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1. INTRODUCTION

Consider a nonlinear equation of the form:

(1.1) ϕ(e, g) = 0,

where e, g, and 0 belong to arbitrary Fréchet spaces, and 0 represents the zero element. Our
aim is to establish sufficient conditions under which it is possible to globally and uniquely solve
Equation (1.1) for g in terms of e, with the solution mapping K being differentiable, such that
ϕ does not lose the derivative: ϕ and K belong to the same class of differentiability.

Such results are known as global implicit function theorems and have been extensively stud-
ied and applied in various frameworks, including purely topological settings, finite and infinite-
dimensional Banach spaces. It would be impossible to provide a comprehensive account of the
developments in these spaces, but we may refer to [1, 21, 15] for early contributions and to the
survey [10] and its references for recent developments.

Interest in the broader context of Fréchet spaces has only recently started to gain traction. In
[4, 5], global inversion theorems, which are related to global implicit function theorems, have
been obtained in these spaces. In [4], the result is linked to the Nash-Moser implicit function
theorem, necessitating mappings to be at least twice continuously differentiable, and Fréchet
spaces to be tame. However, in [4], we consider arbitrary Fréchet spaces, and mappings are
required to be only continuously differentiable, provided they are also local diffeomorphisms.

Motivated by these results and recent developments in critical point theory in Fréchet spaces
([2, 3, 4]), this paper aims to derive global implicit function theorems, which involve no loss
of derivative, applicable to arbitrary Fréchet space for mappings which are only continuously
differentiable by employing methods of critical point theory.

In [11], it has been elegantly demonstrated how a mountain pass theorem can establish a
global homeomorphism theorem in purely topological spaces. Subsequently, this method has
been applied to derive global inversion and implicit function theorems in Hilbert spaces ([16,
17]) and Banach spaces ([7, 8]). Inspired by the Banach case in [7], we will further apply this
approach to prove global implicit function theorems in Fréchet spaces.

First, let’s outline the key features of the generalization. One significant distinction between
Fréchet and Banach contexts, frequently encountered, lies in the topology: while a Banach
space’s topology is determined by a single norm, a Fréchet space’s topology is defined by
a family of seminorms. Consequently, growth estimates, which are crucial for formulating
assumptions and proofs in many situations in the Banach setting, become unavailable in Fréchet
spaces because the objects under consideration are not directly comparable.

Another concern is that, unlike Banach spaces, Fréchet spaces exhibit many non-equivalent
notions of differentiability. Among them, we believe that Keller’s Ck

c -differentiability is the
most suitable notion for our objectives. This differentiability is equivalent to the well-developed
Michael-Bastiani differentiability and facilitates the application of a crucial tool in critical point
theory in infinite dimensional spaces–the Palais-Smale condition.

By employing this notion of differentiability, we prove two slightly different versions of a
global implicit function theorem: Theorem 3.4 and Theorem 3.7. A key assumption in these
theorems is that, for a mapping φ : E → F, at each point f ∈ F, we associate a specific
functional Jf : E→ R that satisfies a compactness condition of Palais-Smale type. In Theorem
3.4, this functional is assumed to be locally Lipschitz; however, in Theorem 3.7, it is Keller’s
C1
c . One reason for such considerations is that while the class of locally Lipschitz functions is

broader compared to Keller’s C1
c -mappings, the non-smooth analysis of such functions is more

technical than Keller’s C1
c -differentiability.
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An implication of these theorems is a global inversion theorem, which is presented in Theo-
rem (3.8). The rest of the paper concerns the applications, starting with addressing the following
initial value problem that involves the loss of one derivative:

(1.2) y′(t) = ϕ(t, y(t), e),

where ϕ is a Keller’s C1
c -mapping, and the initial conditions are fixed both in time and in

arbitrary Fréchet spaces. In Theorem 4.1, using Theorems 3.4 and 3.7, we establish sufficient
conditions for the global existence and uniqueness of the solution over the entire time interval.

It is worth mentioning that the ODE (1.2) is one of the significant and challenging problems
in Fréchet spaces and has been considered in many works, see [19], [22], and [18]. However, the
available results have been obtained under rather restrictive conditions. In contrast, our result
is valid for arbitrary Fréchet spaces, where the mappings are only assumed to be continuously
differentiable. The only assumption that may seem restrictive is the Palais-Smale condition,
which could be challenging to verify in practice.

We then apply the global implicit function theorems to develop critical point theory in Fréchet
spaces, with the objective of deriving a Lagrange multiplier theorem. In this regard, we will
employ submersions and transversality.

A Lagrange multiplier method involves finding critical points of a mapping subject to a set
of constraints, which typically form a differentiable submanifold of an ambient space.

Applying submersions and transversality is a common approach to constructing submani-
folds in the Banach case. However, expanding beyond the Banach setting necessitates a robust
concept of submersion to extend the typical assertions regarding submersion to manifolds mod-
eled over locally convex spaces. For such manifolds, various non-equivalent mappings, includ-
ing infinitesimally surjective, naïve submersion, and submersion, are available for constructing
submanifolds, see [20]. In [9], submersions have been utilized to construct submanifolds in the
case of manifolds modeled on locally convex spaces. However, we will not use the strong no-
tion of submersion as in [9]. Instead, we will employ infinitesimally surjective mappings such
that their tangent maps have split kernels. This concept coincides with the notion of submersion
in the Banach setting. We also adapt the definition of transversality from the Banach setting.

For the mappings mentioned earlier, we propose a condition that involves the Palais-Smale
condition (condition (S)), under which the mappings will, roughly speaking, look like projec-
tions over their domains, as stated in Theorem (5.1). This condition plays a central role in
formulating and proving a Lagrange multiplier theorem. Theorem (5.1) has significant implica-
tions, including a preimage theorem (Corollary 5.2), a transversality result (Corollary 5.3), and
a Lagrange multiplier theorem (Theorem 5.4).

Towards the end of the paper, we employ the Lagrange multiplier theorem to provide a brief
generalization of the Nehari method for locating critical points of Keller’s C1

c -functionals. Ad-
ditionally, we prove a theorem (Theorem 5.6) that is particularly useful for identifying critical
points of unbounded functionals.

2. DIFFERENTIABILITY

Throughout this paper, we assume that (F,Sem(F)) and (E,Sem(E)) are Fréchet spaces
over R, where Sem(F) = { ∥·∥

F,n | n ∈ N } and Sem(E) = { ∥·∥
E,n | n ∈ N } are families

of continuous seminorms defining the topologies of F and E, respectively, each directed by its
natural order. We also use the translation-invariant metric

(2.1) dF(x, y) =
∞∑
n=1

1

2n
∥x− y∥

F,n

1 + ∥x− y∥
F,n
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4 K. EFTEKHARINASAB

that induces the same topology on F. We denote by 0F and Bop
dF

the origin and the open unit
dF-ball of F, respectively. The Cartesian product E × F is a Fréchet space with seminorms
defined by

∥(x, y)∥
E×F,n := max

{
∥x∥

E,n , ∥y∥F,n
}

As mentioned in the introduction, we will require the non-smooth analysis of locally Lipschitz
mappings. In [2], the critical points theory for these mappings, generalizing the Clarke subdif-
ferential, has been developed. Now, we will revisit what will be needed later on.

Let ⟨F,F′⟩ be a dual pairing. The weak topology σ(F,F′) onF is defined through the family
of seminorms:

(2.2) ∥y∥A := sup
xi∈A

|⟨xi, y⟩|, for y ∈ F,

where A ranges over the set of finite subsets of F′.
We further define the weak∗-topology σ∗(F′,F) on F′ by the family of seminorms:

(2.3) ∥x∥B := sup
yi∈B

|⟨yi, x⟩|, forx ∈ F′,

where B ranges over the set of finite subsets of F.
We denote by Liploc(F,R) the set of locally Lipschitz functionals on F. We will refer to

the following definitions, which can be found in [2]. For φ ∈ Liploc(F,R), the generalized
directional derivative φ◦(x, y) at each x ∈ F in the direction y ∈ F is defined by

(2.4) φ◦(x, y) := lim sup
h→x,t↓0

φ(h+ ty)− φ(h)

t
, for t ∈ R, h ∈ F.

Additionally, we denote by F : X ⇒ Y a set-valued function from a set X to a set Y . Specifi-
cally, for every x ∈ X , F(x) represents a subset (possibly empty) of Y .

The Clarke subdifferential of φ at x is a set-valued function ∂cφ : F⇒ F
′ defined by

∂cφ(x) :=
{
x′ ∈ F′ | ⟨x′, y⟩ ≤ φ◦(x, y), ∀y ∈ F

}
.

The set ∂cφ(x) is weak∗-compact, ensuring the well-definedness of the following function:

λφ,B : F→ R, λφ,B(x) = min
y∈∂cφ(x)

∥y∥B .(2.5)

Here, B is a finite subset of F′.
We will need the following properties of locally Lipschitz mappings.

Lemma 2.1 ([2], Lemma 1.1). Let φ, ψ ∈ Liploc(F,R), and let x ∈ F.
(CS1) y ∈ ∂cφ(x) if and only if φ◦(x, h) ≥ ⟨y, h⟩, ∀h ∈ F.
(CS2) If x is a local extrema of φ, then 0F′ ∈ ∂cφ(x).

Next, we define Keller’s Ck
c -differentiability [13]. Throughout, by U ⊆◦ T we mean that U

is an open subset of a topological space T. If S is another topological space, we denote by
C(T, S) the set of continuous mappings from T to S. Additionally, L(E,F) denotes the set of
all continuous linear mappings from E to F.

A bornology BF on F is a covering of F that satisfies the following axioms:
(1) BF is stable under finite unions.
(2) If A ∈ BF and B ⊆ A, then B ∈ BF.

The compact bornology on F, denoted by Bc
F

, consists of the family of relatively compact
subsets of F. This family is generated by the set of all compact subsets of F, meaning that
every B ∈ Bc

F
is contained within some compact set. Let Bc

E
be the compact bornology on E.

We endow the vector space L(E,F) with the Bc
E

-topology, which is the topology of uniform
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convergence on all compact subsets of E. This results in a Hausdorff locally convex topology
defined by the family of seminorms given by

∥L∥B,n := sup
e∈B

∥L(e)∥F,n, forB ∈ Bc
E
, n ∈ N.

Let φ : U ⊆◦ E→ F be a mapping. If the directional derivatives

φ′(x)h = lim
t→0

φ(x+ th)− φ(x)

t

exist for all x ∈ U and all h ∈ E, and the induced map φ′(x) : U → L(E,F) is continuous
for all x ∈ U , then we say that φ is of class Keller’s C1

c , or simply a Keller’s C1
c -mapping.

Higher-order derivatives are defined in usual manner.
For a continuous curve γ : I = (a, b) → F, we define its derivative as

γ′(x) = lim
t→0

γ(x+ t)− φ(x)

t
.

If the limit exists and is finite, and γ′(x) is continuous, we say that γ is C1, a notion which
coincides with Keller’s C1

c -differentiability. If I = [a, b], the extension of the derivative by
continuity of γ′ to [a, b] has the values γ′(a) and γ′(b) equal to

γ′(a) = lim
t↓0

γ(a+ t)− φ(a)

t
, γ′(b) = lim

t↓0

γ(b)− φ(b− t)

t
.

In [2, Lemma 1.5], it was shown that if φ is a Keller’s C1
c -mapping, then φ′(x) ∈ ∂cφ(x). We

can easily prove that indeed ∂cφ(x) = {φ′(x)}. Fix x ∈ F. By the mean value theorem [12,
Theorem 1], for y close enough to x and t > 0 close to 0, we obtain

φ(y + tx)− φ(y)

t
= ⟨φ′(z),x⟩

for some z ∈ (y, y + tx). As y → x and t ↓ 0, we have z → x. Therefore,

φ◦(x,x) ≤ ⟨φ′(x),x⟩

since φ′ : F→ F
′ is continuous. If h ∈ ∂cφ(x), then by Lemma 2.1(CS1), we have

φ◦(h,x) ≤ ⟨φ′(x), h⟩.

As x is arbitrary, we conclude that ∂cφ(x) = {φ′(x)}.

3. GLOBAL IMPLICIT FUNCTION THEOREMS

Our proof of a global implicit function theorem is constructive. In essence, to solve an
equation

(3.1) φ(p, g) = 0,

for a given g, we associate a functional Jg with φ in such a way that the solution of (3.1)
corresponds to a critical point of Jg. This is the most technically challenging aspect of our
approach, involving the methods for locating critical points of functionals: minimization and
the mountain pass theorems.

As mentioned in the introduction, we consider two classes of functionals: locally Lipschitz
functionals and Keller’s C1

c -functionals. First, we focus on the locally Lipschitz case.
Our prime ingredient is a compactness condition of Palais-Smale type, for which we need the

function λ defined in (2.5).
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6 K. EFTEKHARINASAB

Definition 3.1 ([2], Definition 2.1, Chang PS-Condition). Consider φ ∈ Liploc(F,R). We say
that φ satisfies the Palais-Smale condition in Chang’s sense, or the Chang PS-condition, if every
sequence (xi) ⊂ F such that φ(xi) is weakly∗ bounded and

(3.2) lim
i→∞

λφ,B(xi) = 0 for each finite subsetB ⊂ F′,

possesses a convergent subsequence. Additionally, if any sequence (xi) ⊂ F such that φ(xi) →
c ∈ R and satisfies (3.2) has a convergent subsequence, we say that φ satisfies the Chang
PS-condition at level c.

Theorem 3.1 ([2], Theorem 3.2, Mountain Pass Theorem). Consider φ ∈ Liploc(F,R) and an
open neighborhood U of x ∈ F. Let y /∈ U be such that, for a real number m,

(3.3) max{φ(x), φ(y)} < m ≤ inf
∂U
φ.

Suppose that φ satisfies (3.3) for a real numberm and satisfies the Chang PS-condition at every
level. Define

Γ :=
{
γ ∈ C([0, 1];F) | γ(0) = x, γ(1) = y

}
,

which is the space of continuous paths joining x and y. Let

(3.4) c := inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)) ≥ m.

Then, there exists a sequence (xi) ⊂ F such that φ(xi) → c and (3.2) holds. Moreover, as φ
satisfies the Chang PS-condition at level c, we conclude that c is a critical value of φ.

Lemma 3.2 ([2], Lemma 4.1). Consider φ ∈ Liploc(F,R), which is bounded from bellow.
Then, there exists a sequence (xi) ⊂ F such that limi→∞ φ(xi) = infF φ, and

(3.5) lim
i→∞

λφ,B(xi) = 0 for each finite subsetB ⊂ F′.

For φ ∈ Liploc(F,R), we define x ∈ F as a regular point of φ if the directional derivative
φ′(x)h exists for all h ∈ F and φ′(x)h = φ◦(x, h).

Theorem 3.3 ([2], Lemma 1.4, Chain Rule). Let ψ : E → F be a Keller’s C1
c -mapping in an

open neighborhood of e ∈ E, and φ : F → R a locally Lipschitz mapping. Then Φ = φ ◦ ψ is
locally Lipschitz, and

(3.6) ∂cΦ(e) ⊆ ∂cφ(ψ(e)) ◦ ψ′(e).

Moreover, if φ (or its negative −φ) is regular at ψ(x), then Φ (or its negative −Φ) is regular at
x and equality in (3.6) holds. Also, if ψ maps every neighborhood of x onto a set that is dense
in the neighborhood φ(x), then equality in (3.6) holds.

The following theorem is inspired by the Banach case, [8, Theorem 8]. However, the proof
and the assumptions are different. In the Banach case, norms are essential in both the hypothesis
and the proof.

Theorem 3.4 (Global Implicit Function Theorem I). Let G be a Fréchet space, and let φ :
E× F→ G be a Keller’s C1

c -mapping. Assume I : G→ [0,∞] is a locally Lipschitz function
with the following two properties:

(GP1) I(x) = 0 if and only if x = 0G,
(GP2) 0G′ ∈ ∂cI(y) if and only if y = 0G.

Suppose that the following two conditions hold.
(GIF1) For any f ∈ F, the function Jf : E → [0,∞] defined by Jf (e) = I(φ(e, f)) satisfies

the Chang Palais-Smale condition at all levels,
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(GIF2) the partial derivative in the first variable D1φ : E→ G is bijective.
Then, there exists a unique Keller’s C1

c -mapping K : F→ E such that, for any g ∈ F, we have
φ(K(g), g) = 0G. Moreover, the derivative K′(g) is given by the formula

(3.7) K′(g) = − [D1φ(K(g), g)]−1 ◦ D2φ(K(g), g).

Proof. Let g ∈ F be given, and consider the function Jg(e) = I(φ(e, g)). By Lemma 3.2, there
exists a sequence (en) ⊂ E such that

lim
n→∞

Jg(en) = inf
E

Jg,

and for each finite subset B of F′, we have

(3.8) lim
n→∞

λJg ,B(en) = 0.

Since, by (GIF1), Jg satisfies the Chang PS-condition, the sequence (en) has a convergent sub-
sequent, once again denoted by (en), with the limit p, which is a critical point of Jg. Thus, by
Lemma 2.1(CS2), we have

0G′ ∈ ∂cJg(p).

By the chain rule (Theorem 3.3), we have

∂cJg(p) ⊂ ∂cI(φ(p, g)) ◦ D1φ(p, g).
Thus, there exists ξ ∈ ∂cI(φ(p, g)) such that 0G′ = ξ ◦ D1φ(p, g). By (GIF2), the derivative
D1φ is invertible at p, implying that ξ = 0G′ . Therefore, 0G′ ∈ ∂cI(φ(p, g)), and hence (GP2)
implies that

φ(p, g) = 0G.

Now, we prove by contradiction that p is the only point for which φ(p, g) = 0G. Let e1 ̸= p ∈ E
be such that

φ(e1, g) = φ(p, g) = 0G.

From the definition of the function Jg(e) = I(φ(e, g)), it follows that Jg(e1) = Jg(p) = 0.
Let r > 0 be small enough such that p /∈ e1 + rBop

dE
. Without loss of generality, we can

suppose e1 = 0E. For any e ∈ ∂(0E + rBop
dE

), by (GP1), we have I(e) ̸= 0, and therefore

0 < m ≤ Jg(e) for somem.

Thus, all assumptions of Theorem 3.1 hold; therefore, there exists (en) ⊂ E such that

lim
n→∞

Jg(en) = c,

for some c ≥ m characterized by (3.4). Since Jg(en) satisfies the Chang PS-condition at c, it
has a convergent subsequent, denoted again by (en), with the limit h. Therefore, h is a critical
point of Jg, and therefore 0G ∈ ∂cJg(h) by Lemma 2.1(CS2). Since

lim
n→∞

Jg(en) = Jg(h) = c ≥ m > 0,

it follows that

(3.9) φ(h, g) ̸= 0G.

By the chain rule (Theorem 3.3), we have

∂cJg(h) ⊂ ∂cI(φ(h, g)) ◦ D1φ(h, g).
Therefore, there exists v ∈ ∂cI(φ(h, g)) such that

0G′ = v ◦ D1(h, g).
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Since D1φ is invertible, it follows that v = 0G′ . Thus, 0G′ ∈ ∂cI(φ(h, g)) and hence (GP2)
implies that φ(h, g) = 0G which contradicts (3.9).

To conclude the proof, it is sufficient to define K(g) = p for a given g ∈ F. Here, p is the
solution to φ(p, g) = 0G obtained as above. The proof of Formula (3.7) is a straightforward
application of the chain rule.

In the aforementioned theorem, it is assumed that the associated function I is locally Lips-
chitz, which is deemed advantageous. However, non-smooth analysis is subtle and excessively
technical, rendering it less practical. Thus, it would be also needed to assume that I is a Keller’s
C1
c -mapping. Therefore, we will also consider this case. While the approach remains similar,

for the sake of clarity and comprehensiveness, we present it in full detail.
We will now revisit essential components related to Keller’s C1

c -mappings.

Definition 3.2 ([3], Definition 3.2, PS-Condition). Let φ : F → R be a Keller’s C1
c -mapping.

We say that φ satisfies the Palais-Smale condition, denoted as the PS-condition, if every se-
quence (xi) ⊂ F for which φ(xi) is bounded and

φ′(xi) → 0 in F
′
k

has a convergent subsequence. Here,F′
k is the dual space endowed with the topology of uniform

convergence on compact sets. Additionally, we say that φ satisfies the Palais-Smale condition
at the level c ∈ R, the (PS)c-condition, if each sequence (xi) ⊂ F for which

φ(xi) → c and φ′(xi) → 0 in F
′
k,

has a convergent subsequence.

Theorem 3.5 ([3], Corollary 4.7). Let φ : F → R be a Keller’s C1
c -mapping that is bounded

below. If the (PS)c-condition holds with c = infF φ, then φ achieves its minimum at a critical
point x0 ∈ F where φ(x0) = c.

Theorem 3.6 ([4], Theorem 2.3). Assume that φ : F→ R is a Keller’s C1
c -mapping satisfying

the (PS)c-condition for ever c ∈ R. Let x0 ∈ F. Consider an open neighborhood U of
x0 ∈ F, where ∂U denotes the boundary of U . Assume that x1 belongs to the distinct connected
component of F \ ∂U . Suppose φ satisfies the condition:

(3.10) inf
p∈∂U

φ(p) > max {φ(x0), φ(x1)} = a.

Then φ has a critical value c > a, which can be characterized as

(3.11) c := inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)).

Here,
Γ :=

{
γ ∈ C([0, 1],F) | γ(0) = x0, γ(1) = x1 ∈ F

}
is the set of continuous paths joining x0 and x1.

Theorem 3.7 (Global Implicit Function Theorem II). Let G be a Fréchet space, and let φ :
E×F→ G be a Keller’s C1

c -mapping. Suppose I : G→ [0,∞] is a Keller’s C1
c -mapping with

the following two properties.
(SGP1) I(x) = 0 if and only if x = 0G,
(SGP2) I′(y) = 0 if and only if y = 0G.

Suppose that the following two conditions hold.
(SGIF1) For any f ∈ F, the function Jf : E→ [0,∞] defined by Jf (e) = I(φ(e, f)) satisfies

the Palais-Smale condition at all levels,
(SGIF2) the partial derivative in the first variable D1φ : E→ G is bijective.
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Then, there exists a unique Keller’s C1
c -mapping K : F→ E such that, for any g ∈ F, we have

φ(K(g), g) = 0G. Moreover, the derivative K′(g) is given by the formula

(3.12) K′(g) = − [D1φ(K(g), g)]−1 ◦ D2φ(K(g), g).

Proof. Let g ∈ F, and define the function Jg(e) = I(φ(e, g)). By Theorem 3.5, there exists a
sequence (en) ⊂ E such that

lim
n→∞

Jg(en) = inf
E

Jg.

By (SGIF1), Jg satisfies the PS-condition. Therefore, the sequence (en) has a convergent sub-
sequent, denoted once again by (en), with the limit p. This point is a critical point of Jg, and
thus J′g(p) = 0. By the chain rule ([13, Corollary 1.3.2]), we have:

J′g(p) = I′(φ(p, g)) ◦ D1φ(p, g) = 0.

Since the derivative D1φ is invertiable at p by (SGIF2), it follows that ξ = 0E′ . Therefore, our
assumption on I implies that

φ(p, g) = 0G.

Now, we prove by contradiction that p is the only point for which φ(p, g) = 0G. Let e1 ̸= p ∈ E
be such that

φ(e1, g) = φ(p, g) = 0G.

It follows that Jg(e1) = Jg(p) = 0, from the definition of the function Jg(e) = I(φ(e, g)).
Let r > 0 be small enough such that p /∈ e1 + rBop

dE
. Without loss of generality, we can

suppose that e1 = 0E. For any e ∈ ∂(0E+rBop
dE

), by (SGP1), we have I(e) ̸= 0. Consequently,

0 < m ≤ Jg(e) for somem.

Thus, all assumptions of Theorem 3.6 are satisfied. Hence, there exists a sequence (en) ⊂ E

such that
lim
n→∞

Jg(en) = c,

for some c > m as characterized by (3.11). Since Jg(en) satisfies the (PS)c-condition at c, it
has a convergent subsequent, denoted again by (en), with the limit h. Therefore, h is a critical
point, and thus J′g(h) = 0. Since

lim
n→∞

Jg(en) = Jg(h) = c ≥ m > 0,

it follows that

(3.13) φ(h, g) ̸= 0G.

By the chain rule ([13, Corollary 1.3.2]), we have

J′g(h) = I′(φ(h, g)) ◦ D1φ(h, g) = 0.

Since D1φ is invertible, it follows that J′g(h) = 0G′ . Thus, (SGP2) implies that φ(h, g) = 0G,
which contradicts (3.13). To conclude the proof, it is enough to define K(g) = p for given
g ∈ F. Here, p is the solution to φ(p, g) = 0G obtained as above. By using the chain rule, we
can easily obtain (3.12).

Remark 3.1. The sole distinction between these two implicit function theorems lies in the
assumptions concerning the associated functionals. Depending on a particular application we
may apply either of them. In the rest of the paper, we can interchangeably use both classes of
associated functionals. For convenience, we denote by AU(F, [0,∞]) the set of all functionals
I : F→ R such that either:

(1) I is a Keller’s C1
c satisfying (SGP1) and (SGP2) in Theorem 3.7, or

(2) I is a locally Lipchitz function satisfying (GP1) and (GP2) in Theorem 3.4.
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The primary implication of these theorems is the following global inversion theorem.

Theorem 3.8. Assume that φ : E→ F is a Keller’s C1
c -mapping, I ∈ AU(F, [0,∞]), and the

following conditions are satisfied:
(IFT1) for any f ∈ F, the function Jf : E→ [0,∞] defined by Jf (e) = I(f − φ(e)) satisfies

the PS-condition at any level if I is a Keller’s C1
c function. Moreover, it satisfies the

Chang PS-condition at any level if I is locally Lipschitz.
(IFT2) The derivative φ′(e) : E→ F is bijective for any e ∈ E.

Then, φ is a global Keller’s C1
c -diffeomorphism.

Proof. We assume that I is a Keller’s C1
c -function. The proof remains the same in the case

where I is locally Lipschitz. Define the mapping

(3.14) F : E× F→ F, F(e, f) = f − φ(e).

It belongs to the class Keller’s C1
c , and by (IFT1) the function

I(F(e, f)) = I(f − φ(e))

satisfies the PS-condition at any level. Moreover, D1F = φ′ is bijective by (IFT2). Thus, all
the assumptions of the global implicit function are met. Hence, there exists a unique Keller’s
C1
c -mapping K : F→ E such that

F(K(f), f) = 0F.

Obviously, K(f) = φ−1(f) and Dφ−1(f) = [Dφ(φ−1(f))]
−1
.

Remark 3.2. In [4, Theorem 3.1], an analogue of this theorem was proved for Keller’s C2
c -tame

mappings. Adding, the tame assumption is necessary to apply the Nash-Moser inverse function
theorem. However, in Theorem 3.8, we do not require that assumption, and the remaining
assumptions of the theorem are slightly less restrictive than those in [4, Theorem 3.1].

4. AN INITIAL VALUE PROBLEM

In this section, we employ the implicit function theorems to establish sufficient conditions
for solving the following initial value problem:

(4.1)

{
y′(t) = ϕ(t, y(t), e), ∀t ∈ I = [t0 − a, t0 + a]

y(t) = f.

Here, the values y(t) belong to the Fréchet space F, a > 0, t0 ∈ R, and e belongs to the Fréchet
space E. In addition, we suppose that ϕ : [−1, 1]×F×E→ F is a Keller’s C1

c -mapping. This
is a significant and challenging problem beyond the Banach case, and many attempts have been
made to provide non-restrictive conditions to solve it.

To solve (4.1), we reformulate it as a functional equation. The following spaces will be
required. The space C0 := C

0([−1, 1],F) consists of continuous mapping from [−1, 1] to F is
also a Fréchet space defined by the seminorms:

(4.2) ∥u(·)∥
C0,n

= sup
t∈[−1,1]

∥u(t)∥
F,n .

The metric dC0 , defined as in (2.1), generates the same topology on C0.
We denote by Ck := C

k([−1, 1],F) the space of all Keller’s Ck
c -mappings from [−1, 1] to

F, k ≥ 1. This space constitutes a Fréchet space equipped with the topology defined by the
following family of seminorms:

(4.3) ∥u(·)∥
Ck,n = max

0≤i≤k
sup

t∈[−1,1]

∥∥ui(t)∥∥
F,n

, whereu0(t) := u(t).
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This topology is also defined by the metric dC, as defined in Equation (2.1).
With the aforementioned notations, we now move forward to establish the following result:

Theorem 4.1. Let I ∈ AU(R×F×E, [0,∞]), and suppose that the following condition holds:
(C) for any ψ ∈ C2([−1, 1],F), the mapping

Jψ : R× F×E→ [0,∞]

Jψ(a, f, e) = I
(
ψ′(s)− aϕ(t0 + as, ψ(s) + f, e)

)
, for s ∈ [−1, 1].

satisfies the PS-condition at any level if I is a Keller’s C1
c function. Moreover, it satisfies

the Chang PS-condition at any level if I is locally Lipchitz.
Then, there exists b ∈ (0, a] such that the IVP (4.1) has a unique solution y = y(t; f, e) ∈
C

2([−1, 1],F) for each (f, e) ∈ F×E. In addition, the mapping

ψ : (t0 − b, t0 + b)× F×E→ F, (t, f, e) 7→ y(t; f, e)(4.4)

is of class Keller’s C1
c .

Proof. We assume that I is a Keller’s C1
c -function. The proof remains the same in the case

where I is locally Lipchitz.
Using the following substitutions:

s = (t− t0)/a,

y(s; t0, f) = y(t0 + as; f)− f, ∀s ∈ J = [−1, 1],(4.5)

we will reformulate the IVP (4.1) into a more convenient form. Thus, the IVP (4.1) transforms
into the following problem:

(4.6)

{
y′(s) = aϕ(t0 + as,y(s) + f, e), ∀s ∈ J,

y′(0) = 0F.

Let D := {φ ∈ C2(J,F) | φ(0) = 0F }, which is a closed linear subspace of C2(J,F), and
therefore is a Fréchet space. We cast (4.6) as a functional equation by introducing the Keller’s
C1
c -mapping:

F : D× R× F×E→ C
1(4.7)

F(y, a, f, e) := y′(s)− aϕ(t0 + as,y(s) + f, e), s ∈ J.

By condition (C), the mapping

(4.8) I
(
F(y, a, f, e)

)
= I

(
y′(s)− aϕ(t0 + as,y(s) + f, e)

)
satisfies the PS-condition at all levels. Differentiating F with respect to y yields Fy(·)y = y′.
Moreover, for any φ ∈ C1, there exists a unique y ∈ D, given by

y(s) =

∫ s

0

φ(t)dt

such that y′ = φ. Therefore, the mapping F′
y : D→ C

1 is bijective. Thus, all the assumptions
of the implicit function theorem 3.7 are fulfilled, implying that for a given a > 0, e ∈ E, and
f ∈ F the functional equation

(4.9) F(y, a, f, e) = 0C

has a unique solution y ∈ D that solves the IVP (4.1). In addition, the mapping

φ : R× F×E→ D, (a, f, e) 7→ y(4.10)

is of class Keller’s C1
c .
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Next, we prove that the mapping ψ defined by Equation (4.4), is Keller’s C1
c . Consider the

solution y and V := (t0 − b, t0 + b) × F, where 0 < b ≤ a. We will establish the continuity
of the partial derivatives yt(t, f) and yf (t, f) on V . Subsequently, by [13, Proposition II.2.6] it
follows that ψ is a Keller’s C1

c -mapping.
First, we prove that:

(1) (t, f) 7→ y(t, f) is continuous on V .
The continuity of the mapping φ, as defined in (4.10), implies that for any given ϵ > 0:

(4.11) dC

(
y(t0 + t, f + f),y(t0, f)

)
< ϵ

if |t− t| and dF(f, f) are sufficiently small. This means that

(4.12) ∀s ∈ J, dC0

(
y(s; t0 + t, f + f),y(s; t0, f)

)
< ϵ.

Thus, by the definition of y in (4.5), the mapping (t, f) 7→ y(t, f) is continuous on V . Now, by
employing (1) and the IVP (4.1), we can show that:

(2) (t, f) 7→ yt(t, f) is continuous on V .
Since φ is a Keller’s C1

c -mapping, the continuity of the partial derivative

D := yf : F→ D

follows. This, in turn, implies that for any given ϵ > 0:

(4.13) ∀e ∈ F, dC

(
D(t0 + t, f + f)e, D(t0, f)e

)
< ϵ

if |t− t| and dF(f, f) are sufficiently small. Furthermore, it follow from (4.13) that, for s ∈ J

(4.14) ∀e ∈ F, dF (yf (s; t0 + t, f + f)e,yf (s; t0, f)e) < ϵ

if |t− t| and dF(f, f) are sufficiently small. Thereby, by the definition of y in (4.5) and (4.14)
we have

(3) (t, f) 7→ yf (t, f) is continuous on V .

Remark 4.1. In [22], the local existence and uniqueness of the solution to the IVP (4.1) have
been established for Fréchet spaces known as standard. In this context, the data function ϕ
is assumed to be Hadamard differentiable, but this alone does not establish uniqueness. To
prove uniqueness, it is necessarily for ϕ to be continuously differentiable and satisfy a specific
condition. This result has be modified in [18], by dropping the assumption that the spaces
are standard and assuming that the mapping ϕ is Gâteaux differentiable. However, in this
setting, a unique solution is not guaranteed in general. The problem also has been studied in
[19], assuming that spaces exhibit the properties (SΩ)t and (DN), and that mappings are twice
continuously differentiable.

In our theorem, Fréchet spaces are supposed to be arbitrary, and mappings are continuously
differentiable. However, the Palais-Smale condition, which plays a central role, may seem
restrictive compared to the other results.

5. LAGRANGE MULTIPLIERS

In this section, we prove a Lagrange multiplier theorem and investigate the applicability of
the Nehari method in our context. We begin by recalling the definitions of submanifolds, regular
points, and infinitesimally surjective maps.

Suppose F1 is a closed subset of the Fréchet space F that splits it. Let F2 be one of its
complements, i.e., F = F1 ⊕ F2. A subset S of F is called a Fréchet submanifold modeled
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on F1 of class Keller’s Cr
c , r ≥ 1, if for any p ∈ S there exists a Keller’s Cr

c -diffeomorphism
ϕ : Uϕ → Vϕ, with Uϕ ∋ p ⊆◦ F and Vϕ = Wϕ ×Oϕ ⊆◦ F1 × F2 = F, such that

ϕ(S ∩ Uϕ) = Wϕ × {0F2} .
Then S is a Keller’s Cr

c -Fréchet manifold modeled on F1, with the maximal Keller’s Cr
c -atlas

including the mappings ϕ|Uϕ∩S : Uϕ ∩ S→ Vϕ ∩ S for all ϕ as described above.
When dealing with submanifolds, it is often more practical to work with tangent maps rather

than differentials. To revisit this concept, consider a mapping φ : U ⊆◦ E → V ⊂ F of class
Keller’s Cr, r ≥ 1. The tangent map of φ at u ∈ U is defined by

Tuφ : TU → TV, Tuφ(u, e) = (φ(u), φ′(u)e),

where TU = U × E and TV = V × F. Let PrU and PrV be the projections of TU and TV
onto U and V , respectively. Then, the diagram

TU
Tφ−−−→ TVyPrU

yPrV

U
φ−−−→ V

is commutative. Let φ : E → F be a Keller’s Cr
c -mapping, r ≥ 1. We call φ infinitesimally

surjective at e ∈ E if the tangent map Teφ is surjective.
A point f ∈ F is called a regular value of φ if φ is infinitesimally surjective at each e ∈

φ−1({f}), and the tangent map Teφ has the split kernel. If Teφ is not surjective, we call e ∈ E
a critical point of φ.

Theorem 5.1. Suppose that a Keller’s C1
c -mapping φ : E → F is infinitesimally surjective at

e0, and kerφ′(e0) splits E. Let E1 be the closed complement of E2 := kerφ′(e0). Suppose that
I ∈ AU(F⊕E2, [0,∞]), and the following condition is satisfied:

(S) for any v ∈ F⊕E2, the function

Jv : E = E1 ⊕E2 → [0,∞], Jv(u1, u2) = I
(
v − (φ(u1, u2), u2)

)
satisfies the PS-condition at any level if I is a Keller’s C1

c function. Moreover, it satisfies
the Chang PS-condition at any level if I is locally Lipchitz.

Then, there exists a Keller’s C1
c -diffeomorphism ϕ : F ⊕ E2 → E such that the following

diagram commutes:

F⊕ E2
ϕ

//

PrF
##

E
φ

��

F

Here, PrF is the projection onto F. Furthermore, the restriction of Dϕ(f, e) to F× {0E} is an
isomorphism for all (f, e) ∈ F⊕E2.

Proof. Again, we assume that I is a Keller’s C1
c -mapping. By the open mapping theorem,

φ′(e0)|E1 : E1 → F is continuous linear isomorphism. Define the mapping:

φ : E→ F⊕E2, φ(u) = (φ(u1, u2), u2), whereu = (u1, u2) ∈ E1 ⊕E2.

Hence,

Dφ(u)(e1, e2) =

A[
D1φ(u) D2φ(u)
0F IdE2

] [
e1
e2

]
, for allu = (u1, u2) ∈ E, e1 ∈ E1, e2 ∈ E2.
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However, D2φ(e0) = Dφ(e0)|E2 = 0F, since E2 = ker Dφ(e0). Consequently, A is block
diagonal, and thus Dφ(e0) : E → F ⊕ E2 is a continuous linear isomorphism. By (S), for any
v ∈ F⊕E2, the function

Jv((u1, u2)) = I(v −φ(u1, u2))
satisfies the PS condition at any level. Therefore, all the hypothesis of the global inversion
theorem (3.8) are satisfied for φ, and hence, φ : E → F ⊕ E2 is a diffeomorphism of class
Keller’s C1

c . Let ϕ := φ−1, which is also a Keller’s C1
c -diffeomorphism. Then

∀(f, e) ∈ F⊕E2, (f, e) = (φ ◦ ϕ)(f, e) = (φ(ϕ(f, e)), e).

Thus, φ ◦ ϕ(f, e) = f = PrF(f, e). Furthermore, the mapping Dϕ(φ(e0), e02), where e0 =
(e01, e02), exhibits a block diagonal structure, since Dφ(e0) is block diagonal. This, along with
the fact that Dφ(e) is an isomorphism for all e ∈ E, implies that D1φ(e) : E1 → E is also an
isomorphism. This means that Dφ(e)|E1×{0E} : E1 × {0E} → F × {0E2} is an isomorphism.
Therefore,

Dϕ((f, e))|F×{0E} : F× {0E} → E1 × {0E2}
is an isomorphism for all (f, e) ∈ F⊕E2.

Corollary 5.2. Assume that y ∈ F is a regular value of φ, and let S = φ−1(y). If φ satis-
fies condition (S) at each point of S, then the preimage S = φ−1(y) is a Keller’s C1

c -Fréchet
submanifold. The tangent space at any point x ∈ S is given by TxS = kerφ′(x).

Proof. We consider S in a local neighborhood around a given point x. By Theorem 5.1, there
exists a Keller’s C1

c -diffeomorphism ϕ such that

∀h ∈ E, φ ◦ ϕ−1(h) = φ′(x)h+ y.

Consequently, the solution set of the equation

φ(z) = y

in a neighborhood of z = x corresponds to the solution set of the equation

φ′(x)h = 0F

in a neighborhood of 0F. Therefore, locally, S looks like kerφ′(x), which splits in E.
To determine the tangent space TxS, consider a Keller’s C1

c -curve c(t) in S with c(0) = x.
Since φ(c(t)) = 0F, it follows that φ′(x)c′(0) = 0F. Therefore, TxS ⊂ kerφ′(x).

Conversely, suppose φ′(x)w = 0F, and let x(t) = ϕ−1(tw). Then, x(t) ⊂ S, and x′(0) = w.
Hence, TxS = kerφ′(x).

Moving forward, we define transversality. Let S be a Keller’s C1
c -submanifold of F modeled

on F1, where F1 is a complemented closed subset of F, and F2 is one of its complements, i.e.,
F = F1 ⊕ F2. Let φ : E → F be a Keller’s C1

c -mapping. We say φ is transversal to S and
denote it as φ ⋔ S if the following condition is met:

(T) consider x ∈ E such that φ(x) ∈ S, and let (U, ϕ) be a chart at φ(x) such that ϕ : U →
U1 × U2 is an isomorphism, satisfying

ϕ(φ(x)) = (0F1 ,0F2) and ϕ(S ∩ U) = U1 × 0F2 .

Then, there exist an open neighborhood U of x such that the composite map

U
φ−−→ U

ϕ−−→ U1 × U2
Pr2−−→ U2

is a infinitesimally surjective, and kerφ′(x) splits E.
With the above notations, we proceed to prove the following result:
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Corollary 5.3. If φ ⋔ S and condition (S) is fulfilled at each point s ∈ φ−1(S), then φ−1(S) is
a Keller’s C1

c -Fréchet submanifold of E.

Proof. The transversality condition (T) implies that for x ∈ U ∩ φ−1(S), we have

Tx(Pr2 ◦ ϕ ◦ φ|U) = Pr2 ◦ Tφ(x) ◦ Txφ,

and Tx(ϕ ◦ φ)(E) + F1 = F1 ⊕ F2. Therefore, Tx(Pr2 ◦ ϕ ◦ φ|U) : E→ F2 is surjective, and
its kernel is (Txφ)−1(Tφ(x)S). This is due to the fact that ker Pr2 = F1, and we have

(Tφ(x)ϕ)
−1(F1) = Tφ(x)S.

Consequently, it splits in E, implying that 0F2 is a regular value of the composition

(Pr2 ◦ ϕ ◦ φ|U) : U → F2.

Furthermore,
(Pr2 ◦ ϕ ◦ φ|U)−1(0F2) = φ−1(S ∩U).

Therefore, by Corollary 5.2,
φ−1(S ∩ U)

is a Keller’s C1
c -Fréchet submanifold of E. Its tangent space at x ∈ U equals

ker
(
Tx(Pr2 ◦ ϕ ◦ φ|U)

)
= (Txφ)

−1(Tφ(x)S).

Next, we will prove a Lagrange multiplier theorem. Let ϕ : E→ R be a Keller’sC1
c -mapping

and S a submanifold of E. A point s ∈ S is a critical point of ϕ|S if and only if ⟨ϕ′(s), v⟩ = 0
for all v ∈ TsS. By definition of a tangent space, this means that for every Keller’s C1

c -mapping
γ : (−ϵ, ϵ) → E such that γ(t) ∈ S for all t ∈ (ϵ, ϵ), γ(0) = s, and γ′(0) exists, we have

d

dt t=0
φ(γ(t)) = 0.

If s ∈ IntS, then s is a usual critical point of ϕ, which is called a free critical point of ϕ.
Let I : S ↪→ E be the canonical inclusion so that ϕ|S = ϕ ◦ I. Then the chain rule implies

that Ts(ϕ|S) = Tsϕ ◦ TsI, thereby s is a critical point of ϕ|S if and only if Tsϕ|TsS = 0.
Let φ : E → F be a Keller’s C1

c -mapping, y be a regular value of φ, and S = φ−1(y).
Therefore, φ is infinitesimally surjective at y, with E2 := kerφ′(y) that splits E such that
E2 ⊕ E1 = E. Suppose that there exist I ∈ AU(F ⊕ E2, [0,∞]) such that condition (S) is
satisfied. Thus, by Corollary 5.2, φ−1(y) is a Keller’s C1

c -submanifold of E.
With the above notations, in the following theorem for a real-valued mapping ϕ on E, we

give necessary and sufficient conditions for a point in S to be a critical point of ϕ|S.

Theorem 5.4. Let ϕ : E→ R be a Keller’s C1
c -mapping satisfying condition (S) at each point

of S. A point s ∈ S is a critical point of ϕ|S if and only if there exist µ ∈ F′ such that s is a
critical point of ϕ− µ ◦ φ. If φ is surjective, then µ is unique.

Proof. Sufficiency. Suppose that such a µ exists, and s is a critical point of ϕ− µ ◦φ. In terms
of tangent maps we have Tsϕ = µ ◦ Tsφ and TsS = kerTsφ. Therefore, if I : S ↪→ E is the
canonical inclusion, then

∀v ∈ TsS, (µ ◦ Tsφ ◦ TsI)(v) = µ(Tsφ(v)) = 0,

implying that 0 = (µ ◦ Tsφ)|TnS = Tsϕ|TsS.
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Necessity. Suppose that s is a critical point of ϕ|S, that is Tsϕ|TsS = 0. It follows from
Theorem 5.1 that there exist charts ϕ : U ∋ s → U1 × V1 ⊂ E× F and ψ : V ∋ y → U1 with
φ(U) ⊂ V satisfying

ϕ(s) = (0E,0F), ψ(y) = 0E, and ϕ(U ∩ S) = {0E} × V1,

such that
∀(u, v) ∈ U1 × V1, (ψ ◦ φ ◦ ϕ−1)(u, v) = u.

It follows from Tsϕ|TsS = 0 that

∀f ∈ F, D2ϕ
(
ϕ−1(0E,0F)

)
f = 0.

Now, set µ = D1ϕ
(
ϕ−1(0E,0F)

)
∈ E′. Thereby, for (e, f) ∈ E× F, we have

(5.1) Dϕ
(
ϕ−1(0E,0F)

)
(e, f) = µ(e) =

(
µ ◦ D(ψ ◦ φ ◦ ϕ−1)

)
(0E,0F)(e, f),

which implies

(5.2) Dϕ
(
ϕ−1(0E,0F)

)
=

(
µ ◦ D(ψ ◦ φ ◦ ϕ−1)

)
(0E,0F).

Now, let µ = µ ◦ ψ′(y) ∈ F′, hence by composing 5.2 with Tsϕ we obtain Tsϕ = µ ◦ Tsφ, in
another words s is a critical point of ϕ− µ ◦ φ.

Now, suppose that φ is surjective, we prove the uniqueness of µ. Suppose there exists another
µ1 ̸= µ ∈ F′ such that Tsϕ = µ ◦ Tsφ = µ1 ◦ Tsφ. Let f ∈ F be such that ⟨µ, f⟩ ≠ ⟨µ1, f⟩. If,
f = φ(e) for e ∈ E, then

⟨Tsϕ, e⟩ = ⟨µ, φ(e)⟩ ≠ ⟨µ1, φ(e)⟩ = ⟨Tsϕ, e⟩,
which is a contradiction.

Now, suppose that S is a submanifold of F modeled on F1 and φ ⋔ S. If condition (S) is
fulfilled at each point s ∈ φ−1(S), then by Corollary 5.3, S = φ−1(S) is a Keller’s C1

c -Fréchet
submanifold of E. Consider a Keller’s C1

c -mapping ϕ : E → R and a point s in S. As Tφ(x)S
is complemented in Tφ(s)F, we have

Tφ(s)F = Tφ(s)S⊕ Fφ(s),

where Fφ(s) is one of its complements. With this setup, we proceed to characterize critical
points of ϕ|S in the next theorem.

Theorem 5.5. Suppose that ϕ : E→ R satisfies condition (S) at each point of S. A point s ∈ S
is a critical point of ϕ|S if and only if there exists µ ∈ F′

φ(s) such that Tsϕ = µ ◦ Pr ◦Tsφ,
where Pr : Tφ(s)F→ Fφ(s) is the projection.

Proof. By Corollary 5.3, there exist charts

ϕ : U → U1 × U2 ⊂ E1 ×E2 and ψ : V → U1 × V1 ⊂ E1 × F
with φ(U) ⊂ V , satisfying

φ(s) = (0E1 ,0E2), φ(U ∩ S) = {0E1} × 0E2 , and ψ(φ(s)) = (0E1 ,0F),

such that
∀(u, v) ∈ U1 × V1, (ψ ◦ φ ◦ ϕ−1)(u, v) = (u, λ(u, v)),

where λ : U1 × V1 → V1 is a Keller’s C1
c -mapping such that D(λ ◦ ψ−1)(s) = 0. Consider

the mapping π := Pr2 ◦ψ ◦ φ ◦ ϕ−1, where Pr2 : E1 × F → E1 is the canonical projection.
Applying Theorem 5.4 to π implies that (0E1 ,0E2) is a critical point of ϕ|0E1

×U2 if and only if
there exists µ ∈ E′

1 such that

(5.3) D(ϕ ◦ ϕ−1)(0E1 ,0E2) = µ ◦ Pr2 ◦ D(ψ ◦ φ ◦ ϕ−1)(0E1 ,0E2).
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Here, D(ϕ◦ϕ−1)(0E1 ,0E2) represents the derivative of ϕ composed with the inverse of ϕ at the
point (0E1 ,0E2), and µ ◦ Pr2 ◦ D(ψ ◦ φ ◦ ϕ−1)(0E1 ,0E2) involves the derivative of ψ ◦ φ ◦ ϕ−1

at the same point, projected onto the second component of the target space.
If we let µ = µ ◦ Tφ(s)ψ ∈ F′

φ(s) and compose Tsϕ on the the right to Equation (5.3), and
define the projection operator Pr as:

Pr = (Tφ(s)ψ)
−1|Fφ(s)

◦ Pr2 ◦ Tφ(s)ψ : Tφ(s)F→ Fφ(s),

then we obtain Tsϕ = µ ◦ Pr ◦Tsφ.

Next, let’s consider a special case when F = R. Suppose ϕ : E → R is a Keller’s C1
c -

mapping and S is a submanifold of E. If a point s ∈ S is a critical point of ϕ, then it is also a
critical point of ϕ|S. However, the converse is not true in general. To identify critical points of
ϕ, we can search for a submanifold of E such that both ϕ and its restriction to the submanifold
share the same critical points. This approach is known as the Nehari method.

Consider the following subset of E:

N := { e ∈ E \ {0E} | ⟨ϕ′(e), e⟩ = 0 }.
This set known as a Nehari manifold, although it is not a manifold in general. To turn it into a
submanifold of E, we impose the following conditions:

(N1) there exists an open neighborhood U of zero such that U ∩N = ∅,
(N2) the function ϕ is of class Keller’s C2

c , and

(5.4) ∀x ∈ N , ⟨ϕ′′(x)x, x⟩ ≠ 0.

Define the Keller’s C1
c -mapping φ(e) = ⟨ϕ′(e), e⟩ on E. Then, N = φ−1(0) \ {0E}, and for

any x ∈ N , we have

(5.5) ⟨φ′(x), x⟩ = ⟨ϕ′′(x)x, x⟩+ ⟨ϕ′(x), x⟩ = ⟨ϕ′′(x)x, x⟩ ≠ 0.

Thus, for all x ∈ N , we have φ′(x) ̸= 0, which along with (N1) implies that N is a Keller’s
C1
c -submanifold of E.
Suppose that ϕ : E → R satisfies condition (S) at each point of N . If s is a critical point of

ϕ|N , then by Theorem (5.4), there exists µ ∈ R such that:

ϕ′(s) = µφ′(s).

Therefore, ⟨ϕ′(s), s⟩ = µ⟨φ′(s), s⟩ = φ(s) = 0. Thus, it follows from (5.5) that µ = 0, and
hence ϕ′(s) = 0. Therefore, we have proved the following theorem.

Theorem 5.6. Let ϕ : E→ R be a Keller’s C2
c -mapping, and N the Nehari manifold of ϕ that

satisfies (N1) and (N2). If ϕ satisfies condition (S) at each point of N , then ϕ and ϕ|N have
the same critical points.
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