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ABSTRACT. Many control and signal processing applications require testing stability of poly-
nomials. Classical tests for locating zeros of polynomials are recursive, but they must be stopped
whenever the so called “singular polynomials” appear. These “singular cases” are often avoided
by perturbing the “singular polynomial”. Perturbation techniques although always successful
are not proven to be well-founded. Our aim is to give a mathematical foundation to a perturba-
tion method in order to overcome “singular cases” when using Levinson recursion as a testing
method. The non–singular polynomials are proven to be dense in the set of all polynomials re-
spect theL2−norm on the unit circle . The proof is constructive and can be used algorithmically.
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1. I NTRODUCTION

The problem of root distribution of a polynomial has been long treated, and it is discussed in
many textbooks on engineering applications such as system theory or automatic control. The
first systematic approach to investigate real root distribution of a polynomial was presented by
Sturm [15] in 1829. Concerning the asymptotical stability of a linear difference equation, the
number of roots in the unit circle was determined by Schur and Cohn [4] and further obtained
by Marden [11], Jury [9] and Riable [14].

A common problem that arises when we apply classical tests for locating the zeros of poly-
nomials is the appearance of the so called “singular cases” in which backward recursion stops
([9], [8], [2]).
In order to overcome this situation, procedures involving coefficients of polynomials are usual in
the literature [5]. For instance, a perturbation of the coefficients is often carried out claiming for
continuity arguments. However, continuity of zeros with respect to coefficients does not mean
that a small perturbation of coefficients always allows us to attain a “non–singular” polynomial.
Beyond continuity, density statements are required to assure that non–singular polynomials are
always close to the singular ones.
As far as we know, density statements involving polynomials and reflection coefficients have
never been used to justify these perturbation techniques. Our concern in this paper is to present
one of the above mentioned statements when dealing with reflection coefficients and backward
Levinson recursion [10]. To this end, we give a density theorem assuring that, for any polyno-
mial, there exists a non–singular (Levinson’s recursion sense) one as close to it, in theL2–norm
sense, as desired.

2. NOTATIONS AND BASIC RESULTS

Backward Levinson recursion is important when checking the position of the zeros of a poly-
nomial with respect to unit circle ([13], [6]). Given an-degree monic polynomial

An(z) = zn +
n−1∑
k=0

ankz
k ,

the backward Levinson recursion [10] assigns a(n − 1)-degree monic polynomialAn−1(z),
being its coefficients

(2.1) an−1,j =
1

1− |αn|2
(an,j+1 − αnan,n−1−j) ,

for j = 0, 1, . . . , n− 1, whereann = 1 andαn = an0. Herea denotes the complex conjugate of
a. From (2.1), the polynomialAn−1(z) is readily expressed as

(2.2) zAn−1(z) =
1

1− |αn|2
[
An(z)− αnA

∗
n(z)

]
,

whereA∗
n(z) = znAn(1/z). Backward Levinson recursion is not defined in cases such that

|αn| = 1. These are the so-called singular cases.
From (2.1) and (2.2), forward Levinson recursion can be easily obtained, namely,

(2.3) anj = an−1,j−1 + αnan−1,n−1−j , j = 0, 1, . . . , n ,

or in polynomial notation

(2.4) An(z) = zAn−1(z) + αnA
∗
n−1(z) .

Levinson recursions detach the role ofαn = an0 which is called reflection coefficient ofAn(z).
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From a given monic polynomialAj(z), and a sequence of reflection coefficientsαj+1, αj+2,
. . . , αn, forward Levinson recursion (2.3),(2.4), generates a sequence of polynomials of in-
creasing degree. The last term of the sequence is denotedAn(z) = [Aj(z); αj+1, αj+2, . . . , αn].
Frequently, polynomialAj(z) is assumed to be the constant polynomialA0(z) = 1.

The main classical result on location of zeros using Levinson recursions is the next theorem
based on the Rouchè theorem ([1], [3], [12], [16]).

Theorem 2.1. Let An(z) be a monic polynomial with complex coefficients. Then, the zeros
of An(z) lie in the unit circle if and only ifAn(z) = [1; α1, α2, . . . , αn] with |αk| < 1 for
k = 1, 2, . . . , n.

Theorem 2.1 motivates the question of which polynomials have an expression in reflection
coefficients asAn(z) = [1; α1, α2, . . . , αn], i.e. generated from the constant polynomial 1. This
question is directly related with the cases in which the polynomialAn(z) has a unitary reflection
coefficient. Then backward Levinson recursion (2.2) does not work. These polynomials are
called unitary.

Definition 2.1. A monic complex polynomialAn(z) = zn +
∑n−1

k=0 ankz
k, is unitary if its

reflection coefficientαn = an0 satisfies|αn| = 1.

Unitary polynomials can be divided into two classes depending on the following property.

Definition 2.2. A unitary polynomialAn(z) = zn +
∑n−1

k=0 ankz
k, is self–inversive if there

exists a unitary complex numberu such thatAn(z) = uA∗
n(z) or, equivalently,ank = uan,n−k

for k = 0, 1, . . . , n.

Self–inversive polynomials can be obtained from the constant polynomial 1 and an appropri-
ate sequence of reflection coefficients by using forward Levinson recursion (2.4). This can be
summarized in the following theorem proven in [7].

Theorem 2.2. Let An(z) be a unitary polynomial. Then, there exist a sequence of reflection
coefficientsα1, α2, . . . , αn such thatAn(z) = [1; α1, α2, . . . , αn] if and only if An(z) is self–
inversive. Moreover, forn ≥ 3, if the sequenceα1, α2, . . . , αn exists, it is not unique.

A consequence of theorem 2.2 is that non self–inversive, unitary polynomials can not be ob-
tained from 1 using forward Levinson recursion and this motivates a characterization of poly-
nomials by reflection coefficients.

Definition 2.3. The reflection coefficient characterization of a complex monic polynomialAn(z)
is

(2.5) An(z) = [Aj(z); αj+1, αj+2, · · · , αn] ,

where0 ≤ j ≤ n andAj(z), called base polynomial, is eitherAj(z) = A0(z) = 1 or Aj(z) is
a non self-inversive, unitary polynomial. The constantsαk ∈ C, k = j + 1, j + 2, · · · , n, are
reflection coefficients.

If all reflection coefficients in the characterization ofAn(z) are not unitary, then, the char-
acterization is unique. Polynomials which base polynomial isA0(z) = 1, with one or more
unitary reflection coefficients have multiple characterization.

The preceding characterization provides a classification of the set of polynomials of any
degree into non-overlapping subsets defined as follows [7]:

(a)

C[Aj] =
{

Ak(z) = [Aj(z); αj+1, · · · , αk], |αs| 6= 1, j + 1 ≤ s ≤ k
}

with j ≤ k, αs ∈ C, andAj(z) a non self-inversive, unitary polynomial.
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(b)

C[1] =
{

Ak(z) = [1; α1, α2, · · · , αk], 1 ≤ k
}

.

In the literature concerning reflection coefficients, the polynomials usually considered belong to
C[1] class, but they are often restricted to those which reflection coefficients have modulus less
than1. After definition 2.3,C[1] contains both polynomials for which backward Levinson recur-
sion (2.2) applies normally until obtaining the constant base polynomial and polynomials that,
in some step of the backward recursion, produce a self–inversive polynomial. Self–inversive
polynomials have been considered singular because backward Levinson recursion (2.2) can
not be applied. However, there are polynomials that are transformed into them by the for-
ward Levinson recursion. For instance, ifAn(z) is self–inversive, then its monic derivative
An−1(z) = A′

n(z)/n is such thatAn(z) = [An−1(z); αn], whereαn is the reflection coefficient
of An(z). Therefore, self–inversive polynomials, being unitary, cannot be considered singular
for they belong toC[1] and perturbation procedures are not necessary. Polynomials which are
not inC[1] may be called singular and they have to be perturbed to carry out backward recursion.

3. DENSITY THEOREM

Attention is now centered on the density of theC[1] class in the set of all monic polynomials
with complex coefficients. In this case, density means that every polynomial is as close to one
in C[1] class as desired, with respect to theL2–distance.

TheL2(|z| = 1)–norm and distance on the unit circle are defined as follows.

Definition 3.1. Let A(z) andB(z) be two monic polynomials with complex coefficients. The
L2(|z| = 1)–norm on the unit circle is

‖A(z)‖2 =

∮
|A(z)|2 dz ,

and the corresponding distance is

(3.1) d(A(z), B(z)) =

∮
|A(z)−B(z)|2 dz ,

where the path of the integrals is the unit circle.

The main result is the following theorem.

Theorem 3.1. Let An(z) be a monic complex polynomial. Then, for allε > 0, there exists a
polynomialAm

n (z) = [1; αm
1 , αm

2 , · · · , αm
n ], such thatd(An, A

m
n ) < ε.

Before proving this theorem, a lemma concerning to distances of polynomials under Levin-
son recursion is needed. It relates the distance between two polynomialsAn(z), Bn(z), and the
distance between the two polynomialsAn+1(z), Bn+1(z), obtained from the formers by apply-
ing forward recursion (2.4) with the same reflection coefficientαn+1.

Lemma 3.2. Let An(z) andBn(z) be two monic polynomials of degreen and letAn+1(z) =
[An(z); αn+1] andBn+1(z) = [Bn(z); αn+1] , then

(3.2) d(An+1, Bn+1) ≤ (1 + |αn+1|)d(An, Bn)

whered( , ) is the distance (3.1).

Proof. The inequality claimed is a direct consequence of the properties ofL2(|z| = 1) norm. In
fact, applying forward recursion (2.4) to polynomialsAn(z) andBn(z), we have

An+1(z) = zAn(z) + αn+1A
∗
n(z) = zAn(z) + αn+1z

nAn(1/z),

Bn+1(z) = zBn(z) + αn+1B
∗
n(z) = zBn(z) + αn+1z

nBn(1/z),
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and
d(An+1, Bn+1) = ‖An+1 −Bn+1‖ ≤ ‖z(An −Bn)‖+ ‖αn+1(A

∗
n −B∗

n)‖ .

Taking into account that‖z(An−Bn)‖ = ‖An−Bn‖ = ‖A∗
n−B∗

n‖ inequality (3.2) immediately
follows and the proof of the lemma is complete.

The proof of theorem 3.1 has a constructive character and it can be used to obtain polynomials
in C[1] class by perturbing singular polynomials. The proof follows.

Proof. The result is clearly true ifAn(z) belongs toC[1]. Otherwise,An(z) is a polynomial for
which backward recursion (2.2) does not work, (i.e.,|aj0| = 1 for somej ≤ n, andAj(z) is
non self–inversive). Without loss of generality we can assume thatj = n. Let An(z) = A0

n(z)
with an0 = α0

n, such that|α0
n| = 1. In order to getAm

n (z), we will build up a finite sequence of
polynomials

A0
n(z), A1

n(z), A2
n(z), · · · , Am

n (z) , 0 ≤ m ≤ n ,

which constant term are denoted byak
n0 = αk

n.
Assume thatAk

n(z) has been obtained. IfAk
n(z) ∈ C[1], then setm = k. Otherwise, backward

recursion (2.2) can be carried out in order to obtain

Ak
n(z), Ak

n−1(z), · · · , Ak
n−j(z), 0 ≤ j ≤ n− 1 ,

whereAk
n−j(z) is non self–inversive,|αk

n−j| = 1 and |αk
n−s| 6= 1, n − s > n − j. Define a

perturbedαk+1
n−j such that|αk+1

n−j| = 1 + δk+1, δk+1 > 0 andarg αk+1
n−j = arg αk

n−j = θk, and the
corresponding perturbation ofAk

n(z) by

Ak+1
n (z) =

[
Ak

n−j(z) + δk+1e
iθk ; αk

n−j+1, α
k
n−j+2, · · · , αk

n

]
,

so thatαk
` = αk+1

` for ` = n− j + 1, n− j + 2, · · · , n.
Hence,

Ak+1
n−j(z)− Ak

n−j(z) = αk+1
n−j − αk

n−j = δk+1e
iθk ,

and using theorem 3.2,

d2(Ak
n, A

k+1
n ) ≤ d2(Ak

n−j, A
k+1
n−j)

j−1∏
s=0

(1 + |αk
n−s|)2 = δ2

k+1

j−1∏
s=0

(1 + |αk+1
n−s|)2 .

This procedure is finite because, forAk+1
n (z), we can carry out backward recursion (2.2) at least

one more time than forAk
n(z), i.e.,m ≤ n.

The distance betweenA0
n(z) andAm

n (z) can be bounded as follows

(3.3) d2(A0
n, A

m
n ) ≤

m∑
r=1

d2(Ar−1
n , Ar

n) ≤
m∑

r=1

[
δ2

r

j−1∏
s=0

(1 + |αr
n−s|)2

]
Since the consideredδr

′s can be taken as small as desired, we can choose theseδr
′s such that

δ2
r

j−1∏
s=0

(1 + |αr
n−s|)2 <

ε

m
.

Therefore,d2(A0
n, A

m
n ) < ε and the proof of theorem 3.1 is complete.

Observe that a simple perturbation of the last reflection coefficient (the independent term of
the polynomial) allows us to step down backward Levinson recursion at least once for each
perturbation, being the change of theL2(|z| = 1)–norm of the polynomial explicitly bounded.
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Schematically, the proof of theorem 3.1, can be summarized as follows:

αn A0
n(z) αn A1

n(z) αn A2
n(z) · · ·

αn−1 A0
n−1(z) αn−1 A1

n−1(z) αn−1 A2
n−1(z) · · ·

αn−2 A0
n−2(z) αn−2 A1

n−2(z) αn−2 A2
n−2(z) · · ·

...
...

...
...

...
...

...
αn−k A0

n−k(z) α1
n−k A1

n−k(z) α1
n−k A2

n−k(z) · · ·
Backward α1

n−k−1 A1
n−k−1(z) α1

n−k−1 A2
n−k−1(z) · · ·

recursion
...

...
...

...
...

does not α1
n−j A1

n−j(z) α2
n−j A2

n−j(z) · · ·
work

...
...

...

...
1

whereA0
n(z) = An(z), |αn−k| = |α1

n−j| = 1 andα1
n−k = αn−k + δn−ke

iθn−k , α2
n−j = α1

n−j +

δn−je
iθn−j , and so on. That is to say, we getAm

n (z) by carrying out the following steps:
Step 1::SetA0

n(z) = An(z). If |αn| = 1 andA0
n(z) is non self-inversive, thenk = 0, and

go to Step 2. Otherwise, apply backward recursion until an unitaryαn−k, (0 < k ≤ n)
appears andAn

n−k(z) be non self-inversive. Ifk = n, An(z) ∈ C[1], and we are done.
Step 2::SetA1

n−k(z) = A0
n−k(z)+ δn−ke

iθn−k . Build upA1
n(z) from A1

n−k(z) by applying
forward recursion with reflection coefficientsαn−k+1, . . . , αn−1, αn. On the other hand,
apply toA1

n−k(z) Step 1, increasing the superscript by one, until an unitaryα1
n−j, (k +

1 < j ≤ n) appears andA1
n−j(z) be non self-inversive. Ifj < n, then carry out Step 2

again increasing the superscript by one.
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