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2 MING FAN

1. INTRODUCTION AND PRELIMINARIES

The main topic of interpolation theory is concerned with the boundedness of linear operators
acting between several Banach spaces. Recently, the interpolation results for certain nonlin-
ear operators were obtained, for which cancellation plays an important roll. Many important
inequalities for the Lebesgue integration spaces and the trace classes can be formulated and
studied in terms of commutator estimates between a bounded linear operator and certain qua-
silogarithmic operator which is neither bounded nor linear with the interpolation scale indexed
by a numerical parameter betwe@and1. See([5] and references therein.

In [9], the author formulated the commutator theorem for a wide family of the real interpola-
tion methods, thé(- and.J-methods due to Brudnyi and Krugljak associated with the function
space parameters of quasi-power type, which replace the numerical parameters in the classical
interpolation methods. The purpose of the present paper is to study the nonlinear quasilogarith-
mic operators arising from the above mentioned interpolation methods and the corresponding
commutator estimates by combining the results obtained in [9] with the reiteration of interpola-
tion methods, which will be formulated in the sequel, and the well-known Aronszajn-Gagliardo
construction([l]. Some open problems posted in [5] are also handled.

This paper is organized as follows. In the the rest of this introductory section, we collect
some useful definitions and notations from interpolation theory. Sgdtion 2 is devoted to a reiter-
ation result concerning th&- and.J-methods of interpolation with quasi-power parameters. In
Sectior{ B, we study the quasilogarithmic operators relatéd-tand./-functionals, which are
determined by a much wide choice of Lipschitz functions and possesse the uniformly bounded
commutator property on the real interpolation spaces. The main result in this section is an in-
equality concerning the duality of the quasilogarithmic operators, and the relationship between
the corresponding domain and range spaces. In Sgdtion 4, we investigate the quasilogarithmic
operators related té&,-functionals, and establish the equivalence of the various domain and
range spaces of different operators. In the final section, we apply the results from Sections 2 &
on the non-commutative symmetric spaces of measurable operators affilated with a semi-finite
von Neumann algebra. The non-commutative version of some known inequalities is obtained.

Throughout this paper, the notationsand = between two Hausdorff topological vector
spaces stand for continuous inclusion and isomorphic equivalence respectivelyX ket
(Xo, X1) be a Banach couple with X = X, N X; andXX = X, + X;, and letX be a
quasi-normed intermediate space }6rwe denote byX° the regularization o for X, by X’
the Banach space dual af° when X is a Banach space, and we write = (X}, X1) as the
dual couple ofX. According to (4.1.1) of [4], an operator (not necessarily lindaagcting from
a Banach spac# to a Banach spacg is said to be bounded if

I7lly = sup{ [Tzl /llall | o € X. 2 £ 0} < oc.

The notationB (X,Y’) (resp.,B (X,Y’)) stands for the space of all bounded linear operators

from quasi-Banach spack to quasi-Banach spadeé (resp., from Banach coupl¥ to Banach
coupleY’). We simply write3 (X) = B (X, X) andB (X) = B (X, X). ForT € B(X;,Y})
(7 =0,1), we denote

||T||j - HTHXj,l/j (j=0,1).

ForT € B(X,Y),wedenotg|T||« = ||T||,V||T|,- Further information about interpolation
theory can be found in [3] andl[4].
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Let X andY be Banach spaces. Recall that an operftotX — Y is said to be quasi-
additive if Q(—z) = Q(x) andlimy o Q(Az) = 0in Y for all z in X, and if there exists a
positive constant such that

(L.1) [ +22) = Q@) = Qe2) || < e (flor]l + [l )

for all z1, =5 In X. A homogeneous quasi-additive operator is said to be quasi-linear. Now let
X be a Banach couple, and I&t be an interpolation space fof. If Q: X — X is a quasi-
linear operator, then one can define the twisted (direct) sukha$sociated witk, denoted by

X @q X, by the set of all pairs of elements, y) € XX & XX such that

1@ xaqx = ol + 192 =yl < oo
Observe tha @ X is a quasi-Banach space. The domain spadeisfdefined by

Dom(2) = Domy(Q2) = {a: eX ‘ Qu € X}
with the quasi-norm|z||, . o) = [|z[[y + (|| If we identify = with (=,0) and consider
Dom(Q2) as a subspace of @ X, then the range space Qfis defined by

Ran) = Ran () = (X ®q X)/Domy ()

with the quotient quasi-norm. If we only assume thatX — X is quasi-additive satisfying
the condition

1.2) ,\lirlxloHQ()\x) - Q(/\Ox)HX =0

for all x € X, then the spaceX @©q X, Dom x(£2) and Ran x(2) can be defined in a
similar way. These spaces are Hausdorff topological vector spaces in this case. In fact, if
(xl,yl), (.IQ,yQ) € X ®q X, then(l’l + 22,1 + yz) eEX P X by ) If(x,y) eEXP®qX

and\ € R, then\(z,y) € X ®q X by (1.1) repeatedly when is a rational number and by
) when) is an irrational number. F&F € B(X,Y’), we denote the commutator

[T,9] = TQ - QT.

Let F' be an interpolation functor, and I€&t: F(Y) — F(Y) be a quasi-additive operator

satisfying ) for each Banach couple The operatof is said to possesse the uniformly
bounded commutator property (UBCP in short) if there exists a positive corstaepending
on ) and F' such that

(1.3) H T, Q]“”HY < C|IT|lxxll=llx

for all Banach couple’ andY with X = F(X) andY = F(Y), and for alll’ € B(X,Y).

Let X be a Banach couple. For> 0, the J- and K-functionals defined ol X and XX,
respectively, are given by

Itw) = I(t,0:X) = [Jel, v (tz],)
forz € AX, and
K(t,z) = K(t,x;Y) = inf{ HmOHO —i—tHlel

T =20+ T1, T; GXJ(j:O,1>}
for z € ©X. Let ® be a Banach function space o& .., d¢/t) such thatl At € ® and

/ 1A (1/t) |x(t)|%<oo forall z € ®.
0
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We define
Ko(X) = {2 e 5[], = [ K(t.2)], < o0 }

by (3.3.1) of [4], and define/s (X) as the space of alt € XX, which permits a canonical

representation = f0°° u(t)dt/t for a strongly measurable functian R, — AX, with the
norm

1], = mt[[7(t u®)] < o

by (3.4.3) of [4]. According to Corollary 4.1.9 of|[4k’s and.Js are exact interpolation functors

for all Banach couples under the action of bounded (not necessarily linear) operators. More
precisely, if X andY are Banach couples anddf: X — Y are bounded (not necessarily
linear) operators in the sense of Definition 4.1.100f [4] thatcting fromXX to Y such that,

there exists\ > 0, for anyz; € X, (j = 0,1) and for anye > 0,

T(zo+x1) =y + 1
for somey; € Y; with ||y; ||, < A||z;||, +¢ (i =0,1). We put||T||xy = inf A. Thus,

(1.4) T2, ) < [Tl ll2] e, )
forall 2 € K4 (X), and

(1.5) 172, < 17w ll2 0, )
forall z € Js (X).

The function spacé is said to be a quasi-power parameter space for real interpolation if the
Calderén operato$ is bounded o, wheresS is defined by

ds

SN0 = [ 1A (/950605

In this case, the equivalende (X) = K4 (X) holds with the isomorphism constant depending
on ®. By a slight abuse of notation, we may use the quasi-power parafmbédterepresent the
corresponding methodg and K¢, and may simply write

Xo = Jo(X) = Ko(X).

Let &’ be the Kéthe dual ob. Thend’ is also a quasi-power parameter space for real interpo-
lation, and the duality

(1.6) (Xa) = (X),
holds with the isomorphism constant dependingboriror1 < p < co and0 < 0 < 1, let

= (85"}
5 = {2 el = (S )

and letl” = (L}, L¥) andl” = (I},17). In particular, we denote

Xﬁ,p = XLZ = Xlg

L) = {feLO(R+,dt/t)

for0 <6 <1landl <p< cc.
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2. REITERATION FOR INTERPOLATION SPACES

In this section, we formulate a reiteration result concerning the interpolation Spaaghere
® is a quasi-power parameter space for real interpolation. This result is a natural extension of
Theorem 3.5.3 in_[3], which is interesting in its own right and plays an important role in the
sequel. Forl < p < oo, let L? = LP(R,,dt). For rearrangement invariant (r.i. in short)
function spaces, we mean those Banach function spaces of measurable real valued functions on
(R, dt) which are exact interpolation spaces for the Banach co(dp‘IeLoo). We refer to[[2]
for the background of r.i. function spaces.

It is known that each r.i. function space can be obtained by the real interpolation method [6].
For convenience of references, we include a lemma concerning the connection between the r.1.
function spaces with the non-trivial Boyd indices and the quasi-power parameter spaces for real
interpolation.

Lemma 2.1. Assume thaf is an r.i. function space ovglR", dt) with the Boyd indices,
andag. Then

O<ag<ag<l1
iff there exists a quasi-power parameter spactr real interpolation such thaf is equivalent
to (L', L>),.

Proof. If 0 < oz <@g < 1, then we define
d={f|ft)/te&}
with the norm|| f ||, = Hf(t)/tHg. We choose now, andp; with

1 <py<1l/ae<1/ae <p < oo,

According to Theorem 3.5.16 inl[2F; is an interpolation space for the cougler, L71). As a
consequence, the Calderén operatds bounded or®. In addition, 1A (1/t) € LroNLP C €.
This implies thatl A t € ® and

/OOO1A(1/t) |f(t)|%§H1A(1/t ‘ Hf /t‘

for all f € ®. Therefore,® is a quasi-power parameter space for real interpolation.dLet
Ke(L', L*). For f € ®, by Proposition 3.1.18 ir [4], we have

K(t, f; L', L®) = /t f*(s)ds
0

where f* is the nonincreasing rearrangemeniofind hence

@) Il = [ 5],

If f €&, thenl|f||, = Hf*Hg |tf* )||,- We claim that this norm is equivalent figf | ;. In
fact, the inequality /*(t) < fo s)ds implies

(2.2) ||tf*<t>||q> <| /0 r(s)as|),

On the other hand,
t
0= H/o sf*(s)ds/s o
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Conversely, ifb is a quasi-power parameter space for real interpolation, dheni, (Ll, L°°)
is an r.i. space ovefR™", dt). If f € ®, then by Proposition 3.5.2 ii][2] an.2.3), we
<

have
‘/OOO(%/\é)f(S)dS A /Ooo(lAé)f*(S)ds

< [[Sllaller @l < 151l lls-

By Theorem 3.5.15 of [2]) < a3 < @4 < 1. Therefore, if€ is equivalent to L', L>) , then
0< Q¢ <ag<l. 1

(]

Theorem 2.2. Let & be a quasi-power parameter space for real interpolation, andblet
Ko (L', L>). If 6y, 61, po, p1 are real numbers satisfying

1<

1 < <1/ <]_/ <—1 < <
Az [0 0.@)
1 90 Po b = 8% 1 91 P1 )

then there exists another quasi-power parameter spatar real interpolation such that
X‘P = (YGOJ)O?Y@LM)\I;
with the isomorphism constant dependingdgnd,, po, p1 and .

Proof. By Theorem 3.5.16 of [2]® is an interpolation space for the coup(IEPO, Lpl) over
(R4, dt). We define now a function spadeover (R, dt/t) by

U={f|g(t) =t""f(t" ") e b}
with the norm||f||, = ||9/|5, and show that is a quasi-power parameter space for real
interpolation. Observe first the—! A t?1~! € L7 N L7 C &, which implies that

1-6g ( O0p—1 01—1

1At =1%"0% ({%1-% /\t91*90> ew.

If f e W with g(t) = tP-1 f(t% %) € &, then
f(t) = t%g@ﬁ).
This, together with integration-by-parts and Holder’s inequality, gives that
g(tﬁ> dt

[t - [ sl
- (91 — 90) </01t9019(t)\dt + /loo tellg(t)\dt)
) <% (/ g0t .

01 . 90 (/oo >1/P1
b t)[Prat
A

< OQ.

Let us now consider the Calderén operafaon the function spacé. Forg € ®, let
A o g\ 1% s\'% ds
Sg)(t) = - A= —.
Soo=[(3) A(5) w0

AIMAA Vol. 7, No. 1, Art. 20, pp. 1-19, 2010 AJMAA


http://ajmaa.org

REAL INTERPOLATION METHODS AND QUASILOGARITHMIC OPERATORS 7

By Theorem 3.5.15 of [2]$ is a bounded operator oh with the norm||S||; < oco. Conse-
quently, if f € U with g(t) = teo_lf(tel‘e()) € ®, then

/ f(s —l—t/ f(s)ds
1-6¢g o0 1-601 1 dS
_/ s01— 909< — >_+t/ 891—009(891790)_
0 t §

t91*90 00
d d
—-a) ([ ST [T s ),
0 S telfgo S

SIS () = (6 — 0y) /OOO(

and hence

This implies that
15£]ly = (61— 60)]|S
which means tha$ is bounded onv.

Let Y = (Xoypp: Xovpn). ThenKy(Y) = Ju(Y) = Yy. We are ready to show the
equivalence

(2.4) Xo=Yu.
Forz € Yy, let

< (61— 60)

ool =0~

Kx(t) = K(t,2;X) and Ky(t) = K(t,z;Y).
As in the proof of Theorem 3.5.3 df([3], we have
(@35) K(t,z; X) < CitK (1%, 2;Y),

where (] is a positive constant depending 6n 6, py, p1. Recall thatK+(¢) is increasing
while K+(t)/t is decreasing. Thuk(¢) /t = (Kx(t)/t)" € ®. This, together With2) and
(2.5), implies that

lell ey = 1@l = [0/, < =@/t

S Cl‘ teo_lK?<t01_60) % == ClHK(tVT??)H\IJ == Cl

HxHKq,(?)'

On the other hand, for € X4, we see that

/ (1/\ E)K(t,x;Y)@ < 00,
o t t

which implies that(1 A (1/t)) K (t,z; X) — 0 ast — 0 or co. According to the continuous
version of the fundamental lemma of real interpolation [11], there exists a decompasiion
J, 7 u(t)dt /t such that

J(t, u(t);Y) < 2K(t,x;7).
By combining this with another estimate in the proof of Theorem 3.5.3/of [3], we have

t t d

K (19 V) < G, /O N <-)9° A (;)91KX( Y = (rx(0)/1)

S
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for a positive constant’, depending oy, 6+, py, p1. Consequently,

], e

/],
< S(Ky(t)/t)Hé < G| S| 5|1 B (1) /8] < Co
The last inequality follows fronj (2}1) and (2.3). Therefore,

Yq’ = (7907poay917p1)\p
with the isomorphism constant dependingfignéd,, po, p; and®.

d

S|

ISl 12l ey

3. ON OPERATOR {2}, AND DUALITY

Here and throughout, we always assume thaR — R is a Lipschitz function satisfying

(3.1) (1) = ()| < yplt —s
wherev,, is a positive constant depending pnWe introduce now the quasilogarithmic opera-
tors Q;i andef as below. Let > 1 be a constant which is fixed during the discussion. Given
z € Jo(X), we may choose the decomposition= [ u(t) dt /t in ©X with u: RT™ — AX
and 1 (t,u()|| < elfe]],,- Let

Y

Q(z) = Qiy(x) = /000 ¥ (log t)u(t)%

Forz € XX, we choose the decomposition= zy(t) + z(t), t > 0, satisfying
K(t,z) < ||zo(@t)]|, + t]|z1(0), < cK(t, ), t>0.
It is always possible to choose(t) (j = 0, 1) to be continuous. Now we define

B2 Qf(r) =9 %) :—/0 zo(t)dy (logt) +/loox1(t)dw(logt) +9(0)z.

Observe that botmi and ij are quasi-linear operators. According to Theo@u 3.3 of [9],
if ¢ is a quasi-power parameter space for real interpolation,&ﬂjéﬁ: Q;{, modulo bounded
operators onX ¢; and thus we may denote, = Qf = Q;j} Observe that, by Theorem 4.3 of
[9], the operator

Qw: ch — qu
possesses the UBCP ([1.3). Consequently, the opéeatisrwell-defined up to a bounded error,
and hence the domain and range spacés,adre independent of the choice of the decomposi-
tions ofz € Xg. Moreover, let¥ andY” = (X, X4, ,,) as given in Theoref 2.2, and let
n =6, — 0y andy, (t) = ¥ (nt). Then

(3.3) Qx =9 v

modulo bounded linear operators éf,. This can be easily induced from (2.5) 6f [10] and
Theorem Z.P.

Let A be a Banach couple, and létbe an interpolation space fdr. The orbital interpolation
space Orly(4, X) consists of all: € X such thatr = Y>>, T,a, for someT, € B(A, X)
anda, € A for which

9]
> T laxllanll, < o0
v=1
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with the orbit normH:cHOrb =inf Y07 | ||70 || < ||| ,- Itis known that Orl (A, —) is mini-
mal among all interpolation functo#s for which F(z) = A [1]. For a quasi-power parameter
spaced for real interpolation, we setg = (fl)<I> andly = (Zl)q). In view of Theorem 3.4.3
and Proposition 3.4.15 df|[4], we have

Xy = Orby, (L', X) = Orb, (I, X)
with the isomorphism constant dependingdanMoreover, we may present the discrete version
of Lemma 3.4.5 ofi[4].

Lemma 3.1. Let® be a quasi-power parameter space for real interpolation, and letX . If

e > 0, then there exist’ € B(ZI,Y) anda € lp equipped with the/z-norm such that: = T'a

and
(1+¢€)

log 2

1Tl xllall 5y gy < Il 5,

Proof. Fore > 0, we may choose the decomposition= [ u(t)dt/t, whereu: Ry — AX
and

|7 u®)||, < @+ olall,,

Forv € Z, letu, = f;:“ u(t)dt/t, a, = J(2",u,) anda = (a,) € lo. Then

2V+1

J(2u,) < / J(tult))dt /1,

21/
and hence ( )
1+¢€
lallsuaty = gz 1l
Assume thati, /a, = 0 if a, = 0 and hence, = 0. Now we definel’ 8(71,7) by

A=Y Nuja,  for A=(\), exl.

This implies thaﬂTHZlX <1,z = Ta, and hence

(1+¢€)
log 2

171l xllall 5, gy < Il

which completes the prook

The main result of this section is formulated as follows:

Theorem 3.2. Let & be a quasi-power parameter space for real interpolation with the Kéthe
dual @', let+ be a Lipschitz function satisfying (8.1), and let

Pr(t) = = (—t).
If Xo is equipped with the/s-norm, then the operataf? = Q,x on X and the operator
Q. = Q.5 on (X'),, are related by
(©,9) + (2, 20)| < Cllzlg, llvll 1,

forz € X¢ andy € (7')@. ConsequentlyQz, y) = —(z, Q.y) modulo bounded operators.
HereC'is a positive constant depending grand ®.

AIJMAA Vol. 7, No. 1, Art. 20, pp. 1-19, 2010 AJMAA
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Proof. We start with the coupl& and the dual coupl@l)' =", By applying Theore2 on
®’, we have

() = (")) = o = () i), =

L =1 -1
= (08 g = (g ), = o
for somel < py < p1 < 00,0 < <6 <1, and for a quasi-power parameter spacéor
real interpolation. LeB3 = (I£°,15'). Then
(3.4) Qe = Ly, 5= Qe p
modulo bounded operators én by ). Leta = (a,), € lp andb = (b,) € ly. Fort >0,
we set
ao(t) = (a/l/X{2V§t})V and a1<t) = (GVX{2V>t})l,'
This implies that

K(t)=K(ta;l') = Z(l A (t/2”)>|ay! = [lao(®)]],y + #l]as ()]

v

1
ll

and hence
(3.5) Q(a) = (ayip(rlog2)) .
We have, by[(3}4) andl (3.5),

<Qa, b> = Z al,b,l,w(ylogZ) and <a,QXb> = — Z a,,b,,,w(ylogQ).

V=—00 V=—00

It gives that
(3.6) <Qa, b> + <a, Qxb> =0.

Let now X be an arbitrary Banach couple, anddee X, andy € (Y')(D,. Fore > 0, we
choose: € Iy andT € 8(71,7) by Lemm such that = T'a and

(1+e¢)
log 2

1Tz xllalle < I,

Letu = [T, Q]a. Thenu € X4 such thaQdr = QTa = TQa — u, and
lullz, < Tl xlall,
by the UBCP ofQ. If we denote byl” the dual operator df’, then
1Tl = =Tl %
Thus, T’y € (I7),, = lor, andT'Quy = Q, T"y + [T", Qi Jy with
[i7.2s)| . < CliTlocloll ey,
This, together with[(316), implies that
(Q,y) + (z,Qxy) = (QTa,y) + (Ta, Vxy)
= (90, T'y) + (0,9 T'y) = (w,9) + (a, [T, 0]y)

= <a, [T',Qx}y> — (u,y).

AIJMAA Vol. 7, No. 1, Art. 20, pp. 1-19, 2010 AIJMAA
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Therefore,
(1+e€)

(,9) + (2, Q)| < 20|73 xllall, 9], < 2€ g2 7l vllcer,

The desired inequality is obtained by letting- 0 an by rewriting the constang.

Remarks:

(i) For (z1,22) € Xo ®o Xo and(y:,ys) € (Y’)q), D, (Y)(I),, we have
(3.7) ‘< (z1,22), (1,92) >‘ < CH T, T2 ‘ ©wa, e

This estimate can be obtained by following the proof of Theorem 3.15/of [5]. For
Y(t) = t, we may solve Question 5 dfl[5] by proving Proposition 3.7[df [5] without
using function theory.

(i) By ( 1.6) and (3.7), we can put equivalent norms on the twisted siipspo X ¢ and
(X )(D, Da, (X ) as in Section 3 of [5], and obtain the duality relation

(KXo @0 Xa) = (X)), @0, (X)),

y17y2>H
Xo®oXae

Consequently,
(3.8) Domg, ()" = Rang (Qx) and Rag, (©2)' =Domy, ().
Before proceeding, we show now that the range smmeX(Q) naturally appears in the

context of Aronszajn-Gagliardo construction. The essential tool used here is similar to that in
the proof of Theorerp 3] 2.

Theorem 3.3.Let X = OrbA(Z, 7). Assume thaf2: X — X is a quasi-linear operator
possessing the UBC.3) with = RanA(Q). If, for eachx € X and fore > 0, there exist
T € B(A,X) anda € A such thatr = Ta andHTH <llall, < @+ oz, andifRis
equivalent to a Banach space, then

Rany (€2) = Orbg (4, X).
Proof. SinceR = Ran 4 (2) = Orbg (4, A), it implies that
OrbR(Z, 7) C Rany (Q)
by the minimality of the orbital functor. It is enough to show the converse inclusion
Rany (Q) - OrbR(Z, 7)
Fore > 0, by the definition of Rap (), we may choosér,y) € X @q X such that
el + 192 =yl < 0+ 100 sy

Observe that: = Tja; andy — Qz = Tha, for someTy, Tb € B(A, X) anda;,ap € A
satisfying

1T llzxllenlls <+l and D]l xllaal] , < 1+ €|y — Q] .
Consequently, we have
(z,y) = (TlabQTlafl + T2a2> = (TlalaTIQal + Thay — [T, Q]al)-
Letu = [T}, Q]as. Then, by[(1B)u € X with
[ullx < CITllzxllenll, < CO+ )]
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and hence, = Tya; for someT; € B(A, X) andas € A with
1Tl 5 xllas]| s < @+ ful| x < CO+ )]

Now we have
(ZE, y) = Tl (a'h Qal) + T2 (O, 0,2) — T3 (0, a3)

satisfying
H(z, y)”OrbR,
< T x| (o, 20) |+ 1Tl | 0s02) |+ 1Tl 0, )|
= [ Tallsellanll + [Pl xllaa ]y + 175015 ¢ sl

< (C+2)(1+ e)zH(x,y)HRanX(Q)'

Therefore|(z, y) <(C+2)|(z,y

) by lettinge — 0. &

Orbgr >HRanx

4. ON OPERATOR sz‘) WITH DOMAIN AND RANGE SPACES

Assume thaty > 1. Let us now consider th&,-functional on: X, which is given by
E.(r,x) = E, (r, x;7)

) 1/(a—j)
— mf{ ]H:l%}fO‘%HJ/T)
fora > 1, and

Ey(r, x) =F, (r,x;Y)
= inf{ HxOHO/r ‘ r=x9+x1,2; € X;(j=0,1),

ZE:JI0+ZE1,IjEXj(j:0,1)}

all<r )

wherer > 0 andz € ¥X. Forc > 1 fixed and forz € X, we have decomposition
x = xo(r) + z1(r), r > 0, for which

E,(r,z) < (ng(r)”()/r)l/a v (”xl(r)Hl/T)l/(a_l) < Eo(r/c, )
for o > 1, and
Ei(r,z) < on(r)Ho/r < Ei(r/c,z) with ||:U1(7“)H1 <r.

The corresponding quasilogarithmic operdtgrcan be defined by

(4.1) Qy(r) = —/0 xo(r) dw(log 7‘) + /100 x1(r) dw(log r)

for 2 € £X. Itis known thatQ)$: Xy, — X,,, for 0 < 6 < 1andl < p < oo, possesses the
UBCP (1.3). If® is a quasi-power parameter space for real interpolation, then by {isifg (1.4),
(1.8) and Theorefn 2.2 : X, — X4 also possesses the UBCP. Similar|to|(3.3), we have

a OB
(4.2) Qw’y = wa?

modulo bounded operators 60, by (2.7) of [10] and Theore@.Z again, whéfen, ¢, are
given as before, and = (a — 6,) /(61 — 6) > 1.
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Let now K (t) = K(t,z) and E,(r) = E,(r,z). If we use the change of variable =
K(t)/t*, thenE,(r) = t for eachz € XX by (2.7) of [10]. Moreover, ifc # 0 then

INt<K(®t)/||z| g <1V
and hence

tog (K1) / (¢]12l1x) )

4.3 —1<
(4.3) “ - logt

‘ﬁa.

If u: Rt — AX, forwhich [* u(t) dt/t = 0 andHJ(t, u(t)) H(b < oo, then by using Lemma
3.4 of [9], we obtain

Qp(log K(t) )/tu(s)§—>0 ast — 0 or co.
0

||zl sx $

This, together with the estimate
K(t
< w(log 3 ) )
tof| )l sx

K(t))
w(log K(t))/otu(s>§_>o ast — 0 oroco.

o (1o ol

implies that

tCM
t S
If 2 = [;° u(t)dt/t with HJ(t,u(t)) Hq} < ¢||z|| ;. then as in the proof of Theorem 3.5 &f [9],
we obtain

(4.4) Qy(z) = /000 0 <log Ktc(f))u(t)% — ¢<log||xHEy>:c

modulo bounded operators 0.

Observe thaf); is quasi-additive satisfyin@.Z) but not always homogenuous. We need the
following result for the further study.

Proposition 4.1. Assume tha® is a quasi-power parameter space for real interpolation. If we
defineQ2y by

on X = X4 equipped with the/s-norm, then
(i) g is quasi-linear,
(i) X Do X =X ®qg X, and hence

Domy (Qi) = Domy (Qi) and Rany (Qf[)) = Rany (Qf/j)

Proof. For part (i), letz = [;° u(t)dt/t with HJ(t,u(t)) Hq) < ¢||z|| ;- Then by ), we may

choose . K(t.2) »
Qy () :/0 <¢<log t—a> — zp(longHZX))u(t)?,

%5 = (w (s ) (o »“w%‘
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This implies that
45 [[95(@) - @)y < 2y loglall || u®) |, < 207, ]2ll | log] |
Moreover, ifo”X < 1, then
4.6) Jall gl | <1
Observe that
195 (= + y) = @3 (=) = W)
< 196 (z +y) — Q(x) — Qg(y)HX + HQ%(.% +y) — Q(x + y)”X +
25 (=) - A @)l + 1250) — %)l 5

It follows thatf)g is quasi-additive b5).6) and the quasi-additivityXf

Now we turn to part (ii). If||z, ||, — 0, then||z,

log||z,||, — 0, and hence

I I Togl|. |

1925 () = ()| — 0
by (4.5). Consequently,
H (xwyl/) X@sz — 0 iff H (l’m yu) ‘X@(W)X — 0

This implies thatX EBQ% X=X Dag X. Therefore,

Dom(Q}) = Dom(Q2%) and RarfQ}) = Ran(Q?),
which completes the proog

Fora = (a,) €lyandK(t) = K(t, a;Zl), we have

Q%(a) = (a,,w(log K(2") — avlog?2) — a,v(log K(l))) :
This, together with[(4]2) and a similar argument as in the proof of Thelorgm 3.2, implies

Proposition 4.2. The estimates in Theor.2 a@&?) are also valid for the opef@(m’n
the spaceX = Xs.

In particular, this gives an affirmative answer to Question 7 of [5]. As a consequence of Propo-
sition[4.2, we have

(4.7) Donk(Qg)':Rark,(ng) and Ra&(Qf;)':DomX,(sz).

For¢(t) = t, let us now pay attention to the connection between operétoss 2, and
Q~ = QF. As mentioned in[[5], it is not generally true that both operators differ from each

other onXy, by a bounded error. However, the equivalence of the domain spaces
Domy (%) = Domy ()

is given by Theorem 4.2 of [5] with a rather complicated computational proof. Cwikel et al
asked if it was possible to give a conceptual proof for this equivalence and if there was an
analogous equivalence for the range spaces. We show that, as an application of Thejorem 3.3
and Propositiol, this is the case evenXay and our proof is very simple.
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Proposition 4.3. Let ® be a quasi-power parameter space for real interpolation, andlet
X ¢ equipped with the/g-norm. Then

Domy (QO‘) = Domy (Q) and Rany (QO‘) = Rany (Q)

Proof. By Proposition] 4./, we may repla€®* by Q*, and thus assume without loss of general-
ty that [l2]| ¢ = 1. Letw = [ u(t)dt/t with ||.1(t,u(t)) | < e[| Observe that

@) = [ tog(K(t.) [ (“llox) Jul0 ]

- /oo gt log(K(t,x)/(taﬂxnzx))u@)@

logt t
and
o) = [ logt-u()
; t
- logt dt
:/ log( K(t,2) / (t*[lzllsx) ) - g
| log(K () / ) tog (1 (t,) [ (llallx) ) !
It turns out by [[4.B) that

a—1

12@)]x < [[2° @]y < acl|)]]-

C
Fora > 1, the identity

(4.8) Domy (%) = Domy (©2)

is a direct consequence of this estimate. By the reiteratign ih (4.2), we obtain that the identity
(4.8) holds true also far = 1.

For the identity Rag (2*) = Ran (2), observe that, by (38}, (4.7) arjd (4.8), we have
Rany (%) = Domy (Q2)" = Domy ()" = Rany (Q)
for all dual couplest’ and forX’ = (X),,. Especially,
R =Ran, (Q2%) = Ran, ()
for the coupld'. By Lemmd 3.1 and Theordm 3.3, we obtain
Rany (Q%) = OrbR(Zl,Y) = Rany (Q)

for all Banach coupleX. 1

5. ON NON-COMMUTATIVE SYMMETRIC SPACES OF MEASURABLE OPERATORS

Let M be a semifinite von Neumann algebra acting on a Hilbert spheeth the given
normal faithful semifinite trace and the identityi. The densely-defined closed linear operator
x on H is said to be affiliated with\ if xu = ux for all unitary operators commuting with
M. The operator is said to ber-measurable if, for each> 0, there is a project in M for
whiche(H) is included in the domain af and7(1 —e¢) < e. Now we denote byM the space of
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all T-measurable operators affliated with. Forz € M andt > 0, the corresponding singular
number is defined by
() = inf{ | ze]| ,, ’ e is a projection inM with 7(1 — e) < t}.

The functionp(z): t — p,(z) is said to be the generalized singular value function or the

nonincreasing rearrangementaofThe spaceﬂ is equipped with the measure topology in the
sense that a basis of neighbourhoods at zero is given by the sets

ME75:{$€M‘M5(I)<E} fore, § > 0.

Observe that(z) = u(|z|), where|z| is the absolute value of. See[13] for details. Further-
more, let us assume that| has the spectral representation

o0
2] = / sde,
0

and thate(,, s,)(]z|) is the spectral projection df:| with respect to the intervals, s;) for
0 < 59 < s1 < 0. According to Proposition 2.2 of [8], we have

(5.1) () = inf{ r>0 ’ 7(e@roo) (|2])) < t}

fort > 0. Now let& be an r.i. function space ov& ™" satisfying0d < a, < @z < 1. We define
the symmetric spac&(M) of measurable operators associated Wignd M by

EM)={zeM|ux)c&}
equipped with the norrﬂmHg(M) = ||u(z)||,- 1f we denote byt (M)’ the Kothe dual of (M)
in the sense of Definition 5.1 df[7], then the following duality relation
EM) =EM)

holds by Theorem 5.6 of [7]. In particulat> (M) = M equipped with the usual operator
norm. We refer tol|[7] and references therein for the further information.

We turn now our attention to the interpolation of r.i. spaces and the corresponding symmetric
operator spaces. By LemmaRd = K¢ (L', L) for a quasi-power parameter spabeor

real interpolation. Recall thdt_' (M), M) is a Banach couple with th&-functional
t

(5.2) K(t,z) = K(t,z; L' (M), M) = / () ds
by Proposition 2.5 of [7]. 0
Proposition 5.1. £(M) = K¢ (L' (M), M).

Proof. Forz € L'(M) N M, we have

lollewy = N@lle = || (6 @) (21 L2))]|
t
_ _ . 1
_ H/O Ms(x)dqu) — HK(t,x, (L (M),M)) R
by Proposition 3.1.18 of[4] anE.Z). Sintén L™ is dense irt, this implies thatl' (M)NM
(

is dense in bott€ (M) and K¢ (L* M),/\/l) by Proposition 2.8 of 7] and Corollary 3.6.3 of
[4] respectively. Therefore, the identity

E(M) = Ko (L (M), M)

holds true.x
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We are ready to calculate the operators and Q}p for the Banach coupIe{L1 (M),M)
Without loss of generality, we may assume th&h) = 0.

Proposition 5.2. For z € M, letz = u|xz|, whereu is a partial isometry andz| = Iy s dez.
Then

(5.9 Oua) = u [ si(log ) det.

and

(5.4) —u /0 h (log s) d

zrr]%o&;)v’ve sett = \(2) = (e (|7])), K(t ,z) andF = K (t)/t, then by[(5.1)

r=r(t) = pm(z) = K'(t)
andr > r. For the operatof),,, we setr = x((t) + =1 (t), where

u/ sde; = u||eww),0),
(r(t),00)

z1(t) = u/ sde; = u|z|er))-
(0,r(2))

xo(t)

Recall that

ps (|2lewv.00) = X0 (8)Ha()
by an argument in the proof of Proposition 2.7[af [7]. Combining this ith| (5.2), we obtain that

HxO(t)HLl(M) = A ,LLS(JL'O@)) ds = /0 us(’x‘e(T(t)@O)) ds
t
— [ ntwrds = K(t.0)
0

e ()
tHxﬂﬂHﬂ1:t“A sde?

Therefore,
on(t)HLl(M) +tHx1 HM < 2K(t ).

and

MSMMSAMMMF%%@-

It turns out that

o0

Qu(z) = —u/o o(t) dp (logt) + u z1(t) dyp (log t)

1

= —u/01</7“:sde§> dw(logt) +u/100</01”(t) sde?) dw(logt).

We choose now, andp; satisfying0 < 1/p; < az < @ < 1/py < 1. Sincey, € € C
LPo + LPr, this follows that

1 0
/ py(z)P0 dt < oo and / ()Pt dt < o0,
0 1
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Observe that, fob <t < 1,
@b(logt) on HLl w(logt) / () ds

1/po
logt tl/po ( x)Po dt) ,

and, fort > 1,

slos) sl < 5 [y yas

1 t 1 1/po 1 t 00 1/p1
S w( :g ) (/(; ut(l.)po dt) + wl(flii ) (/1 ,ut(x)pl dt) .

Consequently,

lim ¢ (log £) |20 (£)]| ;. = lim ¢ (logt) ||z1(2)]|,, = 0.
( ) t—o0

t—0

We obtain ) in terms of interpolation-by-parts. For the opelﬁt}grwe setr = xo(7) +
x1(7), where

xo(7) = u/ sde; = ulrleroy and xy(7) = u/ sde; = u|xle,).
7 0
By (2.7) of [10],7 = K (t) /tiff E\(7) = ¢, and hence
B(r.2) < |y /7 < Balrfe.a). )], <r
A similar calculation implies[(5]4)x

By applying Theorem 4.3 of [9], Theorejm 3 and Proposifion} 4.2 on the operators given in
(5.3) and|(5.14), we obtain immediately the following result:

Proposition 5.3. (i) If a,b € Mwith|a||,, < 1,0 ,, < 1,andifz € £(M), then

“Qw(axb)—a9¢(x)b||g(M) < C”IHaM)
HQgp(axb)_aQ}p(x)ng(M) < C”“’”Hg(M)

(i) If z € E(M) andy € £'(M), then

IN

Cllelleunlly

Cllellenlly

‘T(Qw(w)y - vaw(y))‘ £

(@ (2)y - 204 w)]

HereC'is a constant depending ¢hand.

IN

&'M)

Observe that part (i) extends Theorems 4.2 and 4.3 of [12].
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