofΩψ are independent of the choice of the decomposi-
tions ofx ∈ XΦ. Moreover, letΨ andY =

(
Xθ0,p0 , Xθ1,p1

)
as given in Theorem 2.2, and let

η = θ1 − θ0 andψη(t) = ψ(ηt). Then

(3.3) Ωψ,X = Ωψη ,Y

modulo bounded linear operators onXΦ. This can be easily induced from (2.5) of [10] and
Theorem 2.2.

LetA be a Banach couple, and letA be an interpolation space forA. The orbital interpolation
space OrbA

(
A,X

)
consists of allx ∈ ΣX such thatx =

∑∞
ν=1 Tνaν for someTν ∈ B

(
A,X

)
andaν ∈ A for which

∞∑
ν=1

∥∥Tν∥∥A,X∥∥aν∥∥A <∞
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with the orbit norm
∥∥x∥∥

Orb
= inf

∑∞
ν=1

∥∥Tν∥∥A,X∥∥aν∥∥A. It is known that OrbA
(
A,−

)
is mini-

mal among all interpolation functorsF for whichF
(
A
)

= A [1]. For a quasi-power parameter

spaceΦ for real interpolation, we setLΦ =
(
L

1)
Φ

andlΦ =
(
l
1)

Φ
. In view of Theorem 3.4.3

and Proposition 3.4.15 of [4], we have

XΦ = OrbLΦ

(
L

1
, X
)

= OrblΦ
(
l
1
, X
)

with the isomorphism constant depending onΦ. Moreover, we may present the discrete version
of Lemma 3.4.5 of [4].

Lemma 3.1. LetΦ be a quasi-power parameter space for real interpolation, and letx ∈ XΦ. If
ε > 0, then there existT ∈ B

(
l
1
, X
)

anda ∈ lΦ equipped with theJΦ-norm such thatx = Ta
and ∥∥T∥∥

l
1
,X

∥∥a‖
JΦ(l

1
)
≤ (1 + ε)

log 2

∥∥x∥∥
JΦ
.

Proof. For ε > 0, we may choose the decompositionx =
∫∞

0
u(t)dt

/
t, whereu : R+ → ∆X

and ∥∥∥J(t, u(t))∥∥∥
Φ
≤ (1 + ε)

∥∥x∥∥
JΦ
.

Forν ∈ Z, letuν =
∫ 2ν+1

2ν
u(t)dt

/
t, aν = J(2ν , uν) anda =

(
aν
)
ν
∈ lΦ. Then

J
(
2ν , uν

)
≤
∫ 2ν+1

2ν
J
(
t, u(t)

)
dt
/
t,

and hence ∥∥a∥∥
JΦ(l

1
)
≤ (1 + ε)

log 2

∥∥x∥∥
JΦ
.

Assume thatuν
/
aν = 0 if aν = 0 and henceuν = 0. Now we defineT ∈ B

(
l
1
, X
)

by

Tλ =
∑
ν

λνuν
/
aν , for λ =

(
λν
)
ν
∈ Σl

1
.

This implies that
∥∥T∥∥

l
1
,X
≤ 1, x = Ta, and hence∥∥T∥∥

l
1
,X

∥∥a‖
JΦ(l

1
)
≤ (1 + ε)

log 2

∥∥x∥∥
JΦ
,

which completes the proof.

The main result of this section is formulated as follows:

Theorem 3.2. Let Φ be a quasi-power parameter space for real interpolation with the Köthe
dualΦ′, letψ be a Lipschitz function satisfying (3.1), and let

ψ×(t) = −ψ(−t).

If XΦ is equipped with theJΦ-norm, then the operatorΩ = Ωψ,X on XΦ and the operator

Ω× = Ωψ×,X
′ on

(
X
′)

Φ′
are related by∣∣∣〈Ωx, y〉+ 〈x,Ω×y〉

∣∣∣ ≤ C
∥∥x∥∥

XΦ

∥∥y∥∥
(X

′
)Φ′

for x ∈ XΦ andy ∈
(
X
′)

Φ′
. Consequently,〈Ωx, y〉 = −〈x,Ω×y〉 modulo bounded operators.

HereC is a positive constant depending onψ andΦ.
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Proof. We start with the couplel
1

and the dual couple
(
l
1)′

= l
∞

. By applying Theorem 2.2 on
Φ′, we have (

lΦ
)′

=
((
l
1)

Φ

)′
=
(
l
∞)

Φ′
=
((
l
∞)

θ0,p0
,
(
l
∞)

θ1,p1

)
Ψ

=

=
(
lp0θ0 , l

p1
θ1

)
Ψ

=
((
l
1)
θ0,p0

,
(
l
1)
θ1,p1

)
Ψ

= lΦ′

for some1 < p0 < p1 < ∞, 0 < θ0 < θ1 < 1, and for a quasi-power parameter spaceΨ for
real interpolation. LetB =

(
lp0θ0 , l

p1
θ1

)
. Then

(3.4) Ωψ×,l
∞ = Ω(ψ×)η ,B

= Ω
ψ×,l

1

modulo bounded operators onlΦ′ by (3.3). Leta =
(
aν
)
ν
∈ lΦ andb =

(
bν
)
ν
∈ lΦ′. For t > 0,

we set
a0(t) =

(
aνχ{2ν≤t}

)
ν

and a1(t) =
(
aνχ{2ν>t}

)
ν
.

This implies that

K(t) = K
(
t, x; l

1)
=
∑
ν

(
1 ∧

(
t
/
2ν
))
|aν | =

∥∥a0(t)
∥∥
l10

+ t
∥∥a1(t)

∥∥
l11
,

and hence

(3.5) Ω(a) =
(
aνψ(ν log 2)

)
ν
.

We have, by (3.4) and (3.5),〈
Ωa, b

〉
=

∞∑
ν=−∞

aνb−νψ
(
ν log 2

)
and

〈
a,Ω×b

〉
= −

∞∑
ν=−∞

aνb−νψ
(
ν log 2

)
.

It gives that

(3.6)
〈
Ωa, b

〉
+
〈
a,Ω×b

〉
= 0.

Let nowX be an arbitrary Banach couple, and letx ∈ XΦ andy ∈
(
X
′)

Φ′
. For ε > 0, we

choosea ∈ lΦ andT ∈ B
(
l
1
, X
)

by Lemma 3.1 such thatx = Ta and∥∥T∥∥
l
1
,X

∥∥a‖lΦ ≤ (1 + ε)

log 2

∥∥x∥∥
XΦ
.

Let u = [T,Ω]a. Thenu ∈ XΦ such thatΩx = ΩTa = TΩa− u, and∥∥u∥∥
XΦ

≤ C
∥∥T∥∥

l
1
,X

∥∥a∥∥
lΦ

by the UBCP ofΩ. If we denote byT ′ the dual operator ofT , then∥∥T ′∥∥
X
′
,l
∞ =

∥∥T∥∥
l
1
,X

Thus,T ′y ∈
(
l
∞)

Φ′
= lΦ′ , andT ′Ω×y = Ω×T

′y +
[
T ′,Ω×

]
y with∥∥∥[T ′,Ω×]y∥∥∥

(l
∞

)Φ′
≤ C

∥∥T∥∥
l
1
,X

∥∥y∥∥
(X

′
)Φ′
.

This, together with (3.6), implies that〈
Ωx, y

〉
+
〈
x,Ω×y

〉
=
〈
ΩTa, y

〉
+
〈
Ta,Ω×y

〉
=
〈
Ωa, T ′y

〉
+
〈
a,Ω×T

′y
〉
− 〈u, y〉+

〈
a,
[
T ′,Ω×

]
y
〉

=
〈
a,
[
T ′,Ω×

]
y
〉
− 〈u, y〉.
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Therefore,∣∣∣〈Ωx, y〉+
〈
x,Ω×y

〉∣∣∣ ≤ 2C
∥∥T∥∥

l
1
,X

∥∥a∥∥
lΦ

∥∥y∥∥
(X

′
)Φ′
≤ 2C

(1 + ε)

log 2

∥∥x∥∥
XΦ

∥∥y∥∥
(X

′
)Φ′
.

The desired inequality is obtained by lettingε→ 0 an by rewriting the constant.

Remarks:

(i) For
(
x1, x2

)
∈ XΦ ⊕Ω XΦ and

(
y1, y2

)
∈
(
X
′)

Φ′
⊕Ω×

(
X
′)

Φ′
, we have

(3.7)
∣∣∣〈(x1, x2

)
,
(
y1, y2

)〉∣∣∣ ≤ C
∥∥∥(x1, x2

)∥∥∥
XΦ⊕ΩXΦ

∥∥∥(y1, y2

)∥∥∥
(X

′
)Φ′⊕Ω× (X

′
)Φ′
.

This estimate can be obtained by following the proof of Theorem 3.15 of [5]. For
ψ(t) = t, we may solve Question 5 of [5] by proving Proposition 3.7 of [5] without
using function theory.

(ii) By (1.6) and (3.7), we can put equivalent norms on the twisted sumsXΦ ⊕Ω XΦ and(
X
′)

Φ′
⊕Ω×

(
X
′)

Φ′
as in Section 3 of [5], and obtain the duality relation(
XΦ ⊕Ω XΦ

)′
=
(
X
′)

Φ′
⊕Ω×

(
X
′)

Φ′
.

Consequently,

(3.8) DomXΦ
(Ω)′ = Ran(X′)Φ′ (Ω×) and RanXΦ

(Ω)′ = Dom(X
′
)Φ′

(Ω×).

Before proceeding, we show now that the range spaceRanX
(
Ω
)

naturally appears in the
context of Aronszajn-Gagliardo construction. The essential tool used here is similar to that in
the proof of Theorem 3.2.

Theorem 3.3. Let X = OrbA
(
A,X

)
. Assume thatΩ: X → X is a quasi-linear operator

possessing the UBCP (1.3) withR = RanA
(
Ω
)
. If, for eachx ∈ X and forε > 0, there exist

T ∈ B
(
A,X

)
anda ∈ A such thatx = Ta and

∥∥T∥∥
A,X

∥∥a∥∥
A
≤ (1 + ε)

∥∥x∥∥
X

, and ifR is
equivalent to a Banach space, then

RanX(Ω) = OrbR
(
A,X

)
.

Proof. SinceR = RanA
(
Ω
)

= OrbR
(
A,A

)
, it implies that

OrbR
(
A,X

)
⊆ RanX

(
Ω
)

by the minimality of the orbital functor. It is enough to show the converse inclusion

RanX
(
Ω
)
⊆ OrbR

(
A,X

)
.

For ε > 0, by the definition of RanX
(
Ω
)
, we may choose(x, y) ∈ X ⊕Ω X such that∥∥x∥∥

X
+
∥∥Ωx− y

∥∥
X
≤ (1 + ε)

∥∥(x, y)∥∥
RanX(Ω)

.

Observe thatx = T1a1 and y − Ωx = T2a2 for someT1, T2 ∈ B
(
A,X

)
anda1, a2 ∈ A

satisfying∥∥T1

∥∥
A,X

∥∥a1

∥∥
A
≤ (1 + ε)

∥∥x∥∥
X

and
∥∥T2

∥∥
A,X

∥∥a2

∥∥
A
≤ (1 + ε)

∥∥y − Ωx
∥∥
X
.

Consequently, we have

(x, y) =
(
T1a1,ΩT1a1 + T2a2

)
=
(
T1a1, T1Ωa1 + T2a2 − [T1,Ω]a1

)
.

Let u =
[
T1,Ω

]
a1. Then, by (1.3),u ∈ X with∥∥u∥∥

X
≤ C

∥∥T1

∥∥
A,X

∥∥a1

∥∥
A
≤ C(1 + ε)

∥∥x∥∥
X
,
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and henceu = T3a3 for someT3 ∈ B
(
A,X

)
anda3 ∈ A with∥∥T3

∥∥
A,X

∥∥a3

∥∥
A
≤ (1 + ε)

∥∥u∥∥
X
≤ C(1 + ε)2

∥∥x∥∥
X
.

Now we have
(x, y) = T1

(
a1,Ωa1

)
+ T2

(
0, a2

)
− T3

(
0, a3

)
satisfying∥∥(x, y)∥∥

OrbR

≤
∥∥T1

∥∥
A,X

∥∥∥(a1,Ωa1

)∥∥∥
R

+
∥∥T2

∥∥
A,X

∥∥∥(0, a2

)∥∥∥
R

+
∥∥T3

∥∥
A,X

∥∥∥(0, a3

)∥∥∥
R

=
∥∥T1

∥∥
A,X

∥∥a1

∥∥
A

+
∥∥T2

∥∥
A,X

∥∥a2

∥∥
A

+
∥∥T3

∥∥
A,X

∥∥a3

∥∥
A

≤ (C + 2)(1 + ε)2
∥∥(x, y)∥∥

RanX(Ω)
.

Therefore,
∥∥(x, y)∥∥

OrbR
≤ (C + 2)

∥∥(x, y)∥∥
RanX(Ω)

by lettingε→ 0.

4. ON OPERATOR Ωα
ψ WITH DOMAIN AND RANGE SPACES

Assume thatα ≥ 1. Let us now consider theEα-functional onΣX, which is given by

Eα(r, x) = Eα
(
r, x;X

)
= inf

{
max
j=0,1

(∥∥xj∥∥j/r)1/(α−j)
∣∣∣∣ x = x0 + x1, xj ∈ Xj (j = 0, 1)

}
for α > 1, and

E1(r, x
)

= E1

(
r, x;X

)
= inf

{∥∥x0

∥∥
0

/
r
∣∣∣ x = x0 + x1, xj ∈ Xj (j = 0, 1),

∥∥x1

∥∥
1
≤ r

}
,

wherer > 0 and x ∈ ΣX. For c > 1 fixed and forx ∈ ΣX, we have decomposition
x = x0(r) + x1(r), r > 0, for which

Eα(r, x) ≤
(∥∥x0(r)

∥∥
0

/
r
)1/α

∨
(∥∥x1(r)

∥∥
1

/
r
)1/(α−1)

≤ Eα
(
r/c, x

)
for α > 1, and

E1(r, x) ≤
∥∥x0(r)

∥∥
0

/
r ≤ E1

(
r/c, x

)
with

∥∥x1(r)
∥∥

1
≤ r.

The corresponding quasilogarithmic operatorΩα
ψ can be defined by

(4.1) Ωα
ψ(x) = −

∫ 1

0

x0(r) dψ
(
log r

)
+

∫ ∞

1

x1(r) dψ
(
log r

)
for x ∈ ΣX. It is known thatΩα

ψ : Xθ,p → Xθ,p, for 0 < θ < 1 and1 ≤ p < ∞, possesses the
UBCP (1.3). IfΦ is a quasi-power parameter space for real interpolation, then by using (1.4),
(1.5) and Theorem 2.2,Ωα

ψ : XΦ → XΦ also possesses the UBCP. Similar to (3.3), we have

(4.2) Ωα
ψ,X

= Ωβ

ψη ,Y

modulo bounded operators onXΦ by (2.7) of [10] and Theorem 2.2 again, whereY , η, ψη are
given as before, andβ = (α− θ0)

/
(θ1 − θ0) > 1.
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Let nowK(t) = K(t, x) andEα(r) = Eα(r, x). If we use the change of variabler =
K(t)

/
tα, thenEα(r) = t for eachx ∈ ΣX by (2.7) of [10]. Moreover, ifx 6= 0 then

1 ∧ t ≤ K(t)
/∥∥x∥∥

ΣX
≤ 1 ∨ t,

and hence

(4.3) α− 1 ≤

∣∣∣∣∣ log
(
K(t)

/(
tα‖x‖ΣX

))
log t

∣∣∣∣∣ ≤ α.

If u : R+ −→ ∆X, for which
∫∞

0
u(t) dt

/
t = 0 and

∥∥∥J(t, u(t))∥∥∥
Φ
<∞, then by using Lemma

3.4 of [9], we obtain

ψ

(
log

K(t)

tα‖x‖ΣX

)∫ t

0

u(s)
ds

s
−→ 0 ast→ 0 or∞.

This, together with the estimate∣∣∣∣∣ψ
(

log
K(t)

tα

)∣∣∣∣∣ ≤
∣∣∣∣∣ψ
(

log
K(t)

tα‖x‖ΣX

)∣∣∣∣∣+ γψ

∣∣∣log
∥∥x∥∥

ΣX

∣∣∣,
implies that

ψ

(
log

K(t)

tα

)∫ t

0

u(s)
ds

s
−→ 0 ast→ 0 or∞.

If x =
∫∞

0
u(t)dt

/
t with

∥∥∥J(t, u(t))∥∥∥
Φ
≤ c
∥∥x∥∥

X
, then as in the proof of Theorem 3.5 of [9],

we obtain

(4.4) Ωα
ψ(x) =

∫ ∞

0

ψ

(
log

K(t)

tα

)
u(t)

dt

t
− ψ

(
log
∥∥x∥∥

ΣX

)
x

modulo bounded operators onXΦ.

Observe thatΩα
ψ is quasi-additive satisfying (1.2) but not always homogenuous. We need the

following result for the further study.

Proposition 4.1. Assume thatΦ is a quasi-power parameter space for real interpolation. If we
defineΩ̃α

ψ by

Ω̃α
ψ(x) =

∥∥x∥∥
X

Ωα
ψ

(
x
/∥∥x∥∥

X

)
onX = XΦ equipped with theJΦ-norm, then

(i) Ω̃α
ψ is quasi-linear,

(ii) X ⊕Ω̃αψ
X = X ⊕Ωαψ

X, and hence

DomX

(
Ω̃α
ψ

)
= DomX

(
Ωα
ψ

)
and RanX

(
Ω̃α
ψ

)
= RanX

(
Ωα
ψ

)
.

Proof. For part (i), letx =
∫∞

0
u(t)dt

/
t with

∥∥∥J(t, u(t))∥∥∥
Φ
≤ c
∥∥x∥∥

X
. Then by (4.4), we may

choose

Ωα
ψ(x) =

∫ ∞

0

(
ψ
(
log

K(t, x)

tα

)
− ψ

(
log
∥∥x∥∥

ΣX

))
u(t)

dt

t
,

and hence

Ω̃α
ψ(x) =

∫ ∞

0

(
ψ

(
log

K(t, x)

tα
∥∥x∥∥

X

)
− ψ

(
log

∥∥x∥∥
ΣX∥∥x∥∥
X

))
u(t)

dt

t
.
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This implies that

(4.5)
∥∥Ω̃α

ψ(x)− Ωα
ψ(x)

∥∥
X
≤ 2γψ

∣∣∣log
∥∥x∥∥

X

∣∣∣∥∥∥J(t, u(t))∥∥∥
Φ
≤ 2cγψ

∥∥x∥∥
X

∣∣∣log
∥∥x∥∥

X

∣∣∣.
Moreover, if

∥∥x∥∥
X
≤ 1, then

(4.6)
∥∥x∥∥

X

∣∣∣log
∥∥x∥∥

X

∣∣∣ ≤ 1.

Observe that∥∥Ω̃α
ψ(x+ y)− Ω̃α

ψ(x)− Ω̃α
ψ(y)

∥∥
X

≤
∥∥Ωα

ψ(x+ y)− Ωα
ψ(x)− Ωα

ψ(y)
∥∥
X

+
∥∥Ω̃α

ψ(x+ y)− Ωα
ψ(x+ y)

∥∥
X

+

+
∥∥Ω̃α

ψ(x)− Ωα
ψ(x)

∥∥
X

+
∥∥Ω̃α

ψ(y)− Ωα
ψ(y)

∥∥
X
.

It follows thatΩ̃α
ψ is quasi-additive by (4.5), (4.6) and the quasi-additivity ofΩα

ψ.

Now we turn to part (ii). If
∥∥xν∥∥X → 0, then

∥∥xν∥∥X log
∥∥xν∥∥X → 0, and hence∥∥Ω̃α

ψ(xν)− Ωα
ψ(xν)

∥∥
X
→ 0

by (4.5). Consequently,∥∥∥(xν , yν)∥∥∥
X⊕Ωα

ψ
X
→ 0 iff

∥∥∥(xν , yν)∥∥∥
X⊕Ω̃α

ψ
X
→ 0.

This implies thatX ⊕Ω̃αψ
X = X ⊕Ωαψ

X. Therefore,

Dom
(
Ω̃α
ψ

)
= Dom

(
Ωα
ψ

)
and Ran

(
Ω̃α
ψ

)
= Ran

(
Ωα
ψ

)
,

which completes the proof.

Fora =
(
aν
)
ν
∈ lΦ andK(t) = K

(
t, a; l

1)
, we have

Ω̃α(a) =
(
aνψ

(
logK(2ν)− αν log 2

)
− aνψ

(
logK(1)

))
ν
.

This, together with (4.2) and a similar argument as in the proof of Theorem 3.2, implies

Proposition 4.2. The estimates in Theorem 3.2 and (3.7) are also valid for the operatorΩ̃α
ψ on

the spaceX = XΦ.

In particular, this gives an affirmative answer to Question 7 of [5]. As a consequence of Propo-
sition 4.2, we have

(4.7) DomX
(
Ωα
ψ

)′
= RanX′

(
Ωα
ψ×

)
and RanX

(
Ωα
ψ

)′
= DomX′

(
Ωα
ψ×).

For ψ(t) = t, let us now pay attention to the connection between operatorsΩ = Ωψ and
Ωα = Ωα

ψ. As mentioned in [5], it is not generally true that both operators differ from each
other onXθ,p by a bounded error. However, the equivalence of the domain spaces

DomX

(
Ωα
)

= DomX

(
Ω
)

is given by Theorem 4.2 of [5] with a rather complicated computational proof. Cwikel et al
asked if it was possible to give a conceptual proof for this equivalence and if there was an
analogous equivalence for the range spaces. We show that, as an application of Theorem 3.3
and Proposition 4.1, this is the case even forXΦ and our proof is very simple.
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Proposition 4.3. Let Φ be a quasi-power parameter space for real interpolation, and letX =
XΦ equipped with theJΦ-norm. Then

DomX

(
Ωα
)

= DomX

(
Ω
)

and RanX
(
Ωα
)

= RanX
(
Ω
)
.

Proof. By Proposition 4.1, we may replaceΩα by Ω̃α, and thus assume without loss of general-

ity that
∥∥x∥∥

X
= 1. Letx =

∫∞
0
u(t)dt

/
t with

∥∥∥J(t, u(t))∥∥∥
Φ
≤ c
∥∥x∥∥

X
. Observe that

Ωα(x) =

∫ ∞

0

log
(
K(t, x)

/(
tα‖x‖ΣX

))
u(t)

dt

t

=

∫ ∞

0

log t ·
log
(
K(t, x)

/(
tα‖x‖ΣX

))
log t

u(t)
dt

t
,

and

Ω(x) =

∫ ∞

0

log t · u(t)dt
t

=

∫ ∞

0

log
(
K(t, x)

/(
tα‖x‖ΣX

))
· log t

log
(
K(t, x)

/(
tα‖x‖ΣX

))u(t)dtt .
It turns out by (4.3) that

α− 1

c

∥∥Ω(x)
∥∥
X
≤
∥∥Ωα(x)

∥∥
X
≤ αc

∥∥Ω(x)
∥∥
X
.

Forα > 1, the identity

(4.8) DomX
(
Ωα
)

= DomX

(
Ω
)

is a direct consequence of this estimate. By the reiteration in (4.2), we obtain that the identity
(4.8) holds true also forα = 1.

For the identity RanX
(
Ωα
)

= RanX
(
Ω
)
, observe that, by (3.8), (4.7) and (4.8), we have

RanX′
(
Ωα
)

= DomX

(
Ωα
×
)′

= DomX

(
Ω×
)′

= RanX′
(
Ω
)

for all dual couplesX
′
and forX ′ =

(
X
′)

Φ′
. Especially,

R = RanlΦ
(
Ωα
)

= RanlΦ
(
Ω
)

for the couplel
1
. By Lemma 3.1 and Theorem 3.3, we obtain

RanX
(
Ωα
)

= OrbR
(
l
1
, X
)

= RanX
(
Ω
)

for all Banach couplesX.

5. ON NON-COMMUTATIVE SYMMETRIC SPACES OF MEASURABLE OPERATORS

Let M be a semifinite von Neumann algebra acting on a Hilbert spaceH with the given
normal faithful semifinite traceτ and the identity1. The densely-defined closed linear operator
x onH is said to be affiliated withM if xu = ux for all unitary operatorsu commuting with
M. The operatorx is said to beτ -measurable if, for eachε > 0, there is a projecte in M for
whiche(H) is included in the domain ofx andτ(1−e) < ε. Now we denote bỹM the space of
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all τ -measurable operators affliated withM. Forx ∈ M̃ andt > 0, the corresponding singular
number is defined by

µt(x) = inf
{∥∥xe∥∥M ∣∣∣ e is a projection inM with τ(1− e) ≤ t

}
.

The functionµ(x) : t 7→ µt(x) is said to be the generalized singular value function or the
nonincreasing rearrangement ofx. The spacẽM is equipped with the measure topology in the
sense that a basis of neighbourhoods at zero is given by the sets

Mε,δ =
{
x ∈ M̃

∣∣µδ(x) < ε
}

for ε, δ > 0.

Observe thatµ(x) = µ
(
|x|
)
, where|x| is the absolute value ofx. See [13] for details. Further-

more, let us assume that|x| has the spectral representation

|x| =
∫ ∞

0

s dexs ,

and thate(s0,s1)

(
|x|
)

is the spectral projection of|x| with respect to the interval(s0, s1) for
0 ≤ s0 < s1 ≤ ∞. According to Proposition 2.2 of [8], we have

(5.1) µt(x) = inf
{
r > 0

∣∣∣ τ(e(r,∞)

(
|x|
))
≤ t
}

for t > 0. Now letE be an r. i. function space overR+ satisfying0 < αE ≤ αE < 1. We define
the symmetric spaceE(M) of measurable operators associated withE andM by

E(M) =
{
x ∈ M̃

∣∣µ(x) ∈ E
}

equipped with the norm
∥∥x∥∥E(M)

=
∥∥µ(x)

∥∥
E . If we denote byE(M)′ the Köthe dual ofE(M)

in the sense of Definition 5.1 of [7], then the following duality relation

E(M)′ = E ′(M)

holds by Theorem 5.6 of [7]. In particular,L∞(M) = M equipped with the usual operator
norm. We refer to [7] and references therein for the further information.

We turn now our attention to the interpolation of r. i. spaces and the corresponding symmetric
operator spaces. By Lemma 2.1,E = KΦ

(
L1, L∞

)
for a quasi-power parameter spaceΦ for

real interpolation. Recall that
(
L1(M),M

)
is a Banach couple with theK-functional

(5.2) K(t, x) = K
(
t, x;L1(M),M

)
=

∫ t

0

µs(x) ds

by Proposition 2.5 of [7].

Proposition 5.1. E(M) = KΦ

(
L1(M),M

)
.

Proof. Forx ∈ L1(M) ∩M, we have∥∥x∥∥E(M)
=

∥∥µt(x)∥∥E ' ∥∥∥K(t, µt(x); (L1, L∞)
)∥∥∥

Φ

=
∥∥∥∫ t

0

µs(x)ds
∥∥∥

Φ
=

∥∥∥∥K(t, x; (L1(M),M
))∥∥∥∥

Φ

,

by Proposition 3.1.18 of [4] and (5.2). SinceL1∩L∞ is dense inE , this implies thatL1(M)∩M
is dense in bothE(M) andKΦ

(
L1(M),M

)
by Proposition 2.8 of [7] and Corollary 3.6.3 of

[4] respectively. Therefore, the identity

E(M) = KΦ

(
L1(M),M

)
holds true.
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We are ready to calculate the operatorsΩψ andΩ1
ψ for the Banach couple

(
L1
(
M
)
,M

)
.

Without loss of generality, we may assume thatψ(0) = 0.

Proposition 5.2. For x ∈ M̃, let x = u|x|, whereu is a partial isometry and|x| =
∫∞

0
s dexs .

Then

(5.3) Ωψ(x) = u

∫ ∞

0

sψ
(
log λs(x)

)
dexs ,

and

(5.4) Ω1
ψ(x) = u

∫ ∞

0

sψ
(
log s

)
dexs .

Proof. If we sett = λr(x) = τ
(
e(r,∞)

(
|x|
))

, K(t) = K(t, x) and r̃ = K(t)
/
t, then by (5.1)

and (5.2),

r = r(t) = µt(x) = K ′(t)

andr̃ ≥ r. For the operatorΩψ, we setx = x0(t) + x1(t), where

x0(t) = u

∫
(r(t),∞)

s dexs = u|x|e(r(t),∞),

x1(t) = u

∫
(0,r(t))

s dexs = u|x|e(0,r(t)).

Recall that

µs
(
|x|e(r(t),∞)

)
= χ(0,t)(s)µs(x)

by an argument in the proof of Proposition 2.7 of [7]. Combining this with (5.2), we obtain that∥∥x0(t)
∥∥
L1(M)

=

∫ ∞

0

µs
(
x0(t)

)
ds =

∫ ∞

0

µs
(
|x|e(r(t),∞)

)
ds

=

∫ t

0

µs(x) ds = K(t, x),

and

t
∥∥x1(t)

∥∥
M = t

∥∥∥∫ µt(x)

0

s dexs

∥∥∥
M
≤ tµt(x) ≤

∫ t

0

µs(x) ds = K(t, x).

Therefore, ∥∥x0(t)
∥∥
L1(M)

+ t
∥∥x1(t)

∥∥
M ≤ 2K(t, x).

It turns out that

Ωψ(x) = −u
∫ 1

0

x0(t) dψ
(
log t

)
+ u

∫ ∞

1

x1(t) dψ
(
log t

)
= −u

∫ 1

0

(∫ ∞

r(t)

s dexs

)
dψ
(
log t

)
+ u

∫ ∞

1

(∫ r(t)

0

s dexs

)
dψ
(
log t

)
.

We choose nowp0 andp1 satisfying0 < 1
/
p1 < αE ≤ αE < 1

/
p0 < 1. Sinceµt ∈ E ⊆

Lp0 + Lp1, this follows that∫ 1

0

µt(x)
p0 dt <∞ and

∫ ∞

1

µt(x)
p1 dt <∞.
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Observe that, for0 < t < 1,

ψ
(
log t

)∥∥x0(t)
∥∥
L1(M)

≤ ψ
(
log t

) ∫ t

0

µs(x) ds

≤ ψ
(
log t

)
t1/p

′
0

(∫ 1

0

µt(x)
p0 dt

)1/p0

,

and, fort > 1,

ψ
(
log t

)∥∥x1(t)
∥∥
M ≤

ψ
(
log t

)
t

∫ t

0

µs(x) ds

≤
ψ
(
log t

)
t

(∫ 1

0

µt(x)
p0 dt

)1/p0

+
ψ
(
log t

)
t1/p1

(∫ ∞

1

µt(x)
p1 dt

)1/p1

.

Consequently,

lim
t→0

ψ
(
log t

)∥∥x0(t)
∥∥
L1(M)

= lim
t→∞

ψ
(
log t

)∥∥x1(t)
∥∥
M = 0.

We obtain (5.3) in terms of interpolation-by-parts. For the operatorΩ1
ψ, we setx = x0(r̃) +

x1(r̃), where

x0(r̃) = u

∫ ∞

r̃

s dexs = u|x|e(r̃,∞) and x1(r̃) = u

∫ r̃

0

s dexs = u|x|e(0,r̃).

By (2.7) of [10], r̃ = K(t)
/
t iff E1(r̃) = t, and hence

E1(r, x) ≤
∥∥x0(r)

∥∥
0

/
r ≤ E1

(
r/c, x

)
,

∥∥x1(r)
∥∥

1
≤ r.

A similar calculation implies (5.4).

By applying Theorem 4.3 of [9], Theorem 3 and Proposition 4.2 on the operators given in
(5.3) and (5.4), we obtain immediately the following result:

Proposition 5.3. (i) If a, b ∈M with
∥∥a∥∥M ≤ 1,

∥∥b∥∥M ≤ 1, and ifx ∈ E(M), then∥∥Ωψ(axb)− aΩψ(x)b
∥∥
E(M)

≤ C
∥∥x∥∥E(M)

,∥∥Ω1
ψ(axb)− aΩ1

ψ(x)b
∥∥
E(M)

≤ C
∥∥x∥∥E(M)

.

(ii) If x ∈ E(M) andy ∈ E ′(M), then∣∣∣τ(Ωψ(x)y − xΩψ(y)
)∣∣∣ ≤ C

∥∥x∥∥E(M)

∥∥y∥∥E ′(M)
,∣∣∣τ(Ω1

ψ(x)y − xΩ1
ψ(y)

)∣∣∣ ≤ C
∥∥x∥∥E(M)

∥∥y∥∥E ′(M)
.

HereC is a constant depending onE andψ.

Observe that part (i) extends Theorems 4.2 and 4.3 of [12].
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